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Abstract: Metal matrix-impregnated diamond composites are widely used for fabricating diamond
tools. In order to meet the actual engineering challenges, researchers have made many efforts to seek
effective methods to enhance the performance of conventional metal matrices. In this work, tungsten
carbide (WC) nanoparticles were introduced into WC-Bronze-Ni-Mn matrix with and without
diamond grits for improving the performance of conventional impregnated diamond composites.
The influence of WC nanoparticles on the microstructure, densification, hardness, bending strength
and wear resistance of matrix and diamond composites were investigated. The results showed
that the bending strength of matrix increased up to approximately 20% upon nano-WC addition,
while densification and hardness fluctuate slightly. The grinding ratio of diamond composites
increased significantly by about 100% due to nano-WC addition. The strengthening mechanism
was proposed according to experimental results. The diamond composites with 2.8 wt% nano-WC
addition exhibited the best overall properties, thus having potential to apply to further diamond tools.
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1. Introduction

Impregnated diamond composites produced by powder metallurgy are widely used for
fabricating tools employed in cutting, drilling, milling and polishing applications [1–4]. The choice
of the matrix materials which holds the diamond is essential to properties and service life of
diamond tools [5,6]. WC-Bronze-Ni-Mn matrix, a composite mainly containing micron-WC,
bronze (Cu85%-Sn6%-Zn6%-Pb3%) alloy, Ni and Mn, is widely used for diamond drilling tool
manufacturing [7,8]. The micro-WC is used as framework material to enhance hardness and wear
resistance, bronze is used as bonding phase, the element of Ni is used as strengthened phase because
of its excellent wettability with diamond and Mn plays the role of antioxidant [9]. WC-Bronze-Ni-Mn
matrix has high strength and adjustable properties that is suitable for different rock types, the diamond
grits in tools can contact the rocks more easily and maintain an abrasive cutting surface between
tools and rocks. The matrix properties and wear rate difference between matrix and diamond grits
are important factors determining the performance of diamond tools [10–12]. Harsh and complex
service conditions such as hydro-abrasive wear, impact stress and elevated temperature, require the
development of new matrix materials with enhanced mechanical properties and wear resistance [13].
Different kinds of metals, such as Co, Fe and Ni, have been served as matrix materials for production
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of diamond tools [14–17]. However, the actual applicability of these matrices based diamond tools
for different rocks is unsatisfactory because they wear out faster than diamond grits when processing
hard and abrasive rocks. These metals also catalyze the reaction of diamond (sp3) to graphite (sp2) at
elevated temperature, which reduces adhesion between diamond and matrix [18–20].

Development of metal matrix composites reinforced by nanoparticles is a promising way to
meet the actual engineering requirement on mechanical and tribological properties. Metal matrix
composites reinforced by nanoparticles have promising properties, which is more suitable for a large
number of functional and structural applications than other metal matrix strengthening methods,
such as solution strengthening, work hardening and precipitation strengthening [14]. Recently,
some researchers investigated metal matrix reinforced with nano-particles (nanotubes), finding out
that adding nanosized reinforcement improved hardness, bending strength and wear resistance of
matrix [21–28]. Ceramic (Al2O3, ZrO2, TiC, TiB2, WC, etc.) nanoparticles can be used as reinforcing
phase. But Al2O3, ZrO2, TiC and TiB2 nanoparticles have low wettability with bonding phase bronze,
which decreases composites properties [7,13,22–26]. WC nanoparticles have excellent wettability with
bronze and have good properties, namely high hardness, high wear resistance, good thermal and
chemical stability. So it has been used in enhancing Ni, Fe and Co based matrix composites for cutting
tools and modifying coatings for high wear resistance tools [13,22,29–31].

In this work, nano-WC was introduced into WC-Bronze-Ni-Mn based diamond composites for the
first time. The effects of nano-WC addition on the microstructures, mechanical properties, and wear
resistance of WC-Bronze-Ni-Mn based diamond composites were investigated and discussed. The aim
is to seek optimal nano-WC addition concentration to meet the requirement of mechanical properties
and wear resistance.

2. Materials and Methods

2.1. Sample Preparation

The composition of initial matrix in this work is given in Table 1, including WC (99.9% purity,
Zhuzhou, China), bronze (99.9% purity, Beijing, China), Ni (99.9% purity, Beijing, China) and Mn
(99.9% purity, Beijing, China).

Table 1. Composition of initial matrix.

Composition WC Bronze Ni Mn

Content (wt%) 55 35 5 5
Average particle size (µm) 10 50 75 60

Two series of samples (size: 38 × 8 × 5 mm3), matrix and impregnated diamond composites
samples, were fabricated by power metallurgy methods of hot-pressing sintering. For purpose of
obtaining uniform mixture, initial matrix powder was first mixed in a ball milling machine (Focucy,
P400, Changsha, China) with WC balls for 24 h at a speed 120 rpm. Nano-WC (99.9% purity, average
particle size of 80 nm, Qinhuangdao, China) with different mass percent concentration were then
mixed with initial powder that was milled already using the same ball milling machine for 8 h at
a speed 120 rpm. The resultant mixture with various concentration of nano-WC were sintering by
hot-pressing in graphite moulds at 980 ◦C for 5 min. During the sintered process, the samples were
forced by a uniaxial pressure of 35 MPa. The sintering apparatus was an intermediate frequency
furnace (KGPS, Ezhou, China).

In impregnated diamond samples preparation process, initial matrix powder and different mass
percent concentration nano-WC were mixed by the same way as matrix samples. The diamond grits
(20 vol% concentration, synthetic, 270–325 µm, Changge, China) were added into the resultant mixture
through a three-dimension mixer (JH2D-6, Zhengzhou, China) for 4 h. The diamond composites
samples were prepared by hot-pressing sintering at the same parameters as matrix samples.
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2.2. Characterization

The density of samples was measured by high precision density tester (Dahometer, DE-120M) via
Archimedes method. The Rockwell hardness scale C (HRC) tests were carried out using a Rockwell
hardness tester (Huayin HRS-150, Yantai, China). Three-point bending strength was tested by an
electronic universal test machine (DDL 100, CIMACH, Chuangchun, China). The microstructure
of composites were characterized by SEM (Hitachi S-4800, Tokyo, Japan) equipped with an energy
dispersive spectrometer (EDS) and the acceleration voltage of EDS mapping experiments was 25 kV.

Grinding ratio tests were performed using a grinding ratio measurement apparatus as illustrated
in Figure 1. The SiC grinding wheel with the dimension of 100 mm diameter and 20 mm thickness
was applied as wear counterparts. The testing parameters were as follows: linear velocity 15 m/s,
load 500 g, swing frequency 30 min−1 and grinding time > 100 s. The grinding ratio was calculated by
the formula

Ra = ∆Mg/∆Ms (1)

where Ra is the sample grinding ratio; ∆Mg is the weight loss of SiC grinding wheel; ∆Ms is the weight
loss of sample.
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3. Results and Discussion

The designation, composition and mechanical properties of samples are summarized in Table 2.

Table 2. The designation, composition and mechanical properties of samples.

Samples Composites Relative Density
(%) Hardness (HRC) Bending Strength

(MPa)

S0 Matrix 98.4 42.2 ± 2.9 705.9 ± 35.4
S1 Matrix + 0.5 wt% nano-WC 97.0 36.9 ± 0.9 700.9 ± 30.3
S2 Matrix + 1.0 wt% nano-WC 97.0 36.7 ± 2.0 732.1 ± 16.6
S3 Matrix + 1.5 wt% nano-WC 97.8 39.2 ± 4.1 753.5 ± 31.0
S4 Matrix + 2.0 wt% nano-WC 97.6 36.2 ± 3.1 769.6 ± 29.9
S5 Matrix + 2.5 wt% nano-WC 98.5 40.7 ± 1.3 824.5 ± 28.4
S6 Matrix + 3.0 wt% nano-WC 98.3 38.8 ± 2.6 736.0 ± 24.5

SD0 Matrix + Diamond 95.8 - 391.0 ± 25.5
SD1 Matrix + 2.2 wt% nano-WC + Diamond 93.1 - 461.6 ± 32.0
SD2 Matrix + 2.5 wt% nano-WC + Diamond 94.8 - 398.8 ± 19.2
SD3 Matrix + 2.8 wt% nano-WC + Diamond 96.1 - 384.3 ± 7.4
SD4 Matrix + 3.1 wt% nano-WC + Diamond 95.3 - 398.0 ± 32.4
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3.1. Microstructure

Sample S5 with 2.5 wt% nano-WC shows the optimum mechanical properties, so S5 and reference
sample S0 are chose to be investigated. Figure 2 shows the fracture morphologies of matrix samples
S0 and S5. In Figure 2a,b, the 0.5–6 µm matrix grains can be differentiated according to their shape:
polygon-shaped grains consisting of micron-WC particles [7–9,29–31] and smooth round grains around,
which are bonding phases bronze and Ni. As marked in Figure 2a, micro-WC particles are discerned
from bronze phase grains by means of shape. The particle size of micro-WC in Figure 2 is from 0.5 to
6 µm that is not consistent with initial micro-WC particle size (10 µm). The ball milling process with
WC balls is the reason of decrease in particle size. The ball milling machine (Focucy, P400, Changsha,
China) is not a high energy ball mill and its main function is to mix powders evenly. So the wear
amount of WC balls during ball milling process is extreme small and can not influence experimental
results. Elements W, Cu, Ni and Mn show clear signals and uniform elemental distributions in EDS
element mappings in Figure 3. The acceleration voltage used in EDS mapping experiments was 25 kV
which correlates with a higher depth of analysis. So the element W is not clearly separated from other
metals because the depth of analysis is larger than one layer particles.
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WC nanoparticles are found on fracture surface of sample S5 with 2.5 wt% nano-WC addition
(Figure 4). The wettability between WC and bronze is excellent [9], so WC nanoparticles are wrapped
by bronze phase during sintering process.
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Figure 4. The fracture morphologies of sample: (a,b) S5.

SEM micrographs of impregnated diamond samples SD0 and SD1 are displayed in Figure 5.
It shows that diamond grits are partially embedded in the matrix on fracture surfaces. As marked in
Figure 5b,d, with the addition of 2.2 wt% nano-WC, the average width of the crack between diamond
and matrix decreases from 4.1 µm to 3.0 µm. The smaller crack width means that the matrix holds
diamond grits more firmly, which contributes positively to mechanical and tribological properties of
impregnated diamond composites. The average width of the crack between diamond and matrix is
shown in Table 3. The number of measured widths in the calculation of average is 15. With further
increase of nano-WC addition, the influence on crack width is not significant. Some pores of SD1
found in Figure 5d have negative impact on relative density, which is consistent with the test results in
Table 2. The pore existence states of sample SD2, SD3 and SD4 are similar to SD0.
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Table 3. The average width of the crack between diamond and matrix of impregnated samples.

Samples SD0 SD1 SD2 SD3 SD4

Width (µm) 4.1 3.0 3.8 4.0 4.2

3.2. Mechanical Properties

The mechanical properties of matrix samples are shown in Figure 6. With the increase of nano-WC
particles addition, the relative density and hardness fluctuate and do not have significant changes
(Figure 6a,b). It should be note that the introduction of nano-WC has little effect on relative density
and hardness.
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(d) The bending strength of impregnated diamond samples.

Bending strength of matrix samples shows a trend of first increase and then decrease (Figure 6c),
and sample S5 has the best value. The positive influence on bending strength of nano-WC addition can
be associate with Orowan strengthening effect. The nano-WC particles pin the crossing dislocation and
promote dislocations bowing around the particles under exteral load [32,33]. In addition, the mismatch
in the coefficient of thermal expansion (CET) between WC (6 × 10−6 K−1) and bronze (≥18 × 10−6 K−1)
needs further consideration [7,34]. During the cooling from processing temperature (980 ◦C), thermal
stresses around the nano-WC particles lead to plastic deformation, especially in the interface area [33].
These stresses decrease quickly with increasing distance from the boundary, generating dislocation
defects in the close vicinity of nano-WC. A large amount of nanoparticles is benefited to enhance
dislocation density, resulting in an improvement of the deformation resistance. While concentration of
nano-WC goes higher than 2.5 wt%, agglomeration phenomenon weakens the reinforcement effect.
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As illustrated in Figure 6d, the bending strength of impregnated diamond sample SD1 shows
the peak value and the value of SD2, SD3 and SD4 is close to SD0. Combined with fracture SEM
observation (Figure 5) and average crack width (Table 3), the width of the crack decreases from 4.1 µm
to 3.0 µm after adding 2.2 wt% nano-WC. This structural feature indicates matrix of SD1 has good
diamond-holding capability, which is benefited to the stress transfer, enhancing the bending strength.
Diamond grits act as weakening phase during bending strength test, so the holding strength at the
interfaces between diamond grits and matrix is a factor influencing diamond composites bending
strength and overall performance [3,5]. The interface structure observed between diamond grits
and matrix of sample SD2, SD3 and SD4 is similar to SD0, this is accordance with bending strength
test results.

3.3. Wear Resistance

Grinding ratio is a measurement index for evaluating the wear resistance and tribological
performance of diamond composites [11]. The results for grinding ratio of impregnated diamond
samples with different mass percent concentration nano-WC are summarized in bar chart (Figure 7).
The grinding ratio increases remarkably after adding WC nanoparticles, proving that nano-WC plays
a significant role in wear resistance of impregnated diamond composites. The grinding ratio increases
firstly and then decreases with nano-WC content increases and grinding ratio of sample SD3 shows an
about 100% increase in comparison with SD0. The wear resistance of impregnated diamond composites
is higher than other WC-based, Fe-based, Co-based and Ni-based diamond composites [7,8,21–23].
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The diamond retention capacity largely determines the wear resistance of impregnated diamond
composite [3]. As shown in Figure 4, WC nanoparticles are found on fracture surface, and these
nanoparticles enhance the internal friction coefficient in the matrix as same as the friction coefficient
between diamond grits and matrix [3,15]. Under complex and alternating cutting force, diamond grits
show a tendency to rotate and then pull out of matrix easily. The increase of friction improves retentive
capabilities of the matrix and reduces the rotating tendency, which enhances diamond retention in
the matrix that is benefited to wear resistance of diamond composites. Hence, the grinding ratio of
samples SD2, SD3 and SD4 with nano-WC addition is larger than reference one without nano-WC
addition and SD3 with 2.8 wt% nano-WC has the best value. While concentration of nano-WC exceeds
higher than 2.8 wt%, agglomeration phenomenon is harmful to the reinforcement effect.

The bending strength is also a factor affecting the wear resistance. The theoretical relationship
between bending strength and wear resistance has been analyzed in the literatures [9–11]. A higher
bending strength leads to a stronger support for diamond grits, meaning that diamond grits would
not be lost permanently by pulling out when facing complex stresses conditions. But it can be found
that the bending strength of SD1 is larger than SD0, SD2, SD3and SD4 but the grinding ratio of SD1
with 2.2 wt% nano-WC is smaller than that of SD2, SD3 and SD4 and similar to SD0. This indicates
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that other factors weaken the wear resistance of SD1. As evidenced in Figure 5d or Figure 6b, the low
relative density of SD1 means it has high porosity. The high porosity of SD1 implies the matrix wears
faster than other samples, which causes diamond grits to pull out of matrix more easily. So the low
relative density results in the decrease of grinding ratio of SD1.

4. Conclusions

The effect of WC nanoparticles on the microstructure and properties of WC-Bronze-Ni-Mn
based impregnated diamond composites were investigated. Results showed that bending strength
of matrix samples increased up to approximately 20% upon nano-WC addition, while densification
and hardness fluctuate slightly. The grinding ratio of impregnated diamond composites increased
significantly by about 100% due to nano-WC addition. The strengthening mechanism was proposed in
detail. The related effects of bending strength, densification and diamond retention capabilities on
wear resistance of diamond composites were revealed. WC-bronze impregnated diamond composite
with 2.8 wt% nano-WC exhibited an optimal overall performance, thus having potential to apply to
further diamond tools.
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