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Featured Application: The proposed technique can be applied in different industrial applications
and it is expected to be applied to the End-of-Line (EoL) quality control of gearboxes production
lines and as a condition-monitoring tool for operational conditions of machines working in
variable speed condition as wind turbines or bearings of train and cars.

Abstract: This paper addresses the application of an image recognition technique for the detection
and diagnosis of ball bearing faults in rotating electrical machines (REMs). The conventional bearing
fault detection and diagnosis (BFDD) methods rely on extracting different features from either
waveforms or spectra of vibration signals to detect and diagnose bearing faults. In this paper, a novel
vibration-based BFDD via a probability plot (ProbPlot) image recognition technique under constant
and variable speed conditions is proposed. The proposed technique is based on the absolute value
principal component analysis (AVPCA), namely, ProbPlot via image recognition using the AVPCA
(ProbPlot via IR-AVPCA) technique. A comparison of the features (images) obtained: (1) directly in
the time domain from the original raw data of the vibration signals; (2) by capturing the Fast Fourier
Transformation (FFT) of the vibration signals; or (3) by generating the probability plot (ProbPlot)
of the vibration signals as proposed in this paper, is considered. A set of realistic bearing faults
(i.e., outer-race fault, inner-race fault, and balls fault) are experimentally considered to evaluate the
performance and effectiveness of the proposed ProbPlot via the IR-AVPCA method.

Keywords: bearing fault detection and diagnosis (BFDD); vibration signal; probability plot (ProbPlot);
image recognition; absolute value principal component analysis (AVPCA)

1. Introduction

Detecting and diagnosing the different faults in modern engineered systems is crucial to designing
a better condition monitoring strategy for preventing the degradation from early stage simple faults
into serious or even catastrophic system failures. In the fault detection and diagnosis (FDD) field,
two main groups of the applied approaches exist. Model-based FDD approaches [1] that are based on
developing a reference model or observer—using mathematics or physics law—are used to generate
residual vectors, which describe the system health state to detect and isolate faults if a deviation
from the expected values is observed. Those methods are very powerful FDD methods if an accurate
reference model/observer can be achieved, which is itself a nontrivial problem [2]. Further, both
output and input signals of the system are needed for modeling, in which the latter are not always
available, especially for a part of the system, e.g., the bearing inside the rotating electrical machines
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(REMs). Thus, the established analytical model is often unrealistic and not accurate enough to be
a reference due to the complexity of those modern engineered systems. Therefore, the data-driven
approaches, which are model-free techniques and often do not need real system input information,
but only a bunch of output data (historical data), are considered as alternative solutions to deal with
bearing fault detection and diagnosis (BFDD).

Different existing data-driven-based BFDD techniques use data acquisition equipment and
measurements, such as vibrations; chemical, temperature, and acoustic emissions; sound pressure;
stator current monitoring [3]; and rotor speed analysis [4]. In particular, recent surveys [5–8] indicate
a clear tendency toward the vibration monitoring of REMs. These methods usually require the
extraction of a set of features from the aforementioned raw signals in order to classify the bearing
faults [9]. For extracting useful features, usually the acquired signals are processed using Fourier
transform (FT) or its variants (i.e., fast FT (FFT), discrete FT (DFF)) [10], wavelet transform (WT) or its
variants (i.e., continuous WT (CWT), discrete WT (DWT), wavelet packet transform (WPT)) [11,12],
envelope analysis [13,14], or statistical methods (e.g., principal component analysis (PCA), linear
discriminant analysis (LDA)) [15–19]. Thus, the extracted features could be in time domain, frequency
domain, or time-frequency domain, which usually have physical meanings, or purely statistical
features, which usually do not have physical meanings [20,21]. However, these features are generally
in the form of a vector or scalar, for which they have some descriptions of the waveform in the time
domain and some parameters of the spectrum in the frequency domain, or just a statistical vector index.

Therefore, a single feature only describes one aspect of the vibration signals. Thus, many works
combine more than one feature to improve the performance of bearing fault detection and diagnosis
using different techniques to make full use of multi-features in time domain, frequency domain,
time-frequency domain, or the purely statistical domain [22,23]. However, combining multiple
features using fusion techniques may increase the complexity of the used methods, and mostly
the results cannot be interpreted, in addition to the appearance of key issues of feature extraction, i.e.,
the high dimensionality of feature space and the large number of features. Thus, a dimensionality
reduction technique and a single feature that can include rich information about the system’s health
conditions should be considered. Therefore, this paper uses an image, which is known as the
best way that includes rich information for the efficient recognition and classification of different
objects [24], and a modified PCA-based technique, which is one of the most used techniques for
dimensional reduction, for vibration-based BFDD under constant and variable speed conditions
(i.e., non-stationary conditions).

One has to consider the above-mentioned issues when using a single time domain, frequency
domain, or time-frequency domain feature that represents only some characteristics of the vibration
signals, or fusing multiples features that boost the processing method complexity, the dimensionality
of the feature space, and the number of the extracted features. In addition, some researchers used
contemporary methods (i.e., shallow learning or deep learning) as (or and) image-processing algorithm
to detect and diagnose bearing faults [25–28], which are different from using image recognition
methods [24], as proposed in this paper, which do not require a processing phase (less time-consuming).
This paper thus proposed a novel BFDD technique that uses the ProbPlot to generate features in the
form of images and then an image recognition technique based on the AVPCA [4], namely, the ProbPlot
via IR-AVPCA technique, to detect and diagnose the different bearing faults under constant and
variable speed conditions.

This paper novelty is about using for the first time the ProbPlot to generate the features (images)
directly from the raw vibration signals under different operating conditions (i.e., healthy and faulty) to
be the inputs for the AVPCA algorithm that is used as a shape recognition tool for detecting present of
faults (i.e., under bearing fault free (BFF) case) and diagnosing different bearing faults (i.e., outer-race
fault (ORF), inner-race fault (IRF), and ball bearing fault (BBF)). On the contrary, in the previous
paper [4], the authors developed the AVPCA algorithm and used it as a feature extraction and then
for classification to detect and diagnose the different bearing faults using only the rotor-speed signal.
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Furthermore, the PCA method was used for the condition monitoring systems (CMSs) [29–31] and for
bearing fault detection and diagnosis [4,17,32,33]. However, it was never used as an image recognition
tool to BFDD as proposed in this paper. It was only used as an image processing method as in [23],
but they used the FFT to create the images (the features) and the two-dimensional PCA to reduce
the dimensions, and then a minimum distance method was applied to classify the faults of bearings.
On the contrary, the proposed paper uses the ProbPlot to generate the features (images) and the
AVPCA algorithm for bearing fault detection and diagnosis, which has never been used before.

This paper is organized as follows. The proposed ProbPlot via IR-AVPCA technique for bearing
fault detection and diagnosis is described in Section 2. The experimental results of the vibration-based
ball bearing fault detection and diagnosis are presented in Section 3, and the conclusion is drawn in
Section 4.

2. The ProbPlot via IR-AVPCA Technique for Bearing Fault Detection and Diagnosis (BFDD)

The use of an image recognition technique in the field of BFDD requires only the generation of
the features as images to be the inputs (database) of this image recognition technique. Thus, no feature
extraction phase is needed; instead, only a feature (image) generation phase is required, which is less
complex than the former. Many possible choices exist for generating the vibration signal features in
the form of images to BFDD: (i) the features (images) can be obtained directly in time domain from the
original raw data of the vibration signals under the different bearing health conditions; (ii) they can be
obtained in frequency domain by, for example, capturing the FFT of the vibration signals as in [23]; and
(iii) or they can be obtained by generating the ProbPlot of the vibration signals as proposed for the first
time in this paper, which has the advantage of not needing computation or analysis compared, unlike
the FFT-based method. Further, contrary to the limitation of using the FFT to generate the features
(images) for BFDD, since it is only suitable under steady state conditions but not under nonstationary
conditions (i.e., variable speed, current, and/or torque), because the information about time will be
lost [34], the proposed ProbPlot-based method can deal with the nonstationary conditions, which are
more realistic work conditions, especially when dealing with bearings. A detailed description of the
proposed ProbPlot via IR-AVPCA technique to BFDD is given below.

2.1. ProbPlot of the Vibration Signals and Features Creation Tool

By definition, the probability plot [35] is a “graphical technique for assessing whether or not
a data set follows a given distribution, such as the normal or Weibull”; this paper considers the normal
probability plot due to its importance in many statistical applications [36]. The ProbPlot strategy
plots the vibration raw data according to a theoretical distribution (i.e., normal or Weibull) so that the
resulted points should be bordered and form a straight line. Any deviation from this bordered straight
line indicates a deviation from the current specified distribution, since the correlation coefficient (of the
ProbPlot) associated with the linear fit of the considered raw data is a measure of the fit itself. Thus,
using this merit, the different bearing fault can be detected and then diagnosed, in which the further
the ProbPlot results vary from the straight line, the greater the detection and the diagnosis of the
bearing faults that is achieved.

For generating the best features (images), the highest correlation coefficient must be chosen,
since it will generate the straightest probability plot. The features (images) created through the
ProbPlot will be formed by a vertical axis, which comprises ordered response values, and horizontal axis,
which comprises order statistic medians for the given distribution. These order statistic medians, Mei,
can be approximated by [37]:

Mei = f (Mui) (1)
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in which f is the percent point function for the desired distribution, which is the inverse of the
cumulative distribution function, and Mui are the uniform order statistic medians defined as [37]:

Mui = 1−Mui f or i = 1
Mui =

(i−0.3175)
(n+0.365) f or i = 2, 3, · · · , n− 1

Mui = 0.5(
1
n ) f or i = n

(2)

One advantage of the proposed ProbPlot-based features generation in the form of images
(as proposed in this paper) is that it is very easy; further, it is a straightforward method, and the
results can be directly interpreted.

In order to generate the features (images), both x-axis and y-axis are auto-scaled when capturing
the image so the only parameter of the image (feature) is the size in pixels. Then, all irrelevant
information, such the axis, the titles, labels, and so on, were eliminated, and the only pure ProbPlots of
the vibration signals were captured to form the features, as can be seen in Figure 1.
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Figure 1. Features creation using the probability plot (ProbPlot): (a) the raw data of the vibration signal
in the BFF case, (b) the ProbPlot of the vibration signal, and (c) the created feature (image of 100 dpi
(dots per inch).
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The flowchart of the ProbPlot-based features generation in Matlab is shown in Figure 2. Note that
m is the number of all possible faulty cases and the fault-free case, which are known as clusters.
In our application,

• m = 1 for the BFF cluster,
• m = 2 for the ORF cluster,
• m = 3 for the IRF cluster, and
• m = 4 for the BBF cluster.
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2.2. AVPCA-Base Image Recognition

PCA is a linear transformation commonly used for compressing redundant data and recently
successfully applied for image processing and classification [38]. In the following, a description of the
PCA-based image recognition and a fault recognition process followed by the AVPCA-based BFDD
will be given.

2.2.1. PCA to image recognition

PCA algorithm is a method that aims to best present the data by projection (in a least square
sense) for reducing the dimension and compressing the data. In image analysis, the PCA takes the 2-D
image and represents it as a 1-D image vector by liaising each row/column into a long vector. Thus,
the image vectors xi are defined as [39]:

xi = [σ1, · · · , σN ]
T ; i = 1 · · ·M (3)

in which M is the number of vectors that represent the sampled image, which are of size N, and σj’s
represents the pixel. Subtracting the mean image mi from each image vector, the mean centered ci of
the image is computed as:

ci = xi −mi (4)
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in which

mi =
1
M

M

∑
i=1

xi (5)

Maximizing the quantity in which

λi =
1
M

M

∑
n=1

(
vT

i Cn

)2
(6)

with the orthonormality constraint vT
i vk = δik allows the finding of a set of M orthogonal vectors vi’s,

which have the largest possible projection onto each of the ci’s. vi’s and λi’s are the eigenvectors and
eigenvalues, respectively, of the covariance matrix Wnxn that is defined as

W = CCT (7)

in which C is a matrix in which its columns are the vectors ci placed side by side.
In practice, it is not a suitable solution to find the vi and λi of the covariance matrix W. Thus,

in linear algebra, the calculation of the eigenvectors vi and eigenvalues λi is obtained by finding those
of the CTC matrix of size M × M, i.e., finding ei and µi, the eigenvectors and eigenvalues of CTC,
respectively, in which

CCTei = µiei (8)

If both sides of Equation 8 are multiplied by C: CCT(Cei) = µi(Cei), then, the first M − 1
eigenvectors vi and eigenvalues λi of matrix CCT correspond to Cei and µi, respectively. However,
first, the rank of the covariance matrix should not exceed M−1, and the eigenvectors Cei have to be
normalized to be equal to vi. Therefore, the computed eigenvectors will generate an orthonormal
basis of the subspace that allows the representation of the image and most of its data with a minimum
error. Usually, these computed eigenvectors range from the largest to the smallest following their
corresponding eigenvalues, in which the largest eigenvector (corresponding to the biggest eigenvalue)
reflects the greatest variance in the image and vice versa. It is found that the first 5% to 10% of the
dimensions usually contain 90% of the total variance. The facial image Ψ can be projected onto M’
(<<M) dimensions by calculating

Ψ = [p1 p2 · · · pM]T ; pi = eT
i ci (9)

in which pi is the ith coordinate of the facial image Ψ in the new space, which comes to be the principal
component. The vectors ei represent and are known as the eigenfaces. Fault presence recognition is
achieved by minimizing the error distance.

2.2.2. Fault Recognition

For fault recognition, the AVPCA [4] is used to project the ProbPlot features (images) generated
from the collected vibration signals under healthy and faulty conditions in both constant and
variable speed environments. First, it generates the training bases of the space (i.e., training vectors),
which correspond to the eigenvectors, which are ordered according to the largest variance of the
generated ProbPlot images, in which they are described by its eigenface coefficients called the weights.

In features (images) recognition, after generating the features and computing the eigenfaces,
different decisions can be achieved according to the desired target of the different applications.
Consequently, the recognition can be the obtaining of the labels of individuals, i.e., the identification
can be about deciding if the person has already been seen or not, i.e., the recognition of individuals;
finally, the task of the recognition can be about assigning a face or a fault to a certain class, which is
known as categorization.



Appl. Sci. 2018, 8, 1392 7 of 19

Only the task of categorization is considered in this paper, in which the features in the training set
are projected into the face space and stored in memory as AVPCA bases to form the training databases
that contain the Healthy base vector Hb

1 and the Faulty base matrix Fb
m−1. Once a new feature (image)

is presented as an unknown input to our system, it will be projected onto the face space and generate
the test database that contain the Data-test vector Tb

new. Then, our proposed algorithm computes
its error distance from all stored training databases. The smallest distance gives the desired class.
This information is used to detect the presence or absence of the fault and then diagnose the different
bearing faults (ORF, IRF, and BBF).

2.2.3. Absolute Value Principal Component Analysis (AVPCA) for Bearing Fault Detection
and Diagnosis

In this paper, to make the proposed vibration-based BFDD via image recognition more suitable
for online condition monitoring, we used AVPCA, which is an improved version of the classical
PCA but with no mathematical complications simply by taking the absolute value of the weights
to generate the bases, and the use of the sum of squared error (SSE) distances [4]. Furthermore,
the probability plot parameters (the intercept and slope) will vary with the presence of the different
bearing faults, but differently. Since the effect of the presence of the bearing faults causes variations of
the faulty parameters that comprise particular information related to the fault itself, the considered
AVPCA algorithm will extract a number of characteristic vectors from these features (images) that
are mutually orthogonal. To apply the AVPCA method for the online BFDD, the study is divided
into two procedures: (1) a data acquisition and features & eigenfaces generation procedure and (2)
an online fault detection and diagnosis procedure. Hence, the collected vibration signal data set is
divided into two parts: training data (known data) and testing data (unknown data). The training
data are regarded as the historic data and are used to build the training database—i.e., the healthy
base vector Hb

1 and the faulty base matrix Fb
m−1—whereas the testing data are used to generate the

data-test base vector Tb
new and then to verify the performance of the proposed ProbPlot via IR-AVPCA

technique for bearing fault detection and diagnosis.
The overall bearing fault detection and diagnosis-based ProbPlot via IR-AVPCA technique

flowchart is summarized in Figure 3.
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3. Experimental Results of the Proposed ProbPlot via IR-AVPCA Vibration-Based Ball Bearing
Fault Detection and Diagnosis

In order to evaluate the performances of the proposed ProbPlot via IR-AVPCA algorithm for
bearing fault detection and diagnosis, an experimental setup with a 750W BLDC motor powered by
a TMC-7 BLDC motor driver (TM Tech Co., Ltd., Gyeonggi-do, 27-11, South Korea) for vibration-based
bearing fault detection and diagnosis was conducted, as shown in Figure 4.
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Figure 4. The experimental setup: (a) test-bench and (b) data-acquisition equipment.

Two accelerometer sensors (model: 352C33 PCB) (PCB Piezotronics, Inc., International
Distributors, Gyeonggi-do, South Korea.) were used to gather the vibration signals; the first was set up
on the top of the BLDC motor to be a reference, and the second was installed above the tested bearing
(NSK 6204 with eight balls type) (see Figure 5). The different bearing faults, i.e., ORF, IRF, and BBF,
were artificially created by drilling axially a 1 mm hole through the outer-race, the inner-race, and the
ball, respectively.
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Figure 5. Schematic diagram of experimental setup.

A constant load torque was added to the experimental test-bench by attaching a flywheel just
before the tested bearing. NI cDAQ-9178 8-slot USB chassis was used to acquire the required vibration
signals with the use of the NI9234 module. A 17.06 kHz sampling frequency was considered for
sampling and Matlab R2012a was considered for processing.

Two different environments were considered: a constant speed environment and a variable
speed environment.

First, a constant motor speed of wr = 2500 rpm was considered while the vibration-based bearing
fault detection and diagnosis algorithm was running, see Figure 6.
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Figure 6. Constant speed environment, wr = 2500 rpm.

Second, a variable motor speed of wr ε [1600, 2400] rpm was considered while the vibration-based
bearing fault detection and diagnosis algorithm was running, see Figure 7.
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Figure 7. Variable speed environment, wr ∈ [1600, 2400] rpm.

The used dataset description is shown in Table 1.

Table 1. Description of the used dataset.

Data Type Label (m)
Number of Samples

Constant Speed Environment Variable Speed Environment

BFF 1 17,060 1,024,000
ORF 2 17,060 1,024,000
IRF 3 17,060 1,024,000
BBF 4 17,060 1,024,000

3.1. ProbPlot via IR-AVPCA to Online Fault Detection and Diagnosis Under Constant Speed

After getting all ProbPlot of the raw vibration data signal for each case, the m features (in which
m = 1, 2, 3, 4) were generated in Matlab as an image of 100 dpi (dots per inch) and of 800 × 600 pixels.
Then, each feature was projected to the AVPCA subspace to generate the training databases that
contain the healthy base vector and the faulty base matrix. The training databases and the generated
eigenfaces for each operating health condition can be seen in Figure 8a,b, respectively.

The raw vibration data signal acquired from accelerometer #1 (located on the top of the BLDC
motor as shown in Figure 5) and its ProbPlot under constant speed environment are given in Figure 9,
whereas the raw vibration data signals acquired from accelerometer #2 (located on the tested bearing
housing as shown in Figure 5), its ProbPlot in bearing fault free (BFF) case and the different bearing
fault cases (ORF, IRF, and BBF), and its ProbPlots under constant speed environment are shown in
Figures 10–13, respectively. It should be noted that in Figure 9, the ProbPlot of the vibration signal
collected from accelerometer #1 shows a very straight line following the normal order statistic medians.
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This implies that the considered experimental bearing faults were very small, in which their impact
could not affect the vibration signals collected from above the BLDC motor.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 19 
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3.2. ProbPlot via IR-AVPCA to Online Fault Detection and Diagnosis Under Variable Speed

The m features were also generated in Matlab as an image of 100 dpi and of 800× 600 pixels. Then,
each feature was projected to the AVPCA subspace to generate the training databases that contain the
healthy base vector and the faulty base matrix. The training databases and the generated eigenfaces
for each four faulty cases under the variable speed condition can be seen in Figure 14a,b, respectively.

As for the constant speed environment, the vibration signal that was collected from the
accelerometer #1 & #2, which was gathered on the four different operating health conditions (BFF,
ORF, IRF, and BBF), and the reference one that was located on the top of the BLDC motor under the
variable speed environment that was varying between 1600 rpm and 2400 rpm for 60 s under 17.06 kHz
sampling rate with its ProbPlot for each, are shown in Figures 15–19. Figure 15 again clarifies the
conclusion drawn from Figure 9 and shows clearly that the considered experimental bearing faults are
early bearing fault scenarios. However, the ProbPlot in Figure 15 shows more deviation in the normal
order statistic medians than the one in Figure 9. These results come from the effect of the variable
speed condition considered in the second environment.
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Figure 19. Raw vibration data signal from accelerometer #2 and its ProbPlot in ball bearing fault (BBF)
case under variable speed environment.

After projection to the AVPCA subspace, the dimension was reduced to one dimension, as can
be seen in Figure 20, in which the SCREE [40] plot indicates that the number of retained principal
components (PCs) can be chosen as one (p = 1). Using the cumulative percent of variance (CPV) criteria
defined as, respectively,

CPV(p) = 100·
p

∑
i=1

λi

∑n
i=1 λi

(10)

indicates that for p = 1, the CPV = 99.76%, which means that by only considering the one-space (the
1st eigenvector that corresponds to the largest eigenvalue), we could reach only 99.76% of precision.
Thus, to reach at least a 99.95% precision, the number of retained PCs is fixed at six (p = 6), as shown in
Table 2.

A comparison between the features (images) that are obtained: (1) directly in the time domain
from the original raw data of the vibration signals; (2) by capturing the Fast Fourier Transformation
(FFT) of the vibration signals as in [23]; and (3) by generating the ProbPlot of the vibration signals as
proposed in this paper, is considered to demonstrate the performance and effectiveness of the proposed
ProbPlot via IR-AVPCA method at online bearing fault detection and diagnosis. Furthermore, both
classical PCA and AVPCA are used and compared in terms of bearing faults classification success rate.
It should be noted that for the second working conditions (i.e., nonstationary conditions under variable
speed environment), the proposed algorithm is compared only to the first case (i.e., when directly
generating the features (images) from the raw vibration data), since the FFT is not convenient under
those operating conditions in which the needed bearing fault information that changes over time will
be lost.
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Table 2. CPV precision of the eigenvalues.

PC Number 1 2 3 4 5 6

Eigenvalues 11.4 × 109 4.63 × 10−3 3.49 × 10−4 8.04 × 10−5 4.51 × 10−6 3.67 × 10−6

CPV (%) 99.76 99.83 99.87 99.91 99.94 99.96

The summary of the online bearing fault detection and diagnosis (BFDD) for the different features
(images) generation methods and its success-rate with both classical PCA and AVPCA under both
constant and variable speed environments is given in Table 3.

Table 3. Summary of proposed ProbPlot via IR-AVPCA-based BFDD efficiency for the different features
(images) generation methods using PCA and AVPCA algorithms under both constant and variable
speed environments.

Constant Speed Variable Speed

Task Fault
Detection

Fault Diagnosis Fault
Detection

Fault Diagnosis
Method

Su
cc

es
s

ra
te

(%
) C

la
ss

ic
al

PC
A

Features (images) are
obtained from the raw
vibration data signal

BFF ORF IRF BBF BFF ORF IRF BBF

68
68 62.67 60

49.33
40 38.67 34.67

Average: 63.56 Average: 37.78

Features are captured
after the FFT of the

vibration signal

BFF ORF IRF BBF BFF ORF IRF BBF

86.67
82.67 78.67 80 - - - -

Average: 80.44 Average: -

Features are generated
using the proposed
ProbPlot technique

BFF ORF IRF BBF BFF ORF IRF BBF

89.33
85.33 85.33 82.67

81.33
77.33 78.67 72

Average: 84.43 Average: 76

A
V

PC
A

Features (images) are
obtained from the raw
vibration data signal

BFF ORF IRF BBF BFF ORF IRF BBF

78.67
78.67 76 76

68
72 62.67 65.33

Average: 76.89 Average: 66.67

Features are captured
after the FFT of the

vibration signal

BFF ORF IRF BBF BFF ORF IRF BBF

97.33
98.67 96 94.67 - - - -

Average: 96.44 Average: -

Features are generated
using the proposed
ProbPlot technique

BFF ORF IRF BBF BFF ORF IRF BBF

100
100 97.33 97.33

98.67
96 98.67 92

Average: 98.22 Average: 95.56

3.3. Discussion

3.3.1. Under Constant Speed Environment

Table 3 shows that the AVPCA could detect the different bearing faults with a 78.67%, 97.33%,
and 100% success rate (i.e., fault detection rate) for the features (images) generating method using the
raw vibration signal, the generating method after capturing the FFT of the vibration signal, and the
generating method using the proposed ProbPlot technique, respectively. However, the classical PCA
could detect the different bearing faults with only a 68%, 86.67%, and 89.33% success rate, respectively.
A similar result was obtained for the fault diagnosis; the average success rates with the AVPCA
were 76.89%, 96.44%, and 98.22%, and with the classical PCA they were 63.56%, 80.44%, and 84.43%,
respectively. Thus, using the AVPCA improves both fault detection and diagnosis capability.

Furthermore, these results show clearly the advantage of generating the features (images) using
the proposed ProbPlot technique (100% success rate for fault detection and 98.22% success rate for
fault diagnosis) compared to the FFT of the vibration signal (97.33% success rate for fault detection and
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96.44% success rate for fault diagnosis) or directly considering the image of the raw vibration signal
(78.67% success rate for fault detection and 76.89% success rate for fault diagnosis).

3.3.2. Under Variable Speed Environment

Under variable speed environment, which is a more challenging though more realistic situation,
the AVPCA was capable of detecting the bearing fault with 68% and 98.67% success rate for the
different features generating methods (image of raw vibration data, signal, and image of the ProbPlot
of the vibration signal), respectively, and could diagnose those detected fault with a 66.67% and 95.56%
average success rate. In contrast, the classical PCA did detect the bearing fault with only a 49.33%
and 81.33% success rate, respectively, for the two features generating methods and did diagnose the
detected faults with only 37.78% and 76% average success rate, respectively.

Furthermore, these results show clearly the advantage of generating the features (images) using
the proposed ProbPlot technique (98.67% success rate for fault detection and 95.56% average success
rate for fault diagnosis) compared to directly considering the image of the raw vibration signal (68%
success rate for fault detection and 66.67% average success rate for fault diagnosis) under variable
speed environment.

In addition, the proposed ProbPlot technique is more suitable for online bearing fault detection
and diagnosis and for being adapted to real industrial applications, since it does not require any
computation or space compared to the use of the FFT of the vibration signals, and since it can detect
and diagnose the different bearing faults under nonstationary conditions, unlike the FFT.

4. Conclusions

In this paper, a novel image recognition technique for bearing fault detection and diagnosis,
the ProbPlot via IR-AVPCA, was proposed. The generated features (images) of the vibration signals
were simply obtained by plotting the probability plot (ProbPlot) of the vibration signal. Using the
AVPCA, the eigenfaces were extracted, and the bases were generated. Then, a notion of the total sum
square error (SSE) distances and its minimum was used to detect and diagnose the three different
bearing faults (outer-race fault (ORF), inner-race fault (IRF), and ball fault (BBF)).

The proposed algorithm was examined under constant and variable speed environments. A set
of experiments with artificially introduced faults was considered, and its results showed that the
proposed ProbPlot via IR-AVPCA technique was the best method in terms of detecting and diagnosing
the bearing faults for both constant speed and variable speed environments. Further, since it does not
require any computation or space compared to the use of the FFT of the vibration signals, the proposed
technique will be more suitable for the online bearing fault detection and diagnosis and for being
adapted to real industrial applications, especially since it can deal with the BFDD under nonstationary
conditions, unlike the FFT, which cannot.

For future work, the proposed ProbPlot via IR-AVPCA technique will be further investigated for
gearbox fault detection and diagnosis and then for bearing fault prognosis.
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