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Abstract: Understanding the dynamic displacement of immiscible fluids in porous media is important
for carbon dioxide injection and storage, enhanced oil recovery, and non-aqueous phase liquid
contamination of groundwater. However, the process is not well understood at the pore scale.
This work therefore focuses on the effects of interfacial tension, wettability, and the viscosity ratio on
displacement of one fluid by another immiscible fluid in a two-dimensional (2D) Berea sandstone
using the colour gradient lattice Boltzmann model with a modified implementation of the wetting
boundary condition. Through invasion of the wetting phase into the porous matrix, it is observed
that the viscosity ratio plays an important role in the non-wetting phase recovery. At the viscosity
ratio (λ) of unity, the saturation of the wetting fluid is highest, and it linearly increases with time.
The displacing fluid saturation reduces drastically when λ increases to 20; however, when λ is beyond
20, the reduction becomes less significant for both imbibition and drainage. The front of the bottom
fingers is finally halted at a position near the inlet as the viscosity ratio increases to 10. Increasing the
interfacial tension generally results in higher saturation of the wetting fluid. Finally, the contact angle
is found to have a limited effect on the efficiency of displacement in the 2D Berea sandstone.

Keywords: lattice Boltzmann method; immiscible displacement; porous media; interfacial tension;
contact angle; viscosity ratio

1. Introduction

The simultaneous flow of two immiscible fluids in porous media is often found in nature and
industrial processes such as non-aqueous phase liquid (NAPL) contamination of groundwater, carbon
dioxide injection and storage, and enhanced oil recovery (EOR) operations. For the spontaneous
imbibition of oil, carbon dioxide or water, which is immiscible to the oil phase, is usually imbibed
into permeable rock formations which are characterized by low porosity and low in situ permeability.
The displacement process is affected by matrix properties such as the heterogeneity, wettability,
and fluid properties of each phase [1].

Experimental efforts have been made to understand interactions between fluids and rock during
fluid displacement [2,3]. Theoretical works usually use simplified pore geometries which allow theoretical
solutions to the microscopic flow patterns [4]. As a complementary method to the experimental and
theoretical approaches, accurate and reliable numerical tools are needed to understand the underlying
mechanisms of multiphase displacement. Conventional macro-scale simulations have achieved great
success in solving the continuity, momentum, and species balance equations which rely on the empirical
estimation of relative permeabilities. This approach, however, may not be able to capture effects related
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to micro-scale structure in a multiphase system. On the contrary, pore-scale simulation can provide local
detailed information about the flow field. The previous works on pore-scale simulation of immiscible
two-phase flows in porous media [5–10] have been shown to be capable of capturing the effects of various
factors, e.g., capillary number, viscosity ratio, surface wettability, and media heterogeneity. However,
due to the inherent complexity related to interface evolution, heterogeneous geometry, dominant capillarity,
and moving contact line, the computational simulation of multiphase displacement in realistic porous
media still remains a research challenge.

As a mesoscopic method, the lattice Boltzmann method (LBM) has been widely accepted as
a useful alternative for simulating multiphase flows, in particular, with the advantage of dealing
with complex geometries such as porous media [11]. A number of multiphase LBM models have
been proposed, e.g., the colour gradient model [12,13], the pseudo-potential model [14], the free
energy model [15] and the mean-field model [16]. The colour gradient model is known to be the
first multiphase model. Later, a new multiphase LBM model was proposed by Shan and Chen [14],
where the interparticle forces (whether attractive or repulsive) mimicking the molecular potentials
are introduced by a modified equilibrium velocity in the equilibrium distribution functions. The free
energy model is thermodynamically consistent, and it considers a generalised equilibrium distribution
function that includes a nonideal pressure tensor term. The original free energy model suffers from
a lack of Galilean invariance, but later works have mitigated this problem [17,18]. The mean-field
model describes interfacial dynamics based on the mean-field theory, and uses a pressure distribution
function instead of its density counterpart to reduce discretization errors in the calculation of density
gradient and to improve the numerical stability for variable density. Extensive reviews of these LBM
multiphase models can be found in previous research [8,19].

The viscosity contrast is large while the density difference is small for the water or carbon dioxide
involved oil recovery process. However, most LBM models can only access a limited range of viscosity
ratios for dynamic fluid displacement. Yang et al. [20] performed a systematic comparison of three
popular multiphase models, i.e., the pseudo-potential model, the free energy model, and the colour
gradient model, for flow simulations in porous media. They concluded that the pseudo-potential
model is a promising tool for liquid-gas systems, but may not be the optimal solution for the simulation
of immiscible flows. Also, it produces high spurious velocities and thick interfaces for immiscible
flows [20]. Jonathan et al. [21] used the pseudo-potential model to simulate two-phase flows in a
two-dimensional channel with different viscosity ratios. A viscous-fingering-like phenomenon was
observed for viscosity ratios of up to 10, and the simulations become unstable for larger viscosity
ratios. Hatiboglu et al. [22] studied the spontaneous imbibition of water into a water-wet micro-model
which was initially saturated with oil. It was verified that the maximum allowable viscosity ratio is
four. The free energy model and colour gradient model show similar capabilities in modelling the flow
of binary fluids with high viscosity contrast, but the latter produces a relatively thinner interface than
the former one. In addition, the colour gradient model is able to control the interfacial diffusion and
adjust the interfacial tension and viscosity independently to facilitate the numerical investigation.

The colour gradient LBM was first proposed by Rothman and Keller [13], and has been
widely used for the simulation of immiscible fluids [9,12,23–26]. To obtain an accurate and detailed
understanding of the pore-scale mechanisms within porous media, Xu et al. [25] proposed a
new algorithm for imposing the contact angle on the solid surface in the colour gradient LBM.
The simulation results were validated against the experimental observations of Wu et al. [27]. However,
these simulations only dealt with the simplified porous media, where the solid grains are regular circles
and rectangles. In realistic porous media, the pore structures are extremely complex and irregular,
which allow us to further assess the capability of numerical model. We apply the colour gradient
LBM for dynamic displacement of immiscible fluids in a complex porous flow structure extracted
from a realistic Berea sandstone sample, and study the effects of the viscosity ratio, interfacial tension,
and contact angle on displacement process.
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2. Colour Gradient Lattice Boltzmann Model for Two-Phase Flow

The colour gradient LBM was used in this work. In this model, the “Red” and “Blue” distribution
functions ( f R

i and f B
i ) are used to represent two different fluids. The total distribution function is

defined as fi = f R
i + f B

i . Each colored distribution function undergoes the collision and streaming
steps expressed by the following equation:

f k
i (x + ci∆t, t + ∆t) = f k

i (x, t) + Ωk
i ( f k

i (x, t)), (1)

where x and t are the position and time, k = red or blue, i represents the discrete velocity directions for
the two-dimensional 9-velocity (D2Q9) model, ∆t is the time step, and ci denotes the lattice velocity
vectors in the i-th discrete velocity direction. For the two-dimensional 9-velocity (D2Q9) model used
in this work, the lattice velocity vector is given by

ci =


(0, 0), i = 0

(cos[π(i− 1)/2], sin[π(i− 1)/2]), i = 1, 2, 3, 4
√

2(cos[π(i− 5)/2 + π/4], sin[π(i− 5)/2 + π/4]), i = 5, 6, 7, 8.

(2)

The collision step includes self- and cross-interactions with the other type of particles which can
be written as

Ωk
i = (Ωk

i )
(3)
[
(Ωk

i )
(1)

+ (Ωk
i )

(2)
]

, (3)

where (Ωk
i )

(1)
is the single-phase collision operator, (Ωk

i )
(2)

is the perturbation operator, and (Ωk
i )

(3)

is the recolouring operator.

2.1. Single-Phase Collision Operator

To achieve high accuracy and good stability, we implemented the collision step in accordance with
the two-relaxation-time (TRT) model [28–30]—a special multiple relaxation time (MRT) model with
only two relaxation rates [31]. With the TRT model, the single-phase collision operator is expressed as

(Ωk
i )

(1)
= −(M−1SM)ij( f k

j − f k,eq
j ), (4)

where M is the transformation matrix and is given by

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


. (5)

The diagonal relaxation matrix S is defined as

S = (1, se, sε, 1, sq, 1, sq, 0, sq, sν, sν). (6)

For the conserved moments of density and momentum, the relaxation rates were set to 1. se and sν

are related to the bulk and shear viscosities, and sε and sq are free parameters. Following the
recommendations of Ginzburg et al. [32], these relaxation rates were taken as
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se = sε = sν =
1
τ

, sq = 8
(2− sν)

(8− sν)
, (7)

where τ is the dimensionless relaxation time. The mass conservation for each fluid distribution function
and the total momentum conservation require

ρk = ∑
i

f k
i = ∑

i
f k,eq
i , ρu = ∑

i
∑
k

f k
i ci = ∑

i
∑
k

f k,eq
i ci, (8)

where ρ is the total density, and ρk is the density of fluid k, and u is the local fluid velocity.
The equilibrium distribution function ( f k,eq

i (x, t)) is a truncated Taylor series expansion up to the
second order in Mach number of the Maxwell–Boltzmann equilibrium distribution function, which
was chosen to satisfy Equation (8):

f k,eq
i (ρk, u) = ρkWi

[
1 +

ci · u
c2

s
+

(ci · u)2

2c4
s
− u2

2c2
s

]
, (9)

in which, cs = 1/
√

3 is the lattice sound speed, and the weight coefficients are W0 = 4/9, W1−4 = 1/9
and W5−8 = 1/36 for the D2Q9 lattice model. As we focused on the oil-water two-phase systems,
the density ratio of both fluids was set to be unity.

To ensure a constant viscosity across the interface when both fluids were of different viscosities,
the following harmonic mean [33] was employed to determine the viscosity of the fluid mixture:

1
η
=

1 + ρN

2ηR
+

1− ρN

2ηB
, (10)

where ηk (k = R or B) is the dynamic viscosity of fluid k, and η is the dynamic viscosity of the fluid
mixture which is related to the dimensionless relaxation time τ by η = c2

s ρ(τ − 0.5)δt; ρN is the
indicator function used to distinguish different fluids, and it is defined as

ρN(x, t) =
ρR(x, t)− ρB(x, t)
ρR(x, t) + ρB(x, t)

. (11)

2.2. Perturbation Operator

(Ωk
i )

(2) takes effect in the mixed interfacial region to generate an interfacial tension. Using the
continuum surface force (CSF) [34] model, a body force term was added to the macroscopic momentum
equation, and it reads as

Fs =
1
2

σK∇ρN , (12)

where σ is the interfacial tension coefficient, and K is the local interface curvature calculated by [34]

K = −∇s · n, (13)

where ∇s = (I − nn) ·∇ is the surface gradient operator, I is the second-order identity tensor,
and n = ∇ρN/

∣∣∇ρN
∣∣ is a unit vector normal to the interface. Such a body force was then incorporated

into LBM through the forcing scheme proposed by Guo et al. [35] which can significantly improve
computation accuracy and reduce spurious velocities effectively [36]. The perturbation operator
(Ωk

i )
(2) is expressed as

(Ωk
i )

(2) = M−1(I− 1
2

S)Fk, (14)
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with

Fk(x, t) = αk[0, 6(uxFsx + uyFsy),

− 6(uxFsx + uyFsy), Fsx, − Fsx, Fsy, − Fsy

2(uxFsx − uyFsy), uxFsy + uyFsx]
T ,

(15)

where αk is the fraction of interfacial tension contributed by fluid k and satisfies ∑k αk = 1.
The fluid velocity was corrected to recover the Navier–Stokes (N-S) equations in the interfacial

region where two fluids coexist

ρu = ∑
i

∑
k

f k
i ci +

1
2

Fs. (16)

2.3. Recolouring Operator

The recolouring step was then applied to promote phase segregation and maintain a sharp
interface [37] which is given as

(ΩR
i )

(3) =
ρR
ρ

f ∗i + β
ρRρB

ρ2 f (eq)
i (ρ, u = 0) cos(ϕi), (17)

(ΩB
i )

(3) =
ρB
ρ

f ∗i − β
ρRρB

ρ2 f (eq)
i (ρ, u = 0) cos(ϕi), (18)

where f ∗i = ∑k f k∗
i denotes the post-perturbation, pre-segregation value of the total distribution

function along the i-th discrete velocity direction, and f eq
i = ∑k f k,eq

i is the total equilibrium distribution
function. β is the segregation parameter related to the interface thickness, and its value must be between
0 and 1 to ensure positive particle distributions—it was chosen to be 0.7 here. ϕi is the angle between
the indicator function gradient ∇ρN and the lattice vector ci, which is defined by

cos(ϕi) =
ci ·∇ρN

|ci||∇ρN | . (19)

To minimize the discretization error, a fourth-order isotropic finite difference was used to calculate
the partial derivatives. For example, for a variable ψ, the partial derivatives can be calculated by

∇ψ(x, t) =
1
c2

s
∑

i
Wiψ(x + ciδt, t)ci. (20)

2.4. Wetting Boundary Condition

For the colour gradient LBM, the most widely-used wetting boundary condition is to set a virtual
density at solid surfaces [37]. However, it has been found in recent works [38,39] that numerical
errors resulting from nonphysical mass transfer and spurious velocities may be accumulated during
simulations which potentially render meaningless results. To overcome this, the algorithm proposed
by Xu et al. [25] was implemented to impose the contact angle on solid surfaces. This algorithm is
able to precisely control the contact angle for both static and dynamic problems which is essential for
accurate simulations of two-phase displacement in porous media.

3. Relative Permeability Validation: Concurrent Flow in a 2D Channel

We first used the above model to simulate a pressure driven flow through a porous media. In the
single-phase case, the intrinsic permeability K can be determined according to the Darcy’s law [4]

u = −K
µ
∇P, K = − µu

∇P
, (21)
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where u is the Darcy velocity in the porous medium. Note that the intrinsic permeability does not
depend on the nature of the flow field but only on the geometry of the porous medium. In case of
two-phase flows, the relative permeability Kr,i can be given as [4]

ui =
KKr,i

µi
∇Pi, Kr,i =

µiui
K∇Pi

, i = w, nw. (22)

Here, i = w and nw refer to the wetting and non-wetting fluids respectively, µi is the dynamic
viscosity of fluid i, and ∇Pi is the pressure gradient of fluid i.

First, we tested whether the LBM model can accurately predict relative permeability for a simple
immiscible two-phase cocurrent flow. Specifically, we calculated the relative permeabilities of the
layered two-phase flow in a channel under different saturation values. In the simulation, a constant
pressure difference was applied on the inlet and outlet boundaries following Zou and He [40], and a
non-slip (bounce-back) boundary condition was applied on the upper and lower walls using the
halfway bounce-back scheme. The wetting phase flowed along the walls (a < |y| ≤ b) and non-wetting
phase flowed in the central region (|y| < a). One can obtain the analytical solutions for the relative
permeability, a function of wetting phase saturation Sw and viscosity ratio λ [41],

Kr,nw = (1− Sw)

[
3
2

λ + (1− Sw)
2(1− 3

2
λ)

]
, Kr,w =

1
2

S2
w(3− Sw), (23)

where Sw is the wetting phase saturation, which is defined as Sw = 1− a/b, and λ is the viscosity ratio
of the non-wetting to wetting fluids, i.e., λ = µnw/µw.

For two typical viscosity ratios of λ = 1 and λ = 0.1, Figure 1 shows excellent agreement between
the computed relative permeabilities and the analytical solutions.

Sw

K
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Knw

Kw

(a)
Sw

K
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Knw

Kw

(b)

Figure 1. Relative permeabilities as a function of wetting phase saturation for two-phase concurrent
flow in a 2D channel for (a) λ = 1 and (b) λ = 0.1. The open circles represent the simulation results,
and the solid lines are the analytical solutions from Equation (23).

4. Results and Discussion

This section describes the conduction of a systematic investigation on a pressure-driven immiscible
two-phase flow in a 2D micromodel extracted from Boek et al. [42], which was engineered at
Schlumberger Cambridge Research based on a thin section of a 3D Berea sandstone rock sample.
We defined the lattice units for length, mass and time as lu, ts, and mu, respectively. To match the
parameters in the lattice unit towards their physical values, three basic physical quantities were
chosen as the reference values: the length scale (l0), the mass scale (m0) and the time scale (t0).
In the present study, l0 = 8 × 10−6 m, m0 = 5.12 × 10−13 kg, and t0 = 7.2 × 10−7 s. Therefore,



Appl. Sci. 2018, 8, 1497 7 of 14

the density can be obtained by ρphy = ρ m0
l3
0
= 5.12 × 10−13

(8 × 10−6)3 = 103 kg·m−3, the dynamic viscosity by

µdisplaced
phy = µdisplaced

m0
l0t0

= 0.167 × 5.12 × 10−13

8 × 10−6 × 7.2 × 10−7 = 0.0148 Pa·s, and the interfacial tension

by σphy = σm0/t0
2. For the interfacial tension values used in the present work, the corresponding

physical values for 0.03 mu·ts−2, 0.015 mu·ts−2, and 0.0005 mu·ts−2 were 0.0296 N·m−1, 0.0148 N·m−1,
and 0.0004938 N·m−1, respectively.

4.1. Problem Statement

The 2D micromodel is shown in Figure 2, and its porosity is 0.33. The entire micromodel is
divided into L × H = 2644× 2117 lu2 with a resolution of 0.67 µm per lu. The narrowest throat has a
width of 12 lu which is fine enough to produce grid-independent results in two-phase displacement
simulations [7].Twenty-two extra layers of lattices are added to both the inlet and outlet to facilitate the
implementation of boundary conditions, so the actual domain size is 2688× 2117 lu2. Here, the flow
velocity for each fluid is so small that the inertial effect becomes insignificant.

The constant pressure boundary condition developed by Zou and He [40] was imposed on the
inlet and outlet, which are located at the left and right sides of the domain, respectively. The halfway
bounce-back scheme and wetting boundary condition were applied at the walls that contain the
surfaces of solid grains as well as the upper and lower sides of the domain. The densities of both
wetting and non-wetting fluids were set to be unity as the density difference between oil and water is
insignificant. The dynamic viscosity of the displaced fluid was kept as 0.167 mu·lu−1·ts−1, and the
dynamic viscosity of the displacing fluid was varied to achieve different viscosity ratio values (λ =

µdisplaced/µinvading). Initially, for x ≥ 22 lu, the domain was filled with the displaced fluid (represented
in red) at rest, and a constant pressure pout = 1/3 mu·lu−1·ts−2 was imposed at the outlet, while for
x < 22 lu, the region was occupied by the displacing fluid (represented in blue) with a higher pressure
at the inlet. The simulations stopped when the displacing fluid broke through at the outlet to avoid the
capillary end effect [43].

Figure 2. The 2D pore network used in the present lattice Boltzmann method (LBM) simulations.
The solid grains are represented in gray, while the displacing and displaced fluids are represented in
blue and red, respectively. The domain size is 1774 µm by 1418 µm.

By studying the dependency of porosity on the size of the rock sample, we calculated the porosity
using different sizes of Berea sandstone to find its representative elementary volume (REV). The results
are shown in Figure 3, which demonstrates that the chosen size of 2688× 2117 lu2 could be a good REV
of the Berea sandstone. This guarantees that the simulated geometry included a sufficient number of
pores for the meaningful statistical average, which is generally required by the continuum concept [4].
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Figure 3. Porosity as a function of the domain size. L is the length of the entire micromodel, while H is
its width; x refers to the distance to the left boundary, and y is the distance to the bottom boundary.
For each point shown above, the same scaling was applied to x and y, i.e., x/L = y/H.

4.2. The Viscosity Ratio Effect

The viscosity ratio is one of the most important dimensionless numbers in two-phase displacement
through a porous media, and its effect was studied for a constant contact angle of 120◦, corresponding
to a weak wetting property of the displacing fluid. The inlet pressure is also the same for different
viscosity ratios, i.e., pin = (pout + 0.0125) mu·lu−1·ts−2. Figure 4 shows the fluid distributions inside
the pore network when breakthrough of the displacing fluid occurs for viscosity ratios of 1, 2, 5, and 10.
It can be seen that for all the viscosity ratios considered, two or three preferential paths are generally
formed. As the viscosity ratio increases, it becomes harder for the finger to flow into the large pore as
highlighted by the black elliptical circles. The front of the bottom finger is finally halted at the position
near the inlet for the viscosity ratio of 10. Also, the breakthrough finger switches to a lower position at
the outlet when the viscosity ratio increases to 10.

Figure 4. Fluid distributions at breakthrough for a wetting fluid invading a porous medium initially
saturated with a non-wetting fluid. The wetting fluid (indicated in blue) is injected from the left side,
and the viscosity ratio λ equals 1, 2, 5, and 10, respectively.
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Figure 5 shows the time evolution of the displacing (wetting) fluid saturation for a viscosity
ratio changing from 1 to 30. It can be clearly seen that a higher viscosity ratio results in a lower fluid
saturation which is less favourable for the recovery of displaced fluid. This is consistent with previous
experimental [44] and numerical results [45]. At the viscosity ratio of unity, the highest displacing fluid
saturation (around 0.37) is observed, and the displacing fluid saturation keeps increasing linearly with
time. Although the displacing fluid saturation reduces with λ, the reduction becomes less significant
at larger λ values.
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Figure 5. Evolution of the displacing fluid saturation for the viscosity ratio λ increased from 1 to 30 at
σ = 0.015 mu·ts−2 and θ = 120◦ (imbibition). Note that the time is normalized by tb, defined as the
time at which the breakthrough occurs.

We also tested whether the above observations are valid for varying wettability and interfacial
tension. Four pairs of contact angle and interfacial tension were considered (see Table 1), and the
simulation results are shown in Figure 6. It is clear that the displacing fluid saturation drops rapidly
when the viscosity ratio increases from 1 to 20 and then stays almost unchanged for all the cases
considered. For each viscosity ratio, increasing contact angle or interfacial tension always leads to
a higher displacing fluid saturation or displacement efficiency. In addition, the limitation of the
current model was tested by decreasing the viscosity of the displacing fluid, and it was found that the
maximum viscosity ratio that it can successfully access is as high as 50.

Table 1. Parameters used in four typical cases of immiscible displacement.

Case ∆P σ cos θ

I 0.0125 0.015 −0.5
II 0.0125 0.0005 −0.5
III 0.0125 0.0005 0.5
IV 0.0125 0.015 0.5
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Figure 6. Displacing fluid saturation as a function of viscosity ratio for the four typical cases listed in
Table 1.

4.3. The Interfacial Tension Effect

The interfacial tension between the displacing and displaced fluid is known to play an important
role at the pore scale for two-phase displacement through a porous media. The same viscosity ratio
(λ = 1) was used and the contact angle was fixed at 120◦. Figure 7 shows the fluid distributions at
breakthrough for the interfacial tensions of 0.03 mu·ts−2, 0.015 mu·ts−2, and 0.0005 mu·ts−2. From
this figure, it is seen that when the interfacial tension is as low as 0.0005 mu·ts−2, the viscous force
prevails, the main fingers get thinner and even break up, and many fingers only occupy partial pores
or throats that they pass by. Also a number of small blobs of displaced fluid are left behind at low
levels of interfacial tension. When the interfacial tension increases to 0.015 mu·ts−2, larger blobs of the
displaced fluid are trapped by the displacing fluid, and the displacing fluid flows into the large pore
more easily due to higher capillary pressure, as highlighted by the black elliptical circles in Figure 7.
As the interfacial tension is further increased to 0.03 mu·ts−2, we surprisingly found that the front of
the displacing fluid can be flat inside some pores, e.g., the one surrounded by the black rectangle box
in Figure 7, though most interfaces remain curved due to large capillary pressure. Meanwhile, much
less of the displaced phase is left behind as the invading phase continues to move forward.

Figure 7. Fluid distributions at breakthrough for a wetting fluid invading a porous medium initially
saturated with a non-wetting fluid. The wetting fluid (indicated in blue) is injected from the left side
and the values of the interfacial tension are 0.03 mu·ts−2, 0.015 mu·ts−2, and 0.0005 mu·ts−2 from the
left to right.

Figure 8 shows the evolution of the displacing fluid saturation for an interfacial tension of
0.0005 mu·ts−2, 0.015 mu·ts−2 and 0.03 mu·ts−2. It is seen that generally higher interfacial tension
results in a higher saturation. The linear relationship between saturation and the evolving time is
again observed.
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Figure 8. Evolution of the displacing fluid saturation for the interfacial tension of 0.0005 mu·ts−2,
0.015 mu·ts−2 and 0.03 mu·ts−2.

4.4. The Contact Angle Effect

The contact angle was measured from the displaced fluid. All the contact angles were larger than
90◦ in this part to simulate the imbibition process.

Figure 9 shows the fluid distributions when the displacing fluid breaks through at the outlet for
the contact angles of 162◦, 150◦, 135◦, and 120◦. It is observed that the invading paths of the wetting
fluid do not change significantly except for a few branches. An obvious difference can be seen at the
contact angle of 135◦ where the bottom finger advances furthermost. Figure 10 shows the evolution
of the displacing fluid for different contact angles. The case of θ = 120◦ has the lowest wetting fluid
saturation but its difference from the others is very small. It can also be seen from Figure 6 that the
contact angle does not have a big impact on the saturation. Therefore, the contact angle has a limited
effect on the efficiency of displacement in the micro-model of Berea sanstone.

Figure 9. Fluid distributions at breakthrough for a wetting fluid invading a porous medium initially
saturated with a non-wetting fluid. The wetting fluid (indicated in blue) is injected from the left side
and the values of the contact angle are 162◦, 150◦, 135◦, and 120◦, respectively.
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Figure 10. Evolution of the displacing fluid saturation for contact angles of 162◦, 150◦, 135◦, and 120◦.

5. Conclusions

The colour gradient two-phase LBM was used to study dynamic displacement of immiscible
fluids in a 2D micromodel of Berea sandstone. The effects of the viscosity ratio, interfacial tension,
and contact angle on the fluid distributions at breakthrough and the evolution of displacing fluid
saturation were systematically investigated. When the viscosity ratio is no more than 20, a higher
viscosity ratio results in a lower displacing fluid saturation which is less favourable for the recovery
of the displaced fluid. However, when the viscosity ratio is larger than 20, the saturation is almost
constant for both imbibition and drainage, regardless of the interfacial tension. At the viscosity ratio of
unity, the displacing fluid saturation has the highest value, and it linearly increases with time.

The interfacial tension affects the flow pattern. When the interfacial tension is as low as
0.0005 mu·ts−2, thin viscous fingers appear. A number of small drops of displaced fluid are left
behind. As the interfacial tension increases from 0.0005 mu·ts−2 to 0.015 mu·ts−2, the size of the
trapped blobs increases, and the number decreases. The displacing fluid flows into large pores more
easily due to the increased capillary pressure. When the interfacial tension continues to increase,
smaller amount of the displaced phase is left behind as the invading phase continues to move forward.
In addition, increasing interfacial tension results in a higher saturation of wetting fluid.

The contact angle generally does not change preferential flow paths except for a few branches in
the imbibition, suggesting that the contact angle has limited effect on the efficiency of displacement
within 2D Berea sandstone.
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