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Abstract: Novelty detection is a classification problem to identify abnormal patterns; therefore, it is
an important task for applications such as fraud detection, fault diagnosis and disease detection.
However, when there is no label that indicates normal and abnormal data, it will need expensive
domain and professional knowledge, so an unsupervised novelty detection approach will be used.
On the other hand, nowadays, using novelty detection on high dimensional data is a big challenge
and previous research suggests approaches based on principal component analysis (PCA) and an
autoencoder in order to reduce dimensionality. In this paper, we propose deep autoencoders with
density based clustering (DAE-DBC); this approach calculates compressed data and error threshold
from deep autoencoder model, sending the results to a density based cluster. Points that are not
involved in any groups are not considered a novelty; the grouping points will be defined as a novelty
group depending on the ratio of the points exceeding the error threshold. We have conducted
the experiment by substituting components to show that the components of the proposed method
together are more effective. As a result of the experiment, the DAE-DBC approach is more efficient;
its area under the curve (AUC) is shown to be 13.5 percent higher than state-of-the-art algorithms
and other versions of the proposed method that we have demonstrated.

Keywords: novelty detection; dimensionality reduction; clustering

1. Introduction

An abnormal pattern that is not compatible with most of the data in a dataset is named a novelty,
outlier, or anomaly [1]. Novelty can be created for several reasons, such as data from different classes,
natural variation and data measurement or collection errors [2]. Although there may be novelty due
to some mistakes, sometimes it is a new, unidentified process [3]; therefore, it is useful to discover
important information by detecting the novelty in a variety of application domains such as internet
traffic detection [4,5], medical diagnosis [6], fraud detection [7], traffic flow forecasting [8] and patient
monitoring [9,10].

There are three basic ways to detect novelty depending on the availability of data label [1]. If the
data is labeled as normal or novelty, a supervised approach can be used as a traditional classification
task. In this case, training data consists of both normal and novelty data and builds a model that
predicts unseen data as normal and novelty. However, novelty faces with a class imbalance problem
due to the relatively low comparability of normal data [11]. Also, obtaining an accurate labeling for
abnormal data is transformed into a complex problem in data size and high dimension. The second
method is a semi-supervised method, which only uses normal data to build a classification model.
If the training data contains abnormal data, the model may find it difficult to detect the abnormal data.
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Moreover, most of the data are not labeled in the practice, and in this case, an unsupervised method,
such as the third, is used.

In recent years, research related to unsupervised novelty detection suggest using One-class
Support Vector Machine (OC-SVM) based, clustering based, reconstruction error based methods and
to combine these methods together.

OC-SVM separates normal and novelty data as projecting the input features into the
high dimensional feature spaces using a kernel trick. In other words, finding the decision boundary
that the farthest isolate the origin and data points and the closest points to the origin considered as the
novelty. However, SVM is a memory and time-consuming task in practice and its complexity grows
quadratically with the number of records [12].

Cluster analysis divides data into groups that are meaningful, useful, or both [2]. In clustering
based novelty detection, there are several ways to identify novelty, such as clusters that are located
far away from other clusters, or smaller or sparser than other clusters, or points not belonging to any
group are considered as abnormal data. But the cluster-based method performance is very dependent
on which algorithm is used as well as high-dimensional data in clustering with distance is special
challenges to data mining algorithms [13].

To address this issue caused by the curse of dimensionality, reconstruction error based approach
and hybrid approaches are widely used. PCA is a technique used to reduce dimensionality.
Peter J. Rousseeuw and Mia Hubert introduced diagnosis of anomalies by the first principal component
score and its orthogonal distance to each data point [14]. Heiko Hoffmann introduced kernel PCA
(KPCA), which maps input spaces into higher-dimensional space before performing the PCA using a
kernel function for outlier detection [15]. In a hybrid approach, dimensionality reduction first made
and then clustering or other classification algorithms are performed in the latent low-dimensional
space. In recent publications, unsupervised novelty detection using deep learning is proven by high
effectiveness [3,12,16–18]. They use an autoencoder that is an artificial neural network to extract
features and to reduce the dimension then give them as an input to the novelty identification methods
such as Gaussian mixture model, cumulative distribution function and clustering algorithm and so on.

In this paper, the DAE-DBC method is suggested and aims to increase the accuracy of
unsupervised novelty detection. First, use a deep autoencoder model to extract a low dimensional
representation from the high dimensional input space. The architecture of the autoencoder
model consists of two symmetrical deep neural networks—an encoder and a decoder that applies
backpropagation, setting the target values to be equal to the inputs. It attempts to copy its
input to its output and anomalies are harder to reconstruct compared with normal samples [16].
In DAE-DBC, low dimensional representation of data includes bottleneck hidden layer in autoencoder
network and reconstruction error of each point. Based on reconstruction error, we estimate the
first outlier threshold and distinguish data is normal or abnormal using it. But in this step,
data cannot be divided clearly. Then, the autoencoder model is retrained only with normal data
and low dimensional representation and optimal outlier threshold are calculated again using by the
retrained model. The low dimensional data from retrained autoencoder model is classified into groups
using the Density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm.
The optimal value of eps parameter (minimum distance between two points) of DBSCAN is estimated
by DMDBSCAN algorithm [19]. Based on the optimal outlier threshold from retrained autoencoder
model, identify novelty. If most of the instances in a group exceed our threshold, all instances in this
cluster are considered as abnormal and labeled by novelty. We have tested DAE-DBC on several public
benchmark datasets, it presents higher AUC score than the state-of-the-art techniques.

We propose the unsupervised novelty detection method over high dimensional data based on deep
autoencoder and density-based clustering. The main contribution of the proposed method are as follows:

• We derive a new DAE-DBC method for unsupervised novelty detection that is not domain specific.
• The number of clusters is unlimited and each cluster will be labeled by novelty depending on what

percentage of objects that it contains exceed the error threshold. In other words, identifying novelty
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is based on the reconstruction error threshold without considering the sparse, or far, or small ones.
Therefore, large-scale clusters are also possible to be novelty.

• Our extensive experiment shows that DAE-DBC has a greater performance than other
state-of-the-art unsupervised anomaly detection methods.

This article consists of 5 sections. In Section 2, we provide a detailed survey of related work on
unsupervised anomaly detection. Our proposed method is explained in Section 3. Section 4 presents
the experimental dataset, compared methods, the evaluation metric and the result and comparison of
experiments. Finally, Section 5 concludes the paper.

2. Related Work

In this section, we have introduced an unsupervised novelty detection method related to the
proposed method. Recent research suggests unsupervised techniques, such as OC-SVM, one-class
neural network (OC-NN), clustering based and reconstruction error based and so on.

The relatively small percentage of total data is novelty and class imbalance problems can occur
because of divergence of normal and novelty sample ratios. In this case, traditional classification
methods are not well suited for discovering novelty. OC-SVM is the semi-supervised approach that
is used for a classifier based on building a prediction model from a normal dataset [20–23]. It is an
extension of SVM for an unlabeled dataset that was introduced first by Schölkopf et al. [23] and usage
of one-class SVM in unsupervised mode is rising due to the most data is not labeled in the practice.
In this case, all data is considered normal and used for the training of OC-SVM. The disadvantage of
this method is that if the training data contains abnormal or novelty, the novelty detection classification
model does not work well because the decision boundary (the normal boundary) created by OC-SVM
shifts toward outliers.

Mennatallah et al. showed an Enhanced OC-SVM which is the Robust OC-SVM and the eta-SVM
together to eliminate these deficiencies [20]. Robust OC-SVM focused on slack variables that are
far from the centroid. They are dropped from the minimization objective because of these points,
the decision boundary will be wrong. Sarah M. Erfani et al. proposed a hybrid model that combines a
deep belief network for feature extraction and OC-SVM for unsupervised novelty detection—named
DBN-1SVM—that solves the curse of the dimensionality problem by reducing dimensionality using a
deep belief network [12].

Another popular novelty detection method is principal component analysis (PCA) based methods.
PCA is a dimension reduction technique in which the direction with the largest projected variance is
called the first principal component. The orthogonal direction that captures the second largest projected
variance is called the second principal component and so on [24]. Although in most cases, PCA is
used for dimensionality reduction purpose, it is also used to detect novelty. Peter J. Rousseeuw et al.
introduced to diagnose outliers by the first principal component score and its orthogonal distance of
each data points. Regular observations have both a small orthogonal distance and small PCA score [14].
Heiko Hoffman proposes kernel PCA for novelty detection which is a non-linear extension of PCA.
In kernel PCA, input spaces are mapped into higher-dimensional space before performing PCA using
a kernel function. In Heiko Hoffman’s proposed method, Gaussian kernel function and reconstruction
error in feature space are used [15]. Using the covariance matrix to PCA is sensitive to the outlier.
Roland Kwitt et al. proposed a Robust PCA based novelty detection approach using the correlation
matrix instead of the covariance matrix to calculate the principal component scores [25].

In recent studies, hybrid techniques are being suggested that making novelty detection as a deep
autoencoder is combined with other methods. Deep autoencoder is a neural network that is trained
to attempt to copy its input to its output. Yu-Dong Zhang et al. proposed a deep neural network
with seven layers for voxelwise detection of cerebral microbleeds. They used sparse autoencoder
with 4 hidden layers for dimensionality reduction and softmax layer for classification [26]. Also,
Wenjuan Jia et al. proposed a deep stacked autoencoder based multi-class classification approach to the
image dataset. The first dimensionality is reduced using deep stacked autoencoder and then softmax
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layer is used as a classifier [27]. Yan Xia et al. propose a reconstruction based outlier detection method
that has 2 steps including discriminative labeling and reconstruction learning [28]. They show that
dataset reconstructed from low-dimensional representations, the inliers and the outliers can be well
separated according to their reconstruction error. Hyunsoo Kim et al. propose an unsupervised land
classification system using quaternion autoencoder for feature extraction and self-organizing map
(SOM) for classification without human-predefined categories [18]. Bo Zong et al. introduce a technique
that combines the deep autoencoder model with the Gaussian mixture model—named the DAGMM
algorithm. DAGMM identifies novelty by providing inputs of Gaussian mixture model by the outcome
of deep autoencoder model which is low dimensional features and reconstruction errors [16].

3. Methodology

In this section, we have amplified how to describe the novelty detection of data without labels
using a deep learning autoencoder (AE) reconstruction error.

The proposed approach has two basic functions: dimension reduction and identification of novelty.
The general architecture of the proposed method is illustrated in Figure 1:

Appl. Sci. 2018, 8, x FOR PEER REVIEW    4 of 18 

has 2 steps including discriminative labeling and reconstruction learning [28]. They show that dataset 

reconstructed  from  low‐dimensional  representations,  the  inliers  and  the  outliers  can  be  well 

separated according to their reconstruction error. Hyunsoo Kim et al. propose an unsupervised land 

classification system using quaternion autoencoder for feature extraction and self‐organizing map 

(SOM)  for  classification without  human‐predefined  categories  [18].  Bo  Zong  et  al.  introduce  a 

technique that combines the deep autoencoder model with the Gaussian mixture model—named the 

DAGMM algorithm. DAGMM identifies novelty by providing inputs of Gaussian mixture model by 

the outcome of deep autoencoder model which is low dimensional features and reconstruction errors [16]. 

3. Methodology 

In this section, we have amplified how to describe the novelty detection of data without labels 

using a deep learning autoencoder (AE) reconstruction error. 

The  proposed  approach  has  two  basic  functions: dimension  reduction  and  identification  of 

novelty. The general architecture of the proposed method is illustrated in Figure 1: 

 

Figure 1. General architecture of proposed method. 

3.1. Deep Autoencoders for Dimensionality Reduction 

Autoencoder is one kind of ANN [28], which is the unsupervised algorithm for learning to copy 

its own input (x1 … xn) to its output (y1 … yn) as close (xi = yi) as possible by reducing the gap between 

inputs and outputs [29]. As visualized in Figure 2, input and output neurons are the same for AE and 

its hidden layer is a compressed or learned feature. In general, the AE structure is the same as a neural 

network with a hidden layer at least 1 but AE is distinguished from the goal to predict the output 

corresponding  to  the  specific  input of NN by  the purpose of  reconstruct  the  input. The  learning 

process of AE first compress input x to a small dimension and reconstruct an output y from the small 

dimension and calculates  the difference between  the  input and reconstructed values and changes 

Figure 1. General architecture of proposed method.

3.1. Deep Autoencoders for Dimensionality Reduction

Autoencoder is one kind of ANN [28], which is the unsupervised algorithm for learning to copy
its own input (x1 . . . xn) to its output (y1 . . . yn) as close (xi = yi) as possible by reducing the gap
between inputs and outputs [29]. As visualized in Figure 2, input and output neurons are the same
for AE and its hidden layer is a compressed or learned feature. In general, the AE structure is the
same as a neural network with a hidden layer at least 1 but AE is distinguished from the goal to
predict the output corresponding to the specific input of NN by the purpose of reconstruct the input.
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The learning process of AE first compress input x to a small dimension and reconstruct an output y
from the small dimension and calculates the difference between the input and reconstructed values
and changes weight assignments to reduce the difference. As the novelty data, the reconstruction error
is high due to the lack of successful reconstruction of the low-dimensional projection.
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In the research work, the compressed representation of data provided by deep AE contains
two features (1) reduced dimensional representation and (2) the reconstruction error from input and
reconstructed features by learned deep autoencoder model. As shown in Figure 1, there are two AE
models are used to estimate the novelty threshold and compressed representation of data. From the
first AE model, the initial novelty threshold will be calculated. After that, we get rid of data that close
to the normal using this threshold and the second AE model is trained by these data. To estimate
the optimal threshold from the distribution histogram of the reconstruction error commonly used
thresholding technique, the Otsu method [30] is used. The Otsu method calculates the optimum
threshold by separating the two classes. Therefore, the desired threshold corresponds to the maximum
value of between two class variances. Get the best-suited error threshold for separating novelty and
normal values because of the second model trained by data close to the norms. We calculate the final
compressed data that is composed of a reconstruction error and reduced dimensional representation
by giving again all inputs to the second AE model. Algorithm 1 shows the Dimensionality reduction
which is one of the two basic functions of the proposed method step by step:
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Algorithm 1: Dimensionality reduction.

1: Input: Set of points X, {Xn
i=1}

2: Output: Z
3: inputLayer← ( n_ nodes = n)
4: encoderLayer1 ← Dense(n_ nodes = n/2, activation = sigmoid)(inputLayer)
5: encoderLayer2 ← Dense(n_ nodes = 1, activation = sigmoid)(encoderLayer1)
6: decoderLayer1 ← Dense(n_ nodes = n/2, activation = tanh)(encoderLayer2)
7: decoder _layer2 ← Dense(n_ nodes = n, activation = tanh)(decoderLayer1)
8: AEModel←Model(input_layer, decoder _layer2)
9: AEModel.fit(X)
10: X̂← AEModel.predict(X)
11: reconstructionError← []
12: for i=0 to X̂ do
13: reconstructionErrori ← (x̂i − x)2

14: end for
15: threshold← Otsu(reconstructionError)
16: X[reconstructionError]← reconstructionError
17: norms← (X [reconstructionrError] < threshold)
18: AEModel.fit(norms)
19: X̂← AEModel.predict(X)
20: E← AEModel. encoderLayer2
21: reconstructionError← []
22: for i to X̂ do
23: reconstructionErrori ← (x̂i − x)2

24: end for
25: finalThreshold← Otsu(reconstructionError)
26: Z← []
27: Z[encoded]← E
28: Z[error]← reconstructionError
29: return Z

The dimension of each benchmark dataset is varying. Our AE model will be built like that
if the dimension of the dataset is n, reduced from dimension n to n/2, from dimension n/2 to
1 and then reconstruct from the reduced dimension by reverting from 1 to n/2, from n/2 to n.
Take two-dimensional new data to combine the bottleneck hidden layer which has only 1 node and
reconstruction error of each point from this AE model. This new dataset is used by input for further
processes for novelty detection. Algorithm 1’s computational complexity is defined as follows:

• Run-time complexity of backpropagation of autoencoder model is O(epochs*training
example*(number of weights))

• Prediction process is O(n)
• Calculate reconstruction errors from decoded output and input is O(n)
• Calculate novelty threshold is O(n)

3.2. Density Based Clustering for Novelty Detection

Density-based clustering locates regions of high density that are separated from one another by
regions of low density [2]. DBSCAN [31] is a basic, simple and effective density-based clustering
algorithm and it can find arbitrarily shaped clusters. In this algorithm, a user specifies two parameters
eps which determine a maximum radius of the neighborhood and minPts which determine a minimum
number of points in the eps of point.

To automatically adjust the value of the eps parameter, we used the K-dist plot method [31] to
calculate the nearest neighboring space for each point. The main idea is that if the point is contained in
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any cluster, its K-dist value is less than the size of the cluster and in the absence of any cluster, the value
of K-dist will be high. Therefore, we have calculated the K-dist value for all points and placed it in
ascending order and have chosen the optimal eps for the initial maximum change.

When grouping the data via DBSCAN clustering algorithm, some points do not remain a part
of any cluster. In the proposed method, we have considered data points which do not include any
clusters as one whole cluster. After grouping of extracted low dimensional feature space (2D), find out
which clusters are the novelty. DBSCAN algorithm cannot provide a degree of novelty score [32]. So,
we use a final error threshold obtained from the second AE model to make a novelty detection. If the
majority of instances of the cluster exceed the threshold, the whole cluster is considered a novelty.
Algorithm 2’s computational complexity is defined as:

• Calculate nearest neighbors is O(dn3) where d is dimension and n is the number of samples
• DBSCAN clustering is O(n2)
• Identify novelty is O(n)

In Algorithm 2 shows how to discover novelty step by step:

Algorithm 2: Identify novelty.

1: Input: Set of points Z, {Zn
i=1}, set op points X, {Xn

i=1}
2: Output: X, {Xn

i=1} #with decision
3: nbrs← NearestNeighbors (n_neighbors=3).fit (Z)
4: distance← nbrs.kneighbors (Z)
5: distance.sort()
6: eps← first extreme value of distance
7: cluster← dbscan(Z, eps)
8: n_clusters← len(cluster.labels_)
9: X[labels]← cluster.labels_
10: dict_error← {}
11: for i=0 to n_clusters do
12: bool_values← (X [labels_] == i )
13: cluster_i_set← Z[boolvalues]
14: n_instance_in_cluster_i = len(cluster_i_set)
15: error_count = 0
16: for j in n_instance_in_cluster_i do
17: if cluster_i_set[j] > final_threshold
18: error_count← error_count + 1
19: endif
20: end for
21: dict_error[i]← error_count
22: end for
23: for i=0 to n_clusters do
24: cluster_i← X[db_labels == i]
25: n_of_instance← len(cluster_i)
26: if n_of_instance * 0.5 less than or equal to dict_error.get(i)
27: X.update[ all rows in cluster, labels ] = 1 #novelty
28: else
29: X. update[ all rows in cluster, labels ] = 0 #normal
30: endif
31: end for
32: return X

We have summarized the general architecture solutions in Algorithm 3 and the dimensionality
reduction and have identified the novelties that are contained in it, which have been summarized in
Algorithms 1 and 2.
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The generic functions of the proposed DAE-DBC are shown in Algorithm 3:

Algorithm 3: DAE-DBC algorithm.

1: Input: Set of points X, {Xn
i=1}

2: Output: Y, { Yn
i=1} #decision

3: Z← Dimensionality reduction(X)
4: Y← Identify novelty(Z)
5: return Y

High-dimensional data can cause problems for data mining and analysis [24]; also, this curse
of dimensionality problem introduced by R. Bellman [33]. To avoid this problem, we have proposed a
method instead of grouping directly the input data, to group the low dimensional representation of
the input.

The advantage of the proposed method is that by calculating the error threshold in two stages,
making it more precise novelty detection. First, the autoencoder model is trained by all data and the
first threshold is estimated from its reconstruction error. In this case, using all the data including both
the novelty and the normal to train the autoencoder model, so using directly this threshold may have
a negative effect on novelty detection. Therefore, according to the estimated threshold, it can get rid
of the data which is close to the normal and retrain the autoencoder model using close to normal
data. The second model that trained from the data including less number of the novelty than the first
one, thus, it is used to estimate the final error threshold and to reduce the dimensionality. Creating
clusters from final low dimensional space, to determine whether the cluster is the novelty if the most
of instance in a group is abnormal, this cluster is considered as the novelty and labeled by abnormal.

4. Experimental Study

In this section, we have compared the results of our DAE-DBC method, OC-SVM, eta-SVM,
Robust-SVM [20], PCA with Gaussian Mixture Model (GMM), PCA with Cumulative distribution
function (CDF), kernel PCA with GMM, kernel PCA with CDF, Robust PCA [25] and have
proposed method versions that replace its some components by PCA or kernel PCA or K-means
clustering technique.

4.1. Datasets

Our outlier benchmark datasets are from the Outlier Detection Datasets (ODDS) website [34].
The original version of benchmark datasets with the ground truth are for a classification in the UCI
machine learning repository. The description and class labels that are considered as the novelty of the
benchmark datasets in this experiment are detailed in Table 1.

Table 1. Description of datasets.

Dataset Dim Instance Normal Novelty Description

BreastW 10 683 444 239 There are two classes, benign and malignant. The malignant
class is considered as novelty.

Annthyroid 6 7200 6666 534
There are three classes are built: normal, hyperfunction and
subnormal functioning. The hyperfunction and subnormal

classes are treated as novelty class.

Arrhythmia 274 452 386 66
It is a multi-class classification dataset. The smallest classes,

i.e., 3, 4, 5, 7, 8, 9, 14, 15 are combined to form the
novelty class.
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Table 1. Cont.

Cardio 21 1831 1655 176
There are 3 classes, normal, suspect and pathologic.

Pathologic (novelty) class is downsampled to 176 points.
The suspect class is discarded.

Glass 9 214 205 9 This dataset contains attributes regarding several glass
types (multi-class). Here, class 6 is marked as novelty.

Ionosphere 33 351 225 126
There is one attribute having values all zeros, which is
discarded. So, the total number of dimensions are 33.

The ‘bad’ class is considered as novelty class.

Letter 32 1600 1500 100
3 letters from data was sampled to form the normal class

and randomly concatenate pairs of them to form the
novelty class.

Lympho 18 148 142 6
It has four classes but two of them are quite small.
Therefore, those two small classes are merged and

considered as novelty.

Mnist 100 7603 6903 700 Digit-zero class is considered as inliers, while 700 images
are sampled from digit-six class as the outliers.

Musk 72 3062 2965 97

The non-musk classes, j146, j147 and 252 are combined to
form the inliers, while the musk classes 213 and 211 are
added as novelty without downsampling. Other classes

are discarded.

Optdigits 64 5216 5066 150 The instances of digits 1-9 are inliers and instances of digit 0
are down-sampled to 150 outliers.

Pendigits 16 6870 6714 156

It has10 classes (0 . . . 9). In this dataset, all classes have
equal frequencies. So, the number of objects in one class

(corresponding to the digit “0”) is reduced by a factor
of 10%.

Pima 8 768 500 268
Several constraints were placed on the selection of instances

from a larger database. In particular, all patients here are
females at least 21 years old of Pima Indian heritage.

Satellite 36 6435 4399 2036 The smallest three classes, i.e., 2, 4, 5 are combined to form
the outliers’ novelty.

Satimage 36 5803 5732 71 Class 2 is down-sampled to 71 outliers, while all the other
classes are combined to form an inlier class.

Suttle 9 49097 45586 3511
The smallest 5 classes, i.e., 2, 3, 5, 6, 7 are combined to form
the novelty class, while class 1 forms the inlier class. Data

for class 4 is discarded.

Thyroid 6 3772 3679 93
There are 3 classes are built: normal, hyperfunction and

subnormal functioning. The hyperfunction class is treated
as novelty class.

Vertebral 6 240 210 30

The following convention is used for the class labels:
Normal (NO) and Abnormal (AB). Here, “AB” is the

majority class having 210 instances which are used as inliers
and “NO” is downsampled from 100 to 30 instances as

outliers.

WBC 30 378 357 21
There are 2 classes, benign and malignant. The malignant

class of this dataset is downsampled to 21 points, which are
considered as novelty.

Wine 13 129 119 10 Class 1 is downsampled to 10 instances to be used
as novelty.
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4.2. Methods Compared

We have compared our DAE-DBC which is deep autoencoder reconstruction error based method
with the unsupervised state-of-the-art methods below.

• OC-SVM. OC-SVM is used for novelty detection based on building prediction model from only
normal dataset [23]. Eta-SVM and Robust SVM that an enhanced OC-SVM are introduced by
Mennatallah et al. [20] and they suggest an implementation which is an extension of Rapidminer.
We use this extension configured by RBF kernel function for these three algorithms.

• PCA based methods. PCA is commonly used for outlier detection and calculates the outlier
score using the principal component scores and reconstruction error which is the orthogonal
distance of each data point and its first principal component score. The Gaussian Mixture
Model and Cumulative Distribution Function are used to make novelty detection decision from
Outlier score [35,36]. We compare the PCA-based methods including PCA-GMM, PCA-CDF,
Kernel PCA-GMM, Kernel PCA-CDF and Robust PCA [25].

We present a series of proposed methods by modifying the components to show that the
components of the proposed DAE-DBC method together are more effective. In other words, we have
tested with some methods, such as the proposed approach with K-means, proposed approach with
PCA and proposed approach with KPCA.

• DAE-DBC (Proposed method). The structure of the deep autoencoder is composed of the
5 number of layers like {input layer (n neurons)→ encoding layer (n/2 neurons)→ encoding
layer (1 neuron) → decoding layer (n/2 neurons) → decoding layer (n neuron)}, where n is
the number of neurons. In here, the number of neurons in a bottleneck hidden layer which
is the compressed representation of the original input is equal to one, other hidden layers are
composed of neurons of about a half of the input neurons. The sigmoid activation function is used
for encoding type-layers, the tanh activation function is for decoding-type layers respectively.
Reconstruction error and compressed representation are grouped by density-based DBSCAN
clustering algorithm and the novelty threshold will decide whether the group is the novelty.

• DAE-Kmeans. Compare with the proposed method using the K-means clustering algorithm
instead of density-based clustering. K-means clustering algorithms require the number of cluster
k and we have used Silhouettes analysis which is used for evaluation of clustering validity to find
optimal k [37].

• PCA-DBC, KPCA-DBC. Our proposed method is based on reconstruction error. So, we have used
PCA and KPCA in place of AE for calculating reconstruction error and compressed representation.

4.3. Evaluation Metrics

The grand-truth label is used to measure the performance of all the methods used in the
experiment. The Receiver Operating Characteristic (ROC) curve and its area under curve (AUC)
is used to measure the accuracy of all test methods. AUC represents a summary measure of accuracy
and high AUC indicates the good result.

4.4. Experimental Result

The experiment was carried out on a Thinkpad W510, 1st gen i7 and 8GB Ram. First, we have
made an experiment on 20 benchmark datasets to compare Algorithm 1 and Algorithm 3. As a result
of applying Algorithm 1, we get 2 dimensional features consisting of the reduced dimension and the
reconstruction errors as well as a finalThreshold which represents the novelty threshold. If algorithm
1 is used without algorithm 2, each point that is exceeding the finalThreshold will be defined as a
novelty. However, the synergy of using both algorithm 1 and algorithm 2 will result in grouping
points that exceed the finalThreshold as a novelty group. Table 2 shows that the AUC score of novelty
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detection is growing when using Algorithm 1 and Algorithm 2 together (Algorithm 3) instead of using
Algorithm 1 alone.

Table 2. AUC score comparison between Algorithm 1 and Algorithm 3. The highest values of AUC
scores are marked in bold.

Dataset Algorithm 1 Algorithm 3

Annthyroid 0.5866 0.6308
Breastw 0.8962 0.9767

Arrhythmia 0.9181 0.6966
Cardio 0.7837 0.8661
Glass 0.4580 0.7195

Ionosphere 0.7440 0.7813
Letter 0.5957 0.6030

Lympho 0.7500 0.8709
Mnist 0.7315 0.7358
Musk 0.9266 0.9978

Optdigits 0.6108 0.4972
Pendigits 0.7861 0.8466

Pima 0.6423 0.6758
Satellite 0.6696 0.7299

Satimage 0.9204 0.9861
Suttle 0.9427 0.9695

Thyroid 0.9554 0.9077
Vertebral 0.4000 0.5000

Wbc 0.8221 0.8179
Wine 0.8487 0.8487

Second, we have made experiments on a total of 20 benchmark datasets to compare our proposed
algorithms with state-of-the-art algorithms. Extensions of RapidMiner, which is proposed by OC-SVM,
eta-SVM, Robust SVM and Robust PCA Mennatallah et al. was used and other algorithms were
implemented in Python with Keras, which is a high-level neural networks API, written in Python and
capable of running on top of TensorFlow. The Deep autoencoder model is set to match the same for
DAE-DBC and DAE-Kmeans algorithms. Deep autoencoder was trained by the Adam algorithm [38]
and learning rate was 0.001 to minimize mean squared error. Batch size was 2 and number of epochs
to train model was 50.

In implementation of algorithm 1, original CSV data file is loaded into DataFrame in pandas
Python package. DataFrame is a 2-dimensional labeled data structure with columns of potentially
different types. After building first autoencoder model, decoded output result and reconstruction
errors are stored in one-dimensional arrays. The data with a lower reconstruction error is stored into
new DataFrame. Train the 2nd autoencoder model by the data obtained and the final compressed
data including reconstruction errors and low dimensional representation from second AE model is
written into CSV file. In the implementation of algorithm 2, the compressed data file is loaded into the
DataFrame. Clusters’ labels and distances between points in the compressed representation are stored
in one-dimensional arrays. Also, the count of the novelty in each cluster is stored in a dictionary data
structure. The final novelty labels will be appended into the original CSV data file.

Experimental results show that we can use the DAE-DBC method on various dimensions of data
due to the fact that it has given higher AUC than other methods on most of the data. A total of 13
methods were tested on 20 benchmark datasets, the highest values of AUC scores are marked in bold
in Table 3. The first is the DAE-DBC algorithm 0.7829, the second is the PCA-DBC algorithm 0.6924,
the third is OC-SVM algorithm 0.6865 by the average AUC score are higher than other algorithms.
The proposed DAE-DBC method shows the AUC score of less than 0.8 on Vertebral, Optdigits, Letter,
Arrhythmia and Annthyroid datasets. Comparing the above datasets with the datasets shown in
the high AUC score, the average values between some of the features have high variance. Testing
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13 methods have sometimes indicated memory errors in KPCA-CDF, KPCA-GMM and KPCA-DBC
algorithms depending on sample number. For our proposed DAE-DBC algorithm, all of the data has
been successfully tested.

Table 3. AUC score of compared methods on benchmark datasets. The highest values of AUC scores
are marked in bold.

RapidMiner/Extension of Outlier Detection/ Python Implementation/Using Keras/
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Annthyroid 0.6173 0.4791 0.6002 0.4598 0.5505 0.5366 0.5666 0.5466 0.5909 0.5629 0.5389 0.5100 0.6308
Breastw 0.8896 0.5956 0.7854 0.8035 0.6254 0.6499 0.5318 0.9311 0.7560 0.9115 0.6867 0.9289 0.9767

Arrhythmia 0.7003 NA 0.6857 0.7386 0.4974 0.6302 0.6466 0.6950 0.6913 0.6397 0.6241 0.5152 0.6966
Cardio 0.5216 0.6530 0.5344 0.5000 0.5167 0.6499 0.7889 0.6174 0.8607 0.8840 0.5000 0.5193 0.8661
Glass 0.7659 0.7133 0.7390 0.7035 0.5385 0.5165 0.5141 0.5165 0.5141 0.5165 0.5238 0.5385 0.7195

Ionosphere 0.8067 0.6333 0.6710 0.6941 0.7421 0.5235 0.5546 0.7546 0.3017 0.6186 0.6225 0.7124 0.7813
Letter 0.4200 0.4927 0.5747 0.5000 0.5837 0.5403 0.7400 0.5957 0.4787 0.5023 0.5230 0.5000 0.6030

Lympho 0.7500 0.8204 0.6937 0.7993 0.8228 0.8087 0.9261 0.8087 0.9472 0.9542 0.5000 0.8263 0.8709
Mnist 0.7261 NA 0.6891 0.6399 NA 0.5619 0.5658 0.5939 0.4024 0.5884 0.5930 0.5024 0.7358
Musk 0.7580 0.5803 0.6863 0.6648 0.7990 0.9526 0.7377 0.9919 0.8166 0.9855 0.9153 0.9990 0.9978

Optdigits 0.5421 0.5621 0.5204 0.5461 NA 0.4817 0.4980 0.4702 0.4665 0.4735 0.4665 0.8229 0.4972
Pendigits 0.7557 0.7582 0.7316 0.7193 0.5346 0.6123 0.7786 0.6569 0.8898 0.5004 0.5499 0.6926 0.8466

Pima 0.5688 0.5125 0.5626 0.5543 0.4783 0.4838 0.5162 0.5719 0.5842 0.5476 0.5170 0.5773 0.6758
Satellite 0.6524 0.4988 0.5970 0.5942 0.5879 0.6514 0.7133 0.6691 0.6714 0.6722 0.6572 0.6046 0.7299

Satimage 0.7527 0.4249 0.7404 0.8499 0.9701 0.9741 0.7848 0.9748 0.9055 0.9672 0.5282 0.9506 0.9861
Suttle 0.7673 0.5938 0.7609 0.5063 0.5062 0.5065 NA 0.6357 NA 0.6369 NA 0.5001 0.9695

Thyroid 0.7560 0.6277 0.7484 0.4904 0.6481 0.6290 0.7718 0.6745 0.8659 0.8179 0.6487 0.5319 0.9077
Vertebral 0.4310 0.5000 0.4524 0.4095 0.4881 0.4476 0.4524 0.4976 0.4976 0.4762 0.4976 0.4976 0.5000

Wbc 0.7619 0.8221 0.7367 0.8529 0.6359 0.6709 0.8123 0.7241 0.8123 0.8347 0.5000 0.6891 0.8179
Wine 0.7857 0.4067 0.6475 0.6639 0.3992 0.6819 0.6525 0.7908 0.7954 0.7576 0.5206 0.5000 0.8487

Average AUC 0.6865 0.5930 0.6579 0.6345 0.6069 0.6255 0.6606 0.6858 0.6762 0.6924 0.5744 0.6459 0.7829

Table 4 shows the time performance of algorithms used in our experimental study and the
unit of the table is seconds for all columns. However, for the small dataset, the complexity time
of the SVM based (OC-SVM, eta-SVM and Robust-SVM) and PCA based (Robust-PCA, PCA-CDF,
KPCA-CDF, PCA-GMM, KPCA-GMM and KPCA-DBC) algorithms work faster than the Autoencoder
based (DAE-Kmeans and DAE-DBC) algorithms. Our proposed algorithm achieves higher accuracy
compared with the other algorithms. For the large dataset such as Suttle, our proposed method works
faster than SVM based methods. As a conclusion, the accuracy complexity of our proposed algorithm
is higher than other algorithms and the computation time of our algorithm is constant for all datasets.

Figure 3 shows the ROC curves of compared 13 methods on 20 different benchmark datasets
from ODDS. The DAE-DBC method shows higher AUC scores on 9 of total 20 datasets than other
methods. The x-axis is False Positive Rate and the y-axis is True Positive Rate in Figure 3 ROC curves
of compared methods.
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Figure 3. ROC curves of compared methods. (a) Annthyroid, 6 dimension, novelty ratio 0.08;
(b) BreastW, 9 dimension, novelty ratio 0.53; (c) Arrhythmia, 274 dimension, novelty ratio 0.17;
(d) Cardio, 21 dimension, novelty ratio 0.1; (e) Glass, 9 dimension, novelty ratio 0.04; (f) Ionosphere,
33 dimension, novelty ratio 0.56; (g) Letter, 32 dimension, novelty ratio 0.06; (h) Lympho, 18 dimension,
novelty ratio; (i) Mnist, 100 dimension, novelty ratio 0.1; (j) Musk, 72 dimension, novelty ratio;
(k) Optdigits, 64 dimension, novelty ratio 0.03; (l) Pendigits, 16 dimension, novelty ratio 0.02; (m) Pima,
8 dimension, novelty ratio 0.5; (n) Satellite, 36 dimension, novelty ratio 0.46; (o) Satimage, 36 dimension,
novelty ratio 0.01; (p) Suttle, 9 dimension, novelty ratio 0.07; (q) Thyroid, 6 dimension, novelty ratio
0.02; (r)Vertebral, 6 dimension, novelty ratio 0.14; (s) Wbc, 30 dimension, novelty ratio 0.05; (t) Wine,
13 dimension, novelty ratio 0.08.
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Table 4. Comparison of computation time of algorithms.

RapidMiner/Extension of Outlier Detection/ Python Implementation/Using Keras/
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Annthyroid 40 66 46 46 0.11 0.25 24.662 0.467 28.491 26.576 33.581 2002.1 261.46
Breastw 44 7 46 6 0.153 0.463 0.477 0.492 0.666 22.22 21.874 115.32 31.764

Arrhythmia 0< NA 1 0< 0.063 0.082 0.206 0.111 0.394 6.737 9.155 105.33 32.916
Cardio 12 24 15 16 0.107 0.227 1.564 0.326 1.824 9.027 7.735 152.27 71.649
Glass 0< 0< 0< 0< 0.025 0.034 0.059 0.084 0.156 8.164 5.286 32.869 14.515

Ionosphere 0< 0< 0< 0< 0.041 0.069 0.115 0.138 0.263 32.845 5.919 39.85 19.17
Letter 5 11 7 7 0.072 0.267 1.349 0.315 1.574 9.577 9.775 113.1 60.347

Lympho 0< 0< 0< 0< 0.027 0.041 0.164 0.077 0.219 3.613 7.435 22.957 15.056
Mnist 1330 NA 1134 1111 NA 3.378 41.538 2.789 43.302 27.391 35.814 754.57 268.66
Musk 50 90 71 73 0.204 0.691 6.714 0.660 7.116 10.253 10.989 322.09 136.11

Optdigits 124 201 142 146 NA 0.923 15.405 0.997 16.585 29.792 21.358 509.33 180.97
Pendigits 31 42 31 36 0.262 0.561 23.313 0.656 24.260 23.485 30.98 637.16 221.27

Pima 0< 0< 0< 0< 0.037 0.112 0.360 0.166 0.497 7.867 5.266 80.555 28.045
Satellite 66 96 71 78 0.207 0.685 21.680 0.798 24.556 22.789 58.857 686.85 236.33

Satimage 42 58 44 55 0.187 0.642 17.275 0.849 18.386 2.419 21.31 592.40 217.29
Suttle 19,908 19,761 22,431 22,891 0.577 1.437 NA 1.780 NA 139.98 NA 5419.4 1753.7

Thyroid 13 18 15 17 0.088 0.207 5.677 0.271 6.097 13.092 17.961 328.83 218.54
Vertebral 0< 0< 0< 0< 0.07 0.060 0.060 0.107 0.111 4.497 9.151 37.441 20.874

Wbc 0< 0< 0< 0< 0.05 0.148 0.166 0.169 0.212 4.043 3.269 72.288 46.738
Wine 0< 0< 0< 0< 0.028 0.055 0.044 0.083 0.098 3.929 8.441 20.71 26.951

In order to demonstrate the effectiveness of components together, we have tested multiple variants
for replacing components with different algorithms by this experiment. In other words, we used to
reduce dimension and get the reconstruction error using AE, then we have made experiments to create
PCA-DBC, KPCA-DBC version replacing AE by PCA technique and create DAE-Kmeans version
replacing density-based clustering with the K-means algorithm. The DAE-DBC algorithm works better
than its other versions and the-state-of-the-art methods that are proposed for other researches.

5. Conclusions

By this paper, we have proposed DAE-DBC approach to detect novelty on unsupervised mode
by combining deep autoencoder for low dimensional representation and clustering techniques for
novelty estimation. This approach can classify unlabeled dataset with different ratio with normal
and novelty by calculating optimal parameters for error threshold and clustering algorithm. We have
demonstrated that the components in suggested approach in the experiment has given more efficient
results together. DAE-DBC algorithm has improved average AUC of 9 state-of-the-art algorithms on
20 public benchmark datasets by 13.5 percent. Therefore, we suggest this approach on high dimensional
data to make unsupervised novelty detection.
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