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Featured Application: A practical guideline to the calculation of effective modal volume for
photonic and plasmonic cavities.

Abstract: We survey expressions of the effective modal volume, Veff, commonly used in the literature
for nanoscale photonic and plasmonic cavities. We apply different expressions of Veff to several
canonical cavities designed for nanoscale near-infrared light sources, including metallo-dielectric
and coaxial geometries. We develop a metric for quantifying the robustness of different Veff
expressions to the different cavities and materials studied. We conclude that no single expression
for Veff is universally applicable. Several expressions yield nearly identical results for cavities with
well-confined photonic-type modes. For cavities with poor confinement and a low quality factor,
however, expressions using the proper normalization method need to be implemented to adequately
describe the diverging behavior of their effective modal volume. The results serve as a practical
guideline for mode analysis of nanoscale optical cavities, which show promise for future sensing,
communication, and computing platforms.
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1. Introduction

Semiconductor nanolasers serve simultaneously as a platform for studying intriguing
fundamental physics and as a technologically relevant solution for next generation photonic integrated
circuits [1,2]. A major drive in the study and application of nanoscale cavities rests in the Purcell
effect, which describes the inverse relation between cavity mode volume and the rate of spontaneous
emission [3,4]. Smaller cavities generally permit higher rates of spontaneous emission and a greater
ratio of spontaneous emission channeled into the lasing mode, which, in principle, provides increased
modulation bandwidths and lower lasing thresholds [5,6]. In many nanoscale structures, however,
the physical volume of the cavity does not reflect the volume of the cavity mode. Therefore,
the effective modal volume, Veff—a unitless quantity normalized with respect to (λ0/na)3, was
introduced to account for this discrepancy [7]. A complementary expression, the confinement factor, Г,
may be defined to express the ratio of the volume of the active region, Va, to Veff, namely [8].

Γ ≡ Va

Ve f f
(1)
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In purely dielectric cavities with a large physical volume with respect to the cubic wavelength,
Г ≈ 1 because the mode is completely confined to the active region. As the active region volume
approaches the diffraction limit (approximately given by (λ0/(2na))3, where λ0 and na are the vacuum
wavelength and the real part of the active region refractive index, respectively), the cavity mode
becomes less confined and Г < 1. Eventually, when Va/(λ0/(2na))3 << 1, modes are no longer supported
in the purely dielectric cavity of which the physical size is below the diffraction limit in all three
dimensions. To continue reducing cavity volume, the incorporation of metals becomes inevitable [9].
The plasmonic modes supported by metal–dielectric interfaces in such cavities exhibit considerably
different modal profiles from their dielectric counterparts. Namely a substantial portion of modal
energy rests at the metal-dielectric interface rather than in the center of a purely dielectric region.

Calculation of Veff in three-dimensional (3D) cavities generally requires use of numerical methods
due to the geometric and material complexity of the cavities. Physically, the cavity mode is a spatial
distribution of electromagnetic energy [10]. Therefore, the calculation essentially requires a comparison
of integration of the electromagnetic energy density over the active region domain, Ua, to the integration
of the energy density over the entire simulation domain, U. If the simulation domain consists only of
dielectric materials, then this calculation is straightforward, and can be expressed as:

Γ = Ξe,a +Ξm,a
Ξe+Ξm

=

∫
Va

d3raUe(r)+
∫

Va
d3raUm(r)∫

V d3rUe(r)+
∫

V d3rUm(r)

(2)

where Ξ is the energy, r is the position vector, and the e, m, and a subscripts refer to electrical energy,
magnetic energy, and active region respectively. For a simulation of non-absorbing and non-dispersive
materials, the stored electrical and magnetic energy are identical [11]. Hence, Equation (2) may be
simplified to its more commonly seen form of:

Γ = Ξe,a
Ξe

=

∫
Va

d3raUe(r)∫
V d3rUe(r)

=

∫
Va

d3ra(D(r)·E(r)∗)∫
V d3r(D(r)·E(r)∗)

=

∫
Va

d3ra(ε0εr(r)|E(r)|2)∫
V d3r(ε0εr(r)|E(r)|2)

=

∫
Va

d3ra(ε0εr(r)|E(r)|2)
∑α

∫
Vα

d3rα(ε0εr,α(rα)|Eα(rα)|2)

(3)

where D and E are the displacement and electric field vectors, respectively (* denotes the conjugated
form of the electric field, therefore, the inner product would be the norm of the electric field), ε0 is the
permittivity in vacuum, and εr = εR + iεI is the, generally, complex valued relative permittivity, with the
R and I subscripts denoting the real and imaginary part, respectively. In the last equality, α represents
each unique material domain in the simulation over which volume integration must be executed, with
the total energy being the sum over these domains. For the study presented in the proceeding sections,
we will consider only non-magnetic materials and therefore use Equation (3) as our reference point.

For sake of clarity, we define a material as dielectric or metallic at a given wavelength when εR > 0
and εR < 0, respectively. Hence, the same “material” can behave as both dielectric and metal if the
simulation includes dispersion over the range of wavelengths in which εR changes sign. Also, we
define a material as absorptive at a given wavelength when εI < 0 (the negative sign is used to be in
accordance with the expression in our simulation software, COMSOL Multiphysics® 5.3 (Burlington,
MA, USA)). As most dielectric materials show very weak dispersion and absorption property in the
optical regime, if all materials are dielectric, the evaluation of Equation (3) is straightforward, as all of
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the terms are positive. If some materials are metallic, but the mode is confined primarily to a dielectric
region, Equation (3) remains useful because the denominator remains positive and the small amount
of energy contribution from the metallic region introduces only negligible errors in the calculation.
However, for cavities supporting surface plasmon polariton (SPP) modes or localized surface plasmon
resonance (LSPR) modes where the electric field is strongly confined at the metal–dielectric interface,
the amount of energy stored and dissipated by metal is no longer negligible. Equation (3) becomes
invalid because the resulting negative energy has no physical meaning.

To circumvent this problem, the real part of the permittivity in Equation (3) can be replaced by an
average permittivity, defined as [12]. As ω � γ (damping constant) in most of the optical applications,
both εg and

(
εg(ω) + εR(ω)

)
/2 are positive.

εavg (r, ω) =

(
εg(r, ω) + εR(r, ω)

)
2

(4)

where ω is the angular frequency, related to the vacuum wavelength via the vacuum speed of light, c,
by ω = 2πc/λ0, and εg is the group permittivity. The latter is calculated as:

εg =
∂[ωεR(r, ω) ]

∂ω
(5)

Use of Equation (4) in place of simply εr accounts for the physical effects of dispersion and usually
ensures mathematically that the all the terms in the denominator of Equation (3) will be positive
because in most cases εg + εR > 0. For example, use of the Drude model for the complex permittivity
of gold (Au) leads to εg + εR > 0 [12]. However, use of experimental data [13] for the permittivity of
Ag may lead to εg + εR < 0, such that εavg < 0. In this case, use of εr in Equation (3) may be replaced
directly by Equation (5), which will always be positive [14–16].

Despite the circumvention of the failure of Equation (3) via Equations (4) and (5), a number of
different expressions for the effective modal volume have appeared in the literature [17–21]. It is the
purpose of this paper to assess the utility of these expressions for the design and analysis of nanoscale
photonic and plasmonic cavities. For concreteness, we evaluate the expressions for near-infrared
(IR) resonant cavities. In Table 1, we list all three different nanoscale cavities we have evaluated,
and categorize them according to the optical mode they support. Therefore, we provide a practical
guideline on how to implement each effective modal expression. It should be understood, however,
that our approach could be applied to cavities supporting modes at other frequencies as well.

Table 1. Mode features of investigated nanoscale cavities. (AZO: aluminum-doped zinc oxide.)

Metallo–Dielectric
Cavity with Ag

Metallic Coaxial Cavity
with AZO

Metallic Coaxial Cavity
with Ag

Photonic Mode x x

Plasmonic Mode x

Confined Mode x x

Leaky Mode x

The paper is organized as follows. In Section 2 we expand upon the introduction and review
the various expressions for Veff found in the literature. Next, in Section 3 we apply these expressions
to several canonical cavity geometries, including a metallo-dielectric cavity that supports photonic
modes [22] and a coaxial cavity that supports plasmonic modes [6]. In all cases, indium gallium
arsenide phosphide (InGaAsP) serves as the active region material, with alloy composition chosen such
that emission occurs in the wavelength range of 1260 nm < λ0 < 1590 nm. For the coaxial geometry,
we study both Ag and aluminum-doped zinc oxide (AZO) as the cladding materials, whereas only
Ag is used for the metallo–dielectric geometry. The plasma frequency of Ag and AZO lie in the
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ultraviolet and near-IR wavelengths, respectively, with the latter being tunable depending on its alloy
composition [23]. Therefore, we compare cases when the active material emission frequency and the
cavity resonance frequency are far from and close to the plasma frequency of the constituent metal.
Room temperature conditions are assumed for all calculations and values of permittivity are taken
from the literature [23–25]. It should be emphasized that in calculating Veff, we include both the real
and imaginary parts of the metal permittivity to account for realistic absorption losses. However, we
use only the real part of the InGaAsP permittivity because we are primarily interested in the degree
to which electromagnetic energy may be stored in the active region. When considering absorption
or amplification of energy in the active region, the numerator of Equation (3) can be used with the
substitution of εI for εr, which has been theoretically proved and verified by numerical simulation,
respectively [26,27]. In Section 4, we discuss our results and present a metric for comparing the
robustness of the various expressions. We conclude the paper in Section 5.

2. Materials and Methods

In this section, we present five expressions for Veff from the literature. The first expression, Veff,1,
was presented for use in a photonic crystal cavity with an air gap and containing only dielectric
materials [17]. It is:

Ve f f ,1 =
∑α

∫
Vα

d3rα

(
εα(rα)|Eα(rα)|2

)
ε(rmax)max(|E(rmax)|)2 (6)

The denominator of Equation (6) includes the maximum of the electric field, where rmax denotes
the position of electric field antinode. Additionally, the permittivity of the denominator equals that of
the material in which the maximum electric field antinode is located.

The second expression, Veff,2 was used in the analysis of metallic nanocube antennas [18].
It defines the effective volume as the ratio of total electrical energy to the peak value of electrical
energy density. Using the earlier introduced notation:

Ve f f ,2 = Ξe
max(Ue)

=
∑α

∫
Vα

d3rα

(
εα(rα)|Eα(rα)|2

)
max

(
ε(r)|E(r)|2

) (7)

If the peak energy density is located in the active region, then Equation (7) leads to the reference
expression for Г, i.e., Equation (3), after division by Va. If the peak electric field lies in the active region,
then Equations (6) and (7) yield the same result. However, in some geometries, the peak electric field
could reside in a low index region, such as an air gap, while the peak energy density lies in the high
index active region, in which case Equations (6) and (7) will yield different results.

The third effective volume expression, Veff,3, was used in the analysis of spontaneous emission
enhancement in a dielectric pillar microcavity [19] and a metallo–dielectric cavity [22]. It is:

Ve f f ,3 =
∑α

∫
Vα

d3rα

(
nα(rα)

2|fα(rα)|2
)

n2
a

(8)

where f is the normalized electric field such that |f(r)| = 1 at the field antinode. While Equation (8)
appears to differ from Equations (6) and (7) in that the electric field is absent from the denominator,
the normalization effectively supplies the electric field to both the numerator and denominator. If all
materials in the cavity are lossless dielectric and the peak electric field resides in the active region, then
Veff,3 yields identical results to Veff,2 and Veff,1. However the use of the active region refractive index in
the denominator of Equation (8), regardless of the location of peak field or energy, generally leads to
values of Veff,3 different from Veff,1 and Veff,2.
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The fourth effective volume expression that we assess, Veff,4, is [20,28,29]:

Ve f f ,4 =

([
1

Vp

]
r

)−1

(9)

where Vp is defined as:

Vp ≡
∑α

(∫
Vα

d3rασα(rα)Eα(rα)
2
)
+i
√

εB(r)c
2ω̃c

∫
δV d2rE(r)2

ε(rmax)max(E(rmax))
2

=

 ε(rmax)max(E(rmax))
2

∑α

(∫
Vα

d3rασα(rα)Eα(rα)
2)+i

√
εB(r)c
2ω̃c

∫
δV d2rE(r)2


r

−1

=




ε(rmax)max(E(rmax))

2

∑α

(∫
Vα

d3rασα(rα)Eα(rα)
2)+i

√
εB(r)c
2ω̃c

∫
δV d2rE(r)2

. . .× . . .

. . .× . . .
∑α

(∫
Vα

d3rασα(rα)Eα(rα)
2)−i

√
εB(r)c
2ω̃c

∫
δV d2rE(r)2

∑α

(∫
Vα

d3rασα(rα)Eα(rα)
2)−i

√
εB(r)c
2ω̃c

∫
δV d2rE(r)2


r


−1

=


 ε(rmax)max(E(rmax))

2
(

∑α

(∫
Vα

d3rασα(rα)Eα(rα)
2)−i

√
εB(r)c
2ω̃c

∫
δV d2rE(r)2

)
(∑α(

∫
Vα

d3rασα(rα)Eα(rα)
2) )

2
+

(√
εB(r)c
2ω̃c

∫
δV d3rαEα(rα)

2
)2


r


−1

(10)

For Veff,4, εr is replaced by σ according to the normalization method that has been introduced [28],
where, ω̃c refers to the complex eigenfrequency of the cavity mode, and εB refers to the relative
permittivity of the background material surrounding the cavity or resonator.

σ =
1

2ω̃c

∂
[
εr(r, ω̃c)ω̃c

2]
∂ω̃c

(11)

If the mode is well confined to the center of the cavity, then the field will converge to zero at
the edge of the simulation domain and the second term in the numerator surface integration term of
Equation (10) becomes negligible. In this case, Equation (10) becomes:

Ve f f ,4 ≈
([

ε(rmax)max(E(rmax))
2∑α(

∫
Vα

d3rασα(rα)Eα(rα)
2 )

(∑α(
∫

Vα
d3rασα(rα)Eα(rα)

2) )
2

]
r

)−1

≈
([

ε(rmax)max(E(rmax))
2

∑α(
∫

Vα
d3rασα(rα)Eα(rα)

2)

]
r

)−1

≈ ∑α(
∫

Vα
d3rασα(rα)Eα(rα)

2)
ε(rmax)max(E(rmax))

2

(12)

For a well confined cavity, the quality factor (Q factor) is usually high, therefore, ω̃c/ωc ≈ 1.
Then, Veff,4 is identical to Equation (6) of Veff,1. It should be noted that the convergence of Veff,4 is based
on the usage of complex eigenfrequency and unconjugated inner product of the electric field [28].

The fifth and final effective volume expression that we asses, Veff,5, is [21,30–32]:

Ve f f ,5 =

([
1

Vq

]
r

)−1

(13)
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where Vq is defined as:

Vq ≡
∑α

(∫
Vα

d3rαεgc,α(rα)Eα(rα)
2
)
+
∫

VPML
d3rεgc(r)E(r)

2

εgc(rmax)max(E(rmax))
2 (14)

For Veff,5, εr is replaced by εgc, where ‘gc’ stands for a complex group permittivity [21].

εgc = εr +
∂[ω̃cεr(r, ω̃c)]

∂ω̃c
(15)

In Veff,5, the surface integration term in Equation (10) is replaced by the integration of energy
density in the perfectly matched layer (PML) in the simulation domain. As E(r) exponentially diverges
in space when |r|→ ∞, a leaky mode cannot be readily normalized with energy consideration based
merely on the conjugated form of the electric field inner product E(r)·E(r)*, which is the modulus
square of the electric field used in Veff,1,2,3. To include the impact of absorption and/or radiation
loss, which is embedded in Im(E), the unconjugated form E(r)·E(r) needs to be used for leaky cavities.
The formulae of Veff,4 and Veff,5 are both based on this energy consideration of the unconjugated form
E(r)·E(r), therefore, theoretically, these last two effective modal volume expression yield more accurate
Veff value for cavities with significant amount of absorption and/or radiation loss. Comparing Veff,4
and Veff,5, Veff,4 requires a surface integration of electric energy density over the boundary of a large
simulation domain, which may constrain its applicability for users with limited physical memory
of their computation tool. The physical memory requirement for eigenfrequency study in COMSOL
grows linearly with the increase in degree of freedom and meshing elements; therefore, there exists an
upper limit for simulation domain size. On the other hand, Veff,5 requires the knowledge of the exact
permittivity and permeability distributions in the PML, which may not be possible in all commercial
software [30]. Nevertheless, the normalization condition of Veff,5 can be easily extended for dispersive
and magnetic materials.

To simulate these three different cavities, eigenfrequency study is performed with the Wave Optics
module in the commercial finite element method (FEM) software COMSOL. The cavities are enclosed
with spherical shape background material and perfectly match layer (PML). The detailed meshing
conditions are listed in Table 2, where λL is 1.26 µm, corresponding to the lower edge of InGaAsP
quantum well gain spectrum at room temperature; nInGaAsP and nair are refractive indices of InGaAsP
and air, respectively.

Table 2. PML and meshing conditions in eigenfrequency study.

Fine Normal

PML
Type Sweep Sweep

Number of layers 10 5

Cavity
Type Free tetrahedral (extremely fine) Free tetrahedral (fine)

Maximum element
size (nm) λL/(6·nInGaAsP) λL/(4·nInGaAsP)

Backgound
Type Free tetrahedral (normal) Free tetrahedral (normal)

Maximum element
size (nm) λL/(6·nair) λL/(4·nair)

Metal-dielectric
boundary

Type Free tetrahedral (extremely fine) Free tetrahedral (extra fine)

Maximum element
size (nm) 10 20
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3. Results

3.1. Metallo-Dielectric Resonator

We first present results on the evaluation of different Veff expressions for the Ag-cladded
metallo–dielectric cavity. As the dielectric (SiO2) cladding (200 nm) between cavity core (InGaAsP) and
cavity shell (Ag) is thick enough, the cavity supports well confined photonic modes, and the electric
fields outside the active region quickly converge to zero. Therefore, we anticipate minor variation in
the resulting Veff values with respect to change of simulation domain size (dair) compared to cavities
supporting leaky plasmonic modes, such as those in Sections 3.2 and 3.3.

Figure 1. (a) Closeup of the transverse electric (TE) TE012 mode in the metallo-dielectric cavity (lengths
expressed in nm) (b) Entire simulation space for the metallo–dielectric cavity (c) Veff as a function
of dair evaluated for the various expressions. All of the traces overlap. (Q = 2700.8 at 2.0169e14 Hz
(λ0 = 1486.4 nm).)

A cross section of the metallo–dielectric cavity is shown in Figure 1a, where |E(r)| of the TE012

mode is plotted. It is apparent that the optical mode mostly overlaps with the InGaAsP active region.
Further, because the ratio of relative permittivity of InGaAsP to SiO2 is (nInGaAsP/nSiO2)2 ≈ (3.4/1.45)2

= 5.5, the concentration of energy in the active region can be found by scaling the color plot of Figure 1a
by a magnification factor of 5.5. This will lead to a confinement factor as given by Equation (3) close
to unity. The simulation domain for the metallo–dielectric cavity is shown in Figure 1b, where we
use a surrounding air region of variable characteristic length, dair. Figure 1c shows the Veff values of
the five Veff expressions listed in Section 2 as a function of dair, with the latter ranging from 795 nm
to 3180 nm, or from about half of the upper photoluminescence (PL) boundary of InGaAsP to two
times of it. For the metallo–dielectric cavity, among all five Veff expressions, Veff,1,2,3 expressions yield
an identical result, and Veff,4,5 expressions show a slightly smaller value due to the surface and PML
integral terms added to the norm. The maximum difference between Veff,1,2,3 and Veff,4,5 is only 1.12%,
which agrees with our analysis in Section 2. The dependence of Veff on dair is seen to be negligible, and
the small variation is most likely attributable to the different meshes that are generated upon changing
dair and not related to any physical features of the modal profile.

3.2. Coaxial Resonator with Ag

A cross section of the Ag-cladded coaxial cavity is shown in Figure 2a, where |E(r)| of the
transverse electro-magnetic-like (TEM-like) mode is plotted. The cavity is enclosed by a spherical
simulation space shown in Figure 2b. Despite the fact that the optical mode is fairly well confined
to the active region of the cavity, there is notably more leakage into the air plug compared to the
metallo–dielectric cavity. As a result, the electric field antinode is located in the air plug rather than
the active region of the cavity. The quality factor of this plasmonic mode in the coaxial cavity is
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on the order of 100, which is about an order of magnitude lower than the photonic mode in the
metallo–dielectric cavity.

Figure 2. (a) Closeup of the TEM-like mode of the coaxial cavity with Ag as cladding material
(lengths expressed in nm). (b) Side view of the entire spherical simulation space for the coaxial cavity.
(Q = 79.074 at 2.0542e14 Hz (λ0 = 1459.4 nm)).

The evaluated effective modal volumes of the Ag-cladded coaxial cavity are shown in Figure 3,
for various simulation conditions, which include different meshing finesse and simulation domain
sizes. As the electric field maxima and electric field energy density maxima located in the air region and
active region respectively, Veff,3 has the largest denominator among all five Veff expressions. Therefore,
Veff,3 exhibits the smallest values. As Veff,2 takes the electric field energy density in its denominator,
this Veff expression is less sensitive to the change of simulation domain size, and is the most stable one.
Among the other three expressions, as the field quickly vanishes at the simulation boundary, Veff,1, Veff,4
and Veff,5 all show converging values with less than 30% variation (Veff,1 ≈ 1.29 Veff,4 and 1.27 Veff,5)
for all simulation conditions. From Figure 2a, it is apparent that the maximum electric field resides in
the air region, which leads to a denominator for Veff,1, Veff,4 and Veff,5 that is significantly smaller than
the denominators of both Veff,2 and Veff,3. Hence, the values of Veff,1, Veff,4 and Veff,5 are significantly
greater than those of Veff,2 and Veff,3. Due to this same reason, Veff,1, Veff,4 and Veff,5 are more sensitive
to the change of simulation domain size compared to Veff,2. Comparing Figures 3a and 3b, which
present results for fine and normal meshing, respectively, we observe a rather negligible change in the
evaluated expression of Veff,2. However, it is important to note that because Veff,1, Veff,3, Veff,4 Veff,5 are
normalized with respect to the maximum electric field rather than to the maximum electric field energy
density as in the case of Veff,2, if this maximum lies in the air domain, then the mesh size could play an
important role. For example, this singularity of the field produced by the corners of the Ag core can be
suppressed by reducing the mesh size [33]. Additionally, the accuracy of the simulation can be further
improved by introducing the idea of subpixel smoothing of the isotropic dielectric function [34].
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Figure 3. Effective modal volume of the coaxial cavity using Ag as metal for various simulation
conditions, using (a) fine meshing and (b) normal meshing. λ = 1590 nm, which corresponds to
the upper boundary of emission bandwidth of InGaAsP. Note that the traces for Veff,4 and Veff,5 are
nearly identical.

3.3. Coaxial Resonator with AZO

A cross section of the AZO-cladded coaxial cavity is shown in Figure 4a, along with the simulation
space in Figure 4b. It is evident that the mode is rather poorly confined to the active region with a
substantial portion of modal energy escaping the cavity. Hence, this cavity functions more as an optical
antenna with a quality factor on the order of 10, one and two orders of magnitude smaller than the
coaxial cavity with Ag and the metallo-dielectric cavity, respectively.

Figure 4. (a) Closeup of the mode of the coaxial cavity with AZO (aluminum-doped zinc oxide) as
cladding material (dimensions of all material regions are identical to coaxial cavity with Ag). (b) Side
view of entire spherical simulation space. (Q = 6.6884 at 2.2991e14 Hz (λ0 = 1304.0 nm).)

The evaluated effective modal volumes of the AZO–coaxial cavity are shown in Figure 5a,
for various simulation conditions. These conditions include the spherical air domain of varying
dair values. Veff,1, Veff,2, and Veff,3 yield diverging and identical results, increasing nonlinearly as dair

increases from 0.5λ to 2.0λ, thus these three Veff do not have a well-defined value. On the contrary, Veff,4
and Veff,5 show converged Veff values. The converged effective modal volume values are attributed to
the surface integration term in Equation (10) and the PML integration term in Equation (14), which
compensate the diverging volume integration term.
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Figure 5. (a) Effective modal volume of the coaxial cavity using AZO as a metal for various air
domain size dair. (b) Absolute value of the real part of the relative permittivity |εr| (solid curves) and
attenuation coefficient α (dashed curves) of Ag (gray curves) and AZO (red curves) as functions of
vacuum wavelength.

While AZO exhibits an attenuation coefficient one to two orders of magnitude smaller than that
of Ag over the spectral range of emission of InGaAsP (see Figure 5b), the absolute value of the real
part of the AZO permittivity is close to unity, which leads to more of the mode residing in AZO and
thus leading to a spatially divergent field because of the impedance match with the surrounding air
domains. Therefore, it becomes problematic to define the quasi-normal mode (QNM) norm with some
integral of electromagnetic field over the entire space. In this sense, Veff,4 and Veff,5 provide a way for
the normalization of QNM of low-Q cavities or plasmonic resonators, i.e., non-Hermitian systems.

4. Discussion

Based on the results, the type of cavity clearly affects the robustness of the various expressions
of Veff found in the literature. To quantify the stability of a Veff expression, we use the maximum
percentage difference, defined as:

∆(#) =

max

∣∣∣Vm
e f f ,(#) −Vn

e f f ,(#)

∣∣∣
Vm

e f f ,(#)

× 100% (16)

where m and n refer to different simulation conditions. All the evaluation results are tabulated in
Table 3 for fair comparison of the five effective modal volume expressions.

If the cavity supports a well-confined photonic mode, the electric field maximum resides in the
active region and the five expressions yield nearly identical results if numerical error can be eliminated.
This is confirmed with the metallo–dielectric cavity, where we observed that ∆1 = ∆2 = ∆3 ≈ ∆4 ≈ ∆5
< 0.21% as the simulation domain size increases. This can be considered a negligible change.

For cavities supporting plasmonic modes, the proximity of the cavity resonance to the metal
plasma frequency plays an essential role in determining the efficacy of the Veff expressions.
For the Ag–coaxial cavity under fine meshing, ∆2 < 2.02%, suggesting it is the most robust expression.
However, for the AZO cavity, Veff,1, Veff,2, and Veff,3 all diverge nearly at the same rate, while Veff,4,5

converge but oscillate around certain values. Therefore, based on their robustness performance,
for confined mode Veff,2 is suggested; for leaky mode, Veff,4,5 are suggested to obtain a more precise
effective modal volume value. In addition, the choice of the correct effective modal volume formula
should rely on a solid physical understanding of where the light–matter interaction of interest
is happening.
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Table 3. Evaluation of Veff robustness using maximum percentage difference.

Maximum Percentage Difference
(%) Cavity Types

Effective modal volume expressions Metallo-dielectric Coaxial-Ag (normal/fine) Coaxial-AZO

Veff,1 0.21 2.74 8.03 202.32
Veff,2 0.21 2.02 2.90 202.32
Veff,3 0.21 2.74 8.03 202.32
Veff,4 0.18 4.24 8.79 57.98
Veff,5 0.18 4.30 8.86 22.99

In addition, notice that all five Veff formulae shown here only calculate the electric energy in
the physical domain (including cavity and background material). However, for metallic cavities,
especially at room temperature in the near-IR regime, the significant absorption loss of plasmonic or
hybrid modes will result in unequal electric and magnetic energy in the cavity. For example, in the
Ag–coaxial cavity, the electric energy is usually two to five times greater than the magnetic energy in
the same material region. Therefore, calculating only the electric energy in metallic cavities should be
understood as an approximation, and the Veff formulae should be modified for plasmonic modes if
greater accuracy is desired [15,16,21].

5. Conclusions

We have identified five expressions in the literature commonly used for calculating the effective
modal volume of resonant cavities. We evaluated and compared these expressions in the context of
several canonical geometries supporting photonic and plasmonic modes for near-infrared nanoscale
light sources. These included a metallo-dielectric cavity and coaxial cavities with Ag and AZO as
cladding material. In the metallo-dielectric cavity, the various Veff expressions yield the same result
and are robust to simulation domain changes because the electric field maximum resides in the active
region. In the coaxial cavity, the Veff expressions yield results of varying stability due to the electric
field and electrical energy density maxima residing in different regions. For low Q coaxial cavities,
QNMs are no longer of finite energy, so standard QNM normalization methods based on energy
consideration cannot be applied because of the spatially diverging field at large distance. Therefore,
only Veff,4 and Veff,5 yield non-diverging results. Because of the relation of the effective modal volume
to important quantities of theoretical and practical interest, such as the Purcell factor and spontaneous
emission factor, our work conveys important results on the utility of the effective volume technique
and its limitations.
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