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Abstract: An all-optical comparator is desirable to realize large-capacity, fully-transparent, and
energy-efficient communication systems, as it is considered to be a fundamental component to
perform most of the operations, including packet switching, label recognition, error detection and
correction, and so on. However, most of the previous studies have been confined to the on–off
keying (OOK) modulation format, not phase-shift keying (PSK) modulation. In this paper, the
author provides a novel optical comparator designed for quadrature PSK (QPSK)-modulated signal,
which comprises a code word with 8-bit length, using a serially-cascaded delay line interferometer.
The proposed comparator yields constellations having the information of a Hamming distance
based on the designed code, when several patterns of QPSK signal are injected into the comparator.
The paper experimentally demonstrates the feasibility of the optical comparison operation for 8-bit
QPSK-modulated return-to-zero (RZ) signal at 10 Gbaud.
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1. Introduction

The tremendous increase of Internet traffic requires the development of large-capacity,
fully-transparent, and energy-efficient all-optical communication systems. Optical signal processing is
one of the solutions to realize such a communication system, because the signal processing directly
performs the required operation in the optical domain and reduces the power consumption in order to
avoid optical-to-electrical/electrical-to-optical conversions. In particular, optical signal processing has
been employed in several functional components, such as packet switching [1,2], label recognition [3,4],
error detection and correction [5–7], encryption [8,9], half- and full-adders [10–12], correlators [13,14],
equalizers [15,16], and comparators [17–22].

Among these components, the optical comparator is considered to be fundamental because it
can perform most of the operations, including packet switching, label recognition, error detection and
correction, etc. In this context, various optical comparators have been proposed by using the several
platforms such as a semiconductor optical amplifier [17,18], a nonlinear fiber ring resonator [19], a
Fabry–Perot laser diode [20], a micro ring resonator [21], and an electro-optical ring resonator [22].

On the other hand, the previous studies have been confined to on–off keying (OOK) modulation
format, not phase-shift keying (PSK) modulation. The optical comparator for PSK modulation is
desirable due to the requirement of coherent optical transmission for high-speed and long-haul
communication. However, to our best knowledge there have been no reports of this kind of optical
comparator. Previously, the author proposed a novel type of optical comparator for PSK modulation,
and demonstrated the comparison operation for 4- and 6-bit length quadrature PSK (QPSK)-modulated
signals [23]. In this paper, the author improves the valid number of code word to 8-bit length, and
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reports a newly evaluated comparison operation for 8-bit QPSK signal by using a serially-cascaded
delay line interferometer (DLI) at 10 Gbaud.

2. Operating Principles

Figure 1 illustrates the operating principles of the optical comparator for QPSK modulation.
The proposed comparator is defined for a particular 8-bit code which consists of four successive QPSK
symbols; the designed code is named as “comparator code” in this paper. The main purpose of the
comparator is to calculate comparison results based on the comparator code. When an arbitrary 8-bit
code is injected into the comparator, our scheme yields an optical symbol whose constellation reflects
the Hamming distance between the arbitrary 8-bit code and the comparator code. In this context, the
Hamming distance is derived as:

dH(x, y) =
n−1

∑
k=0
|xk − yk|, (1)

where x = x0, x1, · · · , xn−1 and y = y0, y1, · · · , yn−1 are n-bit code words, and the Hamming distance
provides the number of coefficients in which they differ.
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Figure 1. Operating principles of the optical comparator for an 8-bit quadrature phase-shift keying
(QPSK) signal. In this figure, the comparator is designed for a “00 11 00 11” code to set their phase
shifts at (0, π, 0, π), and the working example is illustrated when a “11 00 11 00” signal is input. It is
shown that the Hamming distance of dH(00 11 00 11, 11 00 11 00) corresponds to the distance of both
constellations.

The proposed comparator is designed for four successive QPSK symbols, and their constellation is
given in the form of a Gray code. In this code, two adjacent constellations differ in only one bit, and the
most-significant-bit and least-significant-bit contribute to the quadrature and in-phase component in
the complex plane. The proposed comparator requires three operational steps, as follows:

1. S/P conversion: to convert serially-successive symbols into four parallel symbols.
2. Phase shift: to rotate the phases in each parallel symbol; the amounts of the phase rotation are

determined according to the comparator code to convert their original constellations into a first
quadrant in each QPSK symbol, which corresponds to a “00” constellation in Gray code.

3. Optical coupling: to yield a complex symbol from four parallel symbols optically.

As an example, an optical comparator designed for a “00 11 00 11” code (e.g., a “00 11 00 11”
comparator) is considered. According to the design concept, in the comparator, four phase-rotations
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for each QPSK symbol are set at 0, π, 0, and π, respectively. By the phase rotations, every constellation
in “00 11 00 11” code will be converted into a “00” constellation. When a “00 11 00 11” signal is
injected into the comparator, the comparator generates the coupled symbol whose constellation is
located at the vector sum of four “00” constellations in the complex plane; the constellation is named
as “base constellation” in this paper. On the other hand, when a “11 00 11 00” signal is assumed, the set
of the (0, π, 0, π) phase-shift contributes to rotate their constellations from (11, 00, 11, 00) to (11, 11,
11, 11). As a result, the coupled symbol has a constellation corresponding to the vector sum of four
“11” constellations. In this constellation, the distance from the base constellation coincides with the
Hamming distance of dH(11001100, 00110011) = 8, because the difference vectors in each symbol,
which are based on each symbol of the comparator code, can be surely aligned in a direction inclined
by a π/4 angle with respect to the horizontal axis in the complex plane. Therefore, the comparator
provides the constellation having the comparison result against an arbitrary 8-bit code.

3. Experimental Setup

Figure 2 shows the experimental setup of an 8-bit optical comparator. The experimental
setup mainly consisted of two components: (A) a QPSK signal generator with optical gate and
(B) an optical comparator. The QPSK generator utilizes a tunable laser diode (TLD) (Santec, Tokyo,
Japan), pulse pattern generator (PPG) (Anritsu, Kanagawa, Japan), lithium-niobate Mach-Zehnder
modulator (LN-MZM) (Sumicem, Tokyo, Japan), and dual-parallel LN-MZM (Sumicem, Tokyo, Japan),
respectively. In the generator, a probe light at 1550 nm was generated from the TLD, and the probe
was QPSK modulated by using the dual-parallel LN-MZM and the PPG with a 29 − 1 pseudo random
binary sequence (PRBS) at 10.72 Gbaud. The QPSK signal was then return-to-zero (RZ) modulated
by the second LN-MZM driven by the PPG with a 10.72 GHz clock. The optical gate consisted of an
LN-MZM and a PPG. The generated QPSK RZ-signal was injected into the third LN-MZM, and four
successive QPSK symbols were selected from 29 − 1 PRBS by using the second PPG with a 400 ps gate
pulse. Then, the selected symbols were injected into the following optical comparator.
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Figure 2. Experimental setup of an optical comparator for 8-bit QPSK signal. In this figure,
the comparator comprises a serially cascaded two delay line interferometers (DLIs), whose FSRs
are 5 and 10 GHz, respectively. The comparator generates a coupled symbol from four QPSK symbols
with predetermined phase rotations. BPD: balanced photo detector; DP-LN-MZM: dual-parallel
lithium-niobate Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier; ODL: optical delay
line; OF: optical filter; OSC: oscilloscope; PC: polarization controller; PPG: pulse pattern generator; PS:
phase shifter; TLD: tunable laser diode; VOA: variable optical attenuator.
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The optical comparator comprised two serially cascaded DLIs. The first and second DLIs had 5 and
10 GHz of free spectrum ranges (FSRs), respectively. In the four QPSK symbols at 10 Gbaud, the first
and third symbols were optically overlapped in the 5 GHz DLI as well as the second and fourth symbols.
The overlapped first + third and second + fourth symbols were then overlapped in the following 10 GHz
DLI. As a result, the successive QPSK symbols were converted in parallel and optically coupled, and then
the coupled symbol was detected at a following balanced photo detector (BPD).

In this experiment, the author prepared four types of optical comparators to set the phase shifters
in each DLI. Each DLI had only one phase shifter on one side of delay line. The optical comparators
for “00 00 00 00”, “11 00 11 00”, “11 10 10 00”, and “00 10 01 00” code were arranged by utilizing
sets of the (0, 0, 0, 0), (π, 0, π, 0), (π, π/2, π/2, 0), and (0, π/2, 3π/2, 0) phase-shifts. In each DLI,
the phase shifter offered 0, π/2, π, and 3π/2 phase-shift amounts in the condition that the applied
voltage was set at 2.3, 2.8, 3.2, and 3.7 V for the 5 GHz DLI, and 0.6, 1.2, 1.8, and 2.4 V for the 10 GHz
DLI, respectively. Table 1 summarizes the applied voltage of the phase shifters in each DLI against the
four comparators.

Table 1. The applied voltages of phase shifters against four types of optical comparators.

Comparator Code
Applied Voltage in PS (V) Phase Shifts in Each Symbol

5GHz DLI 10GHz DLI 1st 2nd 3rd 4th

00 00 00 00 2.3 (=0) 0.6 (=0) 0 0 0 0
11 00 11 00 2.3 (=0) 1.8 (=π) π 0 π 0
11 10 10 00 2.8 (=π/2) 1.2 (=π/2) π π/2 π/2 0
00 10 01 00 2.8 (=π/2) 2.4 (=3π/2) 0 π/2 3π/2 0

4. Experimental Results

4.1. Fundamental Property

The author experimentally evaluated the fundamental properties of the optical comparator.
First, the impulse response was evaluated by using an optical short-pulse. The pulse was generated
by a mode-locked laser diode emitting at 1550 nm wavelength, which had a 9.2 ps full width at half
maximum (FWHM). Figure 3 shows an impulse response of the comparator: (a) input pulse and
(b) output pulse train. In this figure, the short pulse is separated into four parts through the two DLIs,
and the four pulses appear at equal intervals of time. A 93 ps time duration between first and second
pulses offered 10.72 GHz of FSR, and 199 ps (93 ps + 106 ps) time duration between first and third
pulses offered 5.03 GHz of FSR. �In
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Figure 3. Impulse response of the 8-bit optical comparator: (a) Input pulse; (b) Output of optical
comparator. In this figure, the impulse is separated into four parts, and four pulses are arranged at
uniform intervals. The time intervals in each pulse offered 5.03 and 10.72 GHz of FSR in each DLI.

Then, the transmission spectra were evaluated with an amplified spontaneous emission (ASE)
light. Figure 4 shows the transmission spectrum of the “00 00 00 00”, “11 00 11 00”, “11 10 10 00”, and
“00 10 01 00” comparators. In Figure 4a, as the “00 00 00 00” spectrum laterally shifted by 0.04 nm to a
long-wavelength side, it exactly overlapped the “11 00 11 00” spectrum. The wavelength difference of
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0.04 nm corresponds a half of a wavelength interval at 10 GHz (=0.08 nm/2), which is related to a π

phase difference at 10 GHz DLI between “00 00 00 00” and “11 00 11 00” comparators. Similarly, in
Figure 4b, the “11 10 10 00” spectrum exactly overlapped the “00 10 01 00” spectrum with a 0.04 nm
shift, which corresponds to a π phase amount between “11 10 10 00” and “00 10 01 00” comparators.
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Figure 4. Transmission spectra of the 8-bit optical comparator: (a) “00 00 00 00” and “11 00 11 00”
comparator. (b) “11 10 10 00” and “00 10 01 00” comparator. In these figures, the “00 00 00 00” and
“11 10 10 00” spectra exactly overlap the “11 00 11 00” and “00 10 01 00” spectra with 0.04 nm wavelength
shift, which correspond to a π phase different at 10 GHz DLI.

4.2. Optical Comparison Operation

The author experimentally demonstrated an 8-bit optical comparison operation to evaluate the
constellations obtained from the four comparators when several patterns of 8-bit code, consisting of
four QPSK symbols, were injected into the comparators. In this experiment, the author previously
evaluated the constellation of either the first + third or second + fourth symbols. Based on the situation,
the coupled symbols were detected by a BPD, which gave a difference vector of the signal between
the first + third and second + fourth symbols. Here, as we know the pattern of either the first + third
or second + fourth symbols, the other constellation can be estimated by using the difference vector.
Consequently, from the vector sum of the obtained first + third and second + fourth constellations, the
constellation for the given 8-bit code was achieved.

Figure 5 shows the obtained constellations of the “00 00 00 00” and “11 00 11 00” comparators.
In this case, twelve 8-bit codes were injected into the two comparators, whose patterns were “00 00 00
00”, “01 00 01 10”, “00 10 00 11”, “10 01 10 01”, “11 00 11 00”, “01 10 01 10”, “00 11 00 11”, “01 01 01
01”, “10 10 10 10”, “11 01 11 00”, “10 01 10 11”, and “11 11 11 11”, respectively. In the case of the “00 00
00 00” comparator, every pattern was divided into five classes in terms of its Hamming distance of
dH(00000000, c), where c is a given 8-bit code. The twelve 8-bit codes were classified as follows:

dH(00000000, c) = 0 : 00 00 00 00;
dH(00000000, c) = 3 : 01 00 01 10, 00 10 00 11;
dH(00000000, c) = 4 : 10 01 10 01, 11 00 11 00, 01 10 01 10, 00 11 00 11, 01 01 01 01, 10 10 10 10;
dH(00000000, c) = 5 : 11 01 11 00, 10 01 10 11;
dH(00000000, c) = 8 : 11 11 11 11.

As in Figure 5a, all Hamming distances were accurately equal to the distance from the
base-constellation in the complex plane. As an example, the “00 00 00 00” constellation corresponds to
the base constellation due to its design concept. Meanwhile, the two constellations of “01 00 01 10”
and “00 10 00 11”, whose Hamming distance is given by 3, were located 3-bit length away from the
base constellation. Furthermore, the “11 11 11 11” constellation was located at the farthest position.
The distance coincides with the Hamming distance of dH(00 00 00 00, 11 11 11 11) = 8.

Similarly, in Figure 5b, the “11 00 11 00” comparator generates the constellations to be located in
conformity with a Hamming distance based on the “11 00 11 00” code. In particular, the constellations
whose patterns are similar to “11 00 11 00” were located near the base constellation, in contrast,
the constellations having different patterns from “11 00 11 00” were located away from the base
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constellation. As an example, the “11 00 11 00” constellation, which is completely equal to the
comparator code, was at the base constellation: dH(11 00 11 00, 11 00 11 00) = 0. Additionally, the “00
11 00 11” constellation, which is completely different from the comparator code, was located at furthest
position in the complex plane: dH(11 00 11 00, 00 11 00 11) = 8.
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Figure 5. Constellations of the 8-bit optical comparator: (a) “00 00 00 00” comparator. (b) “11 00 11 00”
comparator. In these figures, all constellations are located in conformity with the Hamming distance
based on the comparator codes “00 00 00 00” and “11 00 11 00”, respectively. The inconsistent bits with
the comparator code are underlined in each comparator. �0 bit
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Figure 6. Constellations of the 8-bit optical comparator: (a) “11 10 10 00” comparator. (b) “00 10 01 00”
comparator. In these figures, all constellations are located in conformity with the Hamming distance
based on the comparator codes “11 10 10 00” and “00 10 01 00”, respectively. The inconsistent bits with
the comparator code are underlined in each comparator.

Figure 6 shows the constellations of the “11 10 10 00” and “00 10 01 00” comparators with eleven
8-bit codes of “00 00 01 01”, “10 10 00 00”, “00 01 01 01”, “10 10 00 10”, “10 01 10 11”, “11 11 10
10”, “10 11 10 10”, “01 01 11 11”, “01 01 01 11”, “01 11 11 11”, and “11 11 11 10”. In both cases, it is
shown that constellations similar to the comparator codes, which were “11 10 10 00” and “00 10 01
00”, were located at near the base constellation. Similarly, constellations different from the comparator
codes were located away from the base constellation. From the results above, all constellations were at
a position in conformity with the Hamming distance based on each comparator code: “11 10 10 00”
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and “00 10 01 00”. Therefore, it is shown that the author experimentally demonstrated the feasibility of
the optical comparison operation for 8-bit code at 10 Gbaud.

5. Discussion

The important findings in this study are: (1) the optical comparator designed for a “00 00 00 00”
code, which consists of a successive four QPSK symbols, yielded an optical symbol whose constellation
was located in conformity with a Hamming distance based on the “00 00 00 00” code. (2) Three
additional comparators were designed, whose code words were “11 00 11 00”, “11 10 10 00”, and “00
10 01 00”, and same results were obtained. Therefore, it is concluded that the proposed comparator can
be designed for an arbitrary 8-bit code, and it offers the comparison result based on the designed code.

Additionally, the author will discuss the feasibility from a point of a practical view: (i) high-order
modulation, (ii) code length, and (iii) nonlinear effects. According to the operating principles,
the comparator can be utilized for rotationally-symmetric modulations, such as 8-PSK and 16-PSK,
since all constellations in the modulations are allowed to exchange each position by phase shift.
Similarly, if it is assumed that the additional DLIs are further cascaded, the length of code word can be
expanded to an arbitrary bit length. Furthermore, by using an optical compensator for nonlinear effects,
it is considered that the comparator can minimize the effect of nonlinear phase noise. Considering the
points mentioned above, it is concluded that the proposed comparator can provide highly extensible
operation for actual communication systems.

Funding: This research was supported by The Asahi Glass Foundation and The Telecommunications
Advancement Foundation.

Acknowledgments: The author would like to thank Hiroyuki Uenohara of Tokyo Institute of Technology for
assistance with the experimental installation and helpful discussions.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

OOK On–Off Keying
PSK Phase-Shift Keying
QPSK Quadrature Phase-Shift Keying
DLI Delay Line Interferometer
TLD Tunable Laser Diode
PPG Pulse Pattern Generator
LN-MZI Lithium-Niobate Mach-Zehnder Modulator
PRBS Pseudo Random Binary Sequence
RZ Rreturn-to-Zero
FSR Free Spectrum Range
BPD Balanced Photo Detector
FWHM Full Width at Half Maximum
ASE Amplified Spontaneous Emission
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