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Featured Application: An improved analytical algorithm has been successfully applied in shape
finding during design and configuration control during construction of main cable system for
suspension bridges.

Abstract: This paper develops an improved analytical algorithm on the main cable system of
suspension bridge. A catenary cable element is presented for the nonlinear analysis on main cable
system that is subjected to static loadings. The tangent stiffness matrix and internal force vector of the
element are derived explicitly based on the exact analytical expressions of elastic catenary. Self-weight
of the cables can be directly considered without any approximations. The effect of pre-tension of
cable is also included in the element formulation. A search algorithm with the penalty factor is
introduced to identify the initial components for convergence with high precision and fast speed.
Numerical examples are presented and discussed to illustrate the accuracy and efficiency of the
proposed analytical algorithm.

Keywords: suspension bridge; main cable system; catenary cable element; search algorithm;
penalty factor

1. Introduction

Cable-supported structures, such as suspension bridges, have been recognized as the most appealing
structures due to their aesthetic appearance as well as the structural advantages of cables [1–4]. It is
well known that cables cannot behave as structural members until large tensioning forces are induced,
such as pre-stressed cable in structures [5]. Therefore, in order to design a cable-supported structure
economically and efficiently, it is extremely important to determine the optimized initial cable tensions or
unstrained lengths.

Generally, designers cannot determine the initial shape arbitrarily when the cable structures are
considered. The initial shape is determined while satisfying the equilibrium condition between dead
loads and internal member forces, including cable tensions in the preliminary design stage because
cable members display strongly geometric nonlinear behavior as well as the configuration of a cable
system cannot be defined in stress-free state. The process determining the initial state of cable structures
is referred to as “shape finding ”, “form finding ”, or“ Initial shape or initial configuration” [6–11].

Until now, nonlinear analysis procedures have been developed for shape finding problems of
cable bridges: the trial-and-error method [12], the initial force method [10,13], the analytical and

Appl. Sci. 2018, 8, 1358 ; doi:10.3390/app8081358 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/8/8/1358 ?type=check_update&version=1
http://dx.doi.org/10.3390/app8081358 
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 1358 2 of 15

iteration method [14,15], the target configuration under dead loads (TCUD) related methods [9],
the optimization method [16,17], and the combined method [18].

Above mentioned various form-finding approaches are generally into three categories: (1) the
simplified approach; (2) the Finite Element (FE)-based approach; and (3) the analytical method.

The simplified method assumes that the load acts uniformly along the span of the main cable,
which follows a parabolic shape [2,17,19]. To account for a cable’s sag effect, Ernst proposed the
equivalent modulus of elasticity for a parabolic cable [20]. The simplicity of Ernst’s formula has made
it widely used not only in the research field, but also for the practical designs of suspension bridges.
Owing to its simplicity, this approach has been adopted by several investigators [21–23], and has been
proved to be sufficient for some cases. Namely, when a cable has relatively high stress and small
length, the Ernst equivalent modulus approach could achieve a good result. However, the parabolic
approximation becomes inaccurate for cables with a large sag-to-span ratio (>1/8), which experience
self-weight along the length of the cable and concentrated forces from the hangers.

To improve the accuracy and facilitate nonlinear analyses of suspension bridges, various FE-based
approaches have been developed. In these approaches, most of the finite element packages are still
lack of suitable cable elements. A sagging cable is often simulated as two-node element, multi-node
element, and curved element with rotational degrees of freedom [24–26]. The two-node element is
only suitable for modeling the cables with high pretension and small length [27,28], and equivalent
modulus are used to account for the sag effect. For cables with large sag, a series of straight elements
is used to model the curved geometry of cables. The multi-node element is based on the higher
order polynomials for the interpolation functions [29,30]. The tangent stiffness matrix and nodal force
vector are obtained while using the iso-parametric formulation. These elements give accurate results
for cables with small sag. For cable element with large sag, it is necessary to use a large number of
elements to model the curved geometry of cable. Therefore, it causes computational costs.

These FE-based approaches identify the target configuration of main cable via updating nodal
positions and internal tension of cable elements based on nonlinear structural analysis. However, these
FE-based approaches elevate the computational effort, and their convergence depends to a large extent
on the assumed initial cable configuration and forces.

The alternative approach is based on exact analytical expressions for the elastic catenary, since the
equilibrium configuration of a hanging cable is a catenary in nature. This method was originally
proposed by O’Brien and Francis [31] and was later extensively developed [32–36]. In particular, there
are various catenary-type analytical elements available, which can be used to model large sag cables in
suspension bridges:

(1) Inextensible catenary elements: The cable elements adopted are infinitely stiff in the axial direction
and cannot experience any increment of length. In practice, computer applications that are based
on this type of element encounter severe difficulties, solving procedures tend to experience large
numerical instability, causing a very difficult or even impossible convergence.

(2) Elastic catenary elements: An elastic catenary curve is defined as the curve formed by a perfectly
elastic cable, which obeys Hooke’s law and has negligible resistance to bending, when being suspended
from its ends and subjected to gravity. It should be noted that the conventional formulations are based
on the hypothesis of small deformations, meaning that the forces are integrated with respect to the
initial configuration of the catenary. Hence, the weight per unit length does not vary consistently
with the elongation of the catenary. This may result in an inaccurate equilibrium of forces in the
deformed configuration.

The main advantages of the catenary-type cable elements are the reduction of degrees of freedom,
the simplicity of finding the dead load geometry of the cable system, the exact treatment of cable sag,
the exact treatment of cable weight as it is included in the equations used for element formulation,
and the simplicity of including the effect of pre-tension of the cable by simply giving the unstressed
cable length. However, the cable segment equation is unsolvable when the initial three components
are not set properly because of the so-called initial value sensitivity.
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The purpose of this paper is to develop a catenary cable element for the nonlinear analysis of
cable structures that are subjected to static loadings. Firstly, the tangent stiffness matrix and internal
force vector of the element are derived explicitly based on the exact analytical expressions of elastic
catenary. Self-weight of the cables can be directly considered without any approximations. The effect
of pre-tension of cable is also included in the element formulation. Then, a search algorithm with the
penalty factor is introduced to satisfy the convergence requirement with high precision and fast speed.
Finally, numerical examples are presented and discussed to illustrate the accuracy and efficiency of the
proposed analytical algorithm.

2. Segmental Catenary Theory of Main Cable

To accurately simulate the realistic behavior of main cables, the catenary element exactly
considering the effects of cable sags, cable self-weight, and cable pretension is used.

2.1. Basic Equations

An elastic catenary cable element has been derived from the exact solution of the elastic catenary
cable equation, deformed due to its self-weight [32,33]. It can be formulated in three dimensional
coordinates, but only two-dimensional formulation is described in this study.

Consider a cable segment suspended between points i(xi, yi) and j(xj, yj), as shown in Figure 1.
It is assumed that the cable:

(1) is perfectly flexible and can sustain only tensile forces;
(2) is composed of a homogeneous material which is linearly elastic;
(3) is subjected to a uniform distributed load q along the cable length; and,
(4) the tensile stiffness of the cable is calculated using the cross-section before deformation.
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The relative distances between two nodes (i, j) along the global x, y axis, are denoted as l (l = xj
− xi) and h (h = yj − yi), respectively, in Figure 1, which can be expressed as a function of the global
nodal force Hi and Vi at the node i as:

l = −Hi·S0

EA
− Hi

q

{
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(
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√

H2
i + V2

i

)
− ln

(
Vi − S0·q +

√
H2

i + (Vi − S0·q)2
)}

(1)
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q·S2

0 − 2Vi·S0

2EA
− 1

q

[√
H2

i + V2
i −

√
H2

i + (Vi − S0·q)2
]

(2)
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The force equilibriums of the elastic catenary cable require that:
−Hi = Hj = H
Vj = −Vi + S0q

Ti =
√

H2
i + V2

i

Tj =
√

H2
j + V2

j

(3)

Equations (1) and (2) are defined as the basic equations for segmental catenary cable, showing the
relation between the segmental forces and geometric parameters. Generally, the main cable is divided
into several segments (number N), each segment establishes two basic equations, in total 2 times of N
equations are obtained for the whole main cable system. In Equations (1)–(3), E is the elastic modulus;
A is the cross sectional area, q is the self-weight of the unstressed main cable; l represents the span
length of the cable segment, h represents the elevation difference of two ends, and S0 represents the
unstressed length of cable segment; Ti, Tj are the cable tension at the left (i) and right (j) ends of the
cable segment, respectively; Hi and Hj are the horizontal component of cable tension at the left (i) and
right (j) ends of the cable segment, respectively; and, Vi and Vj are the vertical component of cable
tension of the left(i) and right (j) ends of the cable segment, respectively.

From Equations (1) and (2), it can be found that for a cable segment with determined S0, H,
and Vi, the length l, and high difference h can be easily obtained; similarly, for a cable segment with
determined S0, l, and h, the internal forces H and V can be easily solved. Thus, only three independent
variables exist in these five variables (S0, H, Vi, l and h).

2.2. Stiffness Formulation

Following describe the procedure of stiffness formulation of the elastic catenary cable element.
Considering q, S0, EA as constants, partial differentiation of both sides of Equations (1) and (2) yield
the following incremental relationships between the relative nodal displacements and nodal forces.{

dH
dV

}
= [K]

{
dx
dy

}
(4)

[K] =

[
K11 K12

K11 K22

]
= [B]−1 (5)

[B] =

[
i

∑
m=1

b

]
=


i

∑
m=1

b11
i

∑
m=1

b12

i
∑

m=1
b21

i
∑

m=1
b22

 (6)

{
dH = dH(k)

i = dH(k−1)
i = dHL

dV = dV(k)
i = dV(k−1)

i = dVL
(7)

b11 =
∂l

∂Hi
= −

(
S0

EA
+

1
q

ln
Tj + Vj

Ti −Vi

)
−

H2
i

q

[
1

Tj
(
Tj + Vj

) − 1
Ti(Ti −Vi)

]
(8)

b12 = b21 = −Hi
q

[
1
Tj
− 1

Ti

]
(9)

b22 = − S0

EA
− 1

q

[
Vj

Tj
+

Vi
Ti

]
(10)

where: [K] is the stiffness matrix due to cable shape change from end point (e.g., left end) to segment
point i; if the segment point i become the other end point (e.g., right end), [K] is the stiffness matrix of
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the main cable for the whole span; dx, dy are the cumulative amount of change in span and elevation
respectively from end point to segment point i; and, dHi

(k), dVi
(k) are the increment horizontal and

vertical component of cable force at segment i, respectively.

2.3. General Solution Procedure

The tangent stiffness matrix and internal force vector of cable element are determined while using
an iterative procedure. This procedure requires the initial values of end forces (H, V). The iterative
procedure for obtaining tangent stiffness matrix and internal force vector of cable element is briefly
presented, as follows:

(1) input q, E, A, S0, nodes I (xi, yi) and J (xj, yj);

(2) calculate l0 = xj − xi, h0 = yj − yi;

(3) initialize end forces (H, V);
(4) update (l, h) using Equations (1) and (2);
(5) calculate incompatibility vector of relative distances ds = {dl dh}T;
(6) if ds is smaller than the permissible tolerances, calculate [K] using Equation (5) and internal forces

using Equation (3), otherwise continue to next step;
(7) calculate the correction vector of end forces {dH, dV}using Equation (4);
(8) update the end forces Hi+1 = Hi + dH, Vi+1 = Vi + dV and go to Step (4).

2.4. No Solution Cases for Cable Segment Equation

The solution to the governing equation requires the Newton-Raphson type iteration while using
initial trials of the force vector of the left node in the first cable element. However, the convergence
of the gradient-based Newton-Raphson approach strongly depends on the initial value, and the
estimation of initial value remains a challenge.

Generally, there are two states for numerical analysis of main cable system: one is the main cable
system at finished state for the whole bridge; the other is at construction state, only the main cable
installation is finished [37]. The tension force at one end need to be assumed (or determined) for
the main cable system calculation, the coordinates are iterated with convergence conditions. At the
finished state, the tension force at one end and the horizontal distance between two ends are given,
the unstressed cable length and the elevation between two end points can be solved, that is, l, Hi, Vi are
known, to solve S0, h. If the end tension force is assumed unreasonably, then there will be no solution
for Equations (1) and (2).

To solve unstressed length S0, Equation (1) is rewritten as:

f (S0) = −
Hi·S0

EA
− Hi

q

{
ln(Vi +

√
H2

i + V2
i )− ln(Vi − S0·q +

√
H2

i + (Vi − S0·q)2
}
− l (11)

Suppose that l, Hi, EA are constants, and EA > 0, q > 0, 0 < S0 < 5000 m (the length of main cable for
single-span suspension bridge is currently less than 5000 m), there will be no solution for Equation (1)
in the following three conditions:

Condition 1. When Vi is positive and the absolute value of Vi is large enough, l and Hi have the same sign,
there will be no solution for Equation (1). It can be proved, as follows:

f (S0) = −Hi ·S0
EA −

Hi
q ln

1+

√
H2

i
V2

i
+1

1− S0 ·q
Vi

+

√
H2

i
V2

i
+

(Vi−S0 ·q)
2

V2
i

− l ≈ −Hi ·S0
EA −

Hi
q ln 1− l = −Hi ·S0

EA − l 6= 0 (12)
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Condition 2. When Vi is negative and the absolute value of Vi is large enough, l and Hi have the same sign,
there will be no solution for Equation (1). It can be proved, as follows:

f (S0) = −Hi ·S0
EA −

Hi
q ln

1−
√

H2
i

V2
i
+1

1− S0 ·q
Vi
− Vi−S0 ·q

Vi

√
1+

H2
i

(Vi−S0 ·q)
2

− l

≈ −Hi ·S0
EA −

Hi
q ln

1−
(

1+ 1
2

H2
i

V2
i

)
1− S0 ·q

Vi
−
(

1− S0 ·q
Vi

)[
1+ 1

2
H2

i
(Vi−S0 ·q)

2

] − l ≈ −Hi ·S0
EA − l 6= 0

(13)

Condition 3. When the absolute value of Vi is small enough, l and Hi have the same sign, Equation (14) is
obtained from Equation (11), there will be no solution for Equation (1), It can be proved, as follows:

f (S0) = −Hi

 S0

EA
+

1
q

ln
|Hi|√

H2
i + (S0·q)2 − S0·q

− l < −Hi
S0

EA
− l 6= 0 (14)

3. Improved Numerical Analysis Method

In order to solve the problem that no solution for basic equations since tension force at one end of
the cable was assumed unreasonable, an improved numerical analysis method is proposed though
searching the reasonable initial tension force at one end of the cable.

Main cable system calculation in the main span and side span can be divided into two cases: one is
that the theoretical vertex position is known; the other is that the saddle position is known. In the first
case, the tangent point position between saddle and main cable need not to be corrected, while in the
second case, the tangent point position between saddle and main cable need to be corrected. The first
case is the special case of the second case [37].

When theoretical vertex position and saddle position are known, the calculation of main cable
system in main span can adopt two iterative methods: one is the specified point elevation (or
un-stressed cable length) iterates step by step, the other is the specified point elevation (or un-stressed
cable length) iterates once [31]. However, the calculation of main cable system in side span generally
adopts the method that the un-stressed cable length is iterated once.

3.1. The Main Cable System Calculation in Main Span at Finished State

The stiffness due to cable shape change, as mentioned in Section 2.2, should be determined first,
when the iterative method was used to calculate the designated point elevation (or un-stressed cable
length) for main cable system in main span.

3.1.1. Determination of Cable Force Adjustment at Start Point

Equation (4) is obtained while ignoring the higher order terms of the Taylor series, which is
an approximate expression. Due to strong nonlinear of suspension cable, the iterative methods for
determining horizontal and vertical component of cable force adjustment at start point by Equation (4)
sometimes fail to converge. Therefore, we need to revise the adjustment amount as the following
Equation (15): {

HL = HL0 + α·dH
VL = VL0 + α·dV

(15)

where, HL0, VL0 are the initial value of horizontal and vertical component of cable force at left start
end, respectively; α is called penalty factor (or Newton-Downhill factor) in the range from 0 to 1.
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Obviously, if the horizontal and vertical component of initial cable force adjustment amount are
much less than the value before adjustment, which means that the non-linear property of the cable
force adjustment process is not strong, then α = 1; otherwise, α should be chosen between 0.1 and 1.
Thus, the iteration can converge with high efficiency. The value of α is determined based on the above
principle, and calculated, as follows: α = 0.1

√
H2

L0+V2
L0√

(dH)2+(dV)2 ; i f |dH| > 0.1|HL0| or |dV| > 0.1|VL0|

α = 1; i f |dH| ≤ 0.1|HL0| and |dV| ≤ 0.1|VL0|
(16)

3.1.2. Improved Numerical Analysis Method and Its Iteration Steps

The main cable system calculation in main span under the condition that theoretical vertex
position is known using step by step iteration method is illustrated as an example, and the iteration
steps are shown in the following:

Step 1 All vertical loads in main span were simplified as uniform distributed load along the span,
and the internal forces at both support ends H1(1:2), V1(1:2) were calculated using traditional
parabola theory (actually only the internal force at start point is needed).

Step 2 The start end forces H1(1:2), V1(1:2) were regarded as the reference value H(1:2), V(1:2) of
initial iterated internal forces.

Step 3 Input H(1:2), V(1:2) into iterative equations, and determine whether the iterative equations
were solvable or not, and set initial value to sign IBZ, IBZ⇐ 1 (Note: IBZ = 1, solvable; IBZ = 0,
unsolvable).

Step 4 J2⇐ 1 (J2 is the modification times of iterated initial internal force when there is no solution
for iterative equations)

Step 5 If IBZ = 0, obtain correction factor according to J2, modify the overall level of initial iterated
internal forces (this algorithm called search algorithm, which searching a suitable internal
force at start point by changing J2 to make the iterative equation solvable), namely:

J2⇐ J2 + 1;

C3⇐ 1 + (−1)[J2−int( J2
2 )×2+1] × int

(
J2 + 1

2

)
× 0.05;

H(1 : 2)⇐ C3× H1(1 : 2);

V(1 : 2)⇐ C3×V1(1 : 2);

If IBZ = 1, go to Step 6.
Step 6 On the basis of Step 5 or Step 2, we determine the initial iteration horizontal force multiplier

(KK) at start point, and get the elevation error at different points. Then, find suitable initial
horizontal force iteration multiplier, and obtain the internal force and deformation in the main
span by secant method, go to Step 7. If there is no solution, then IBZ = 0, go to Step 5 (i.e.,
correcting overall level of initial iterated internal forces). The details of step 6 are shown in the
following:

Step 6.1 Set initial iteration horizontal force, vertical force at start point:

H0(1)⇐ KK × H(1),V 0(1)⇐ V (1) or H0(2)⇐ KK × H(2), V 0(2)⇐ V (2)

Step 6.2 J3⇐ 1 (set initial value of iterative times J3 based on Step 6.1).
Step 6.3 Calculate internal forces from left to right point (or right to left point) in the follows:
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(1) According to the internal forces (horizontal and vertical components) at
one end and the horizontal distance between two ends of a cable segment k
(k = 1, 2, . . . , n), the unstressed cable length S0(k) and the elevation difference
∆hk between two ends were calculated by Equations (1) and (2). If there is
no solution, then IBZ⇐ 0, go to Step 5. Otherwise, IBZ⇐ 1, calculate the
coordinates yk, horizontal and vertical component Hj

(k), Vj
(k) of the cable

segment at right point k, respectively.
(2) Calculate the internal force (Hi

(k+1), Vi
(k+1)) at left point (i) of cable segment

k + 1 using equilibrium condition.

Step 6.4 J3⇐ J3 + 1.
Step 6.5 Based on the elevation Y1 at start point and the elevation difference ∆hk of each

cable segment (k = 1, 2, . . . , n − 1), the elevation Yn at end point and the elevation
error ∆n ⇐ Yn − YR(YR is the actual elevation at end point) were determined.

Step 6.6 If |∆n| ≤ ε (ε = 10−4 m~10−6 m or 10−7~10−9 times of the main span), go to
Step 6.10; if |∆n| > ε, go to Step 6.7.

Step 6.7 If the iteration time J3 > 60 (this value can be taken as 100, etc.), it was considered
non-convergence, IBZ⇐ 0, go to Step 5; if J3 ≤ 60, then go to Step 6.8.

Step 6.8 Formulate stiffness matrix [K] by Equation (5), and calculate dH and dV.
Step 6.9 Correction H0(1), V0(1) or H0(2), V0(2), namely:{

H0(1)⇐ H0(1) + α·dH
V0(1)⇐ V0(1) + α·dV

or

{
H0(2)⇐ H0(2) + α·dH
V0(2)⇐ V0(2) + α·dV

where, α is obtained by Equation (16), H0(1), V0(1) or H0(2), V0(2) are HL0, VL0 in
Equation (16); then, go to Step 6.3.

Step 6.10 IBZ⇐ 1.

Step 7 End.

The results of each variable at the last step are what we want.
From the above calculation steps, the solution will not enter into endless loop and the elevation of

key points reach a predetermined value through changing the overall level of initial iteration horizontal
force multiplier.

3.2. The Main Cable System Calculation in Side Span at Finished State

The main cable system calculation in side span at finished state under the condition that the
horizontal component of cable at one end in side span is known. The iterative process was conducted
though the proposed concept and formula of stiffness due to a vertical deformation change of the
main cable.

3.2.1. Stiffness Due to Vertical Deformation Change of Main Cable

Both sides of Equations (1) and (2) were differentiated, when considering side-span adjustment dl
= 0 (horizontal projection length of each cable segment at finished state is known) and the horizontal
component of each cable segment in side span dHi = 0, the following equations were obtained:

dh =

[
∂h
∂Vi
−
(

∂h
∂S0

/
∂l

∂S0

)
· ∂l
∂Vi

]
dVi =

[
− S0

EA
− 1

q

(
Vj

Tj
+

Vi
Ti

)
+

qS0 −Vi
q

(
1
Tj
− 1

Ti

)]
dVi (17)
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Given dh = D11dVi

D11 =

[
− S0

EA
− 1

q

(
Vj

Tj
+

Vi
Ti

)
+

qS0 −Vi
q

(
1
Tj
− 1

Ti

)]
(18)

The reciprocal of D11 (1/D11) is defined as stiffness due to vertical deformation change of
a cable segment.

It can be seen found that 1/D11 represents the vertical component variation of start end (or
terminal end) due to unit elevation change between two points of each segment under the conditions
that the horizontal force component of cable segment was unchanged, the horizontal distance between
two ends of cable segment was constant, while the unstressed cable length can be varied.

When considering that the change of vertical component for each segment is equal, i.e., dVi = dV,
the accumulated elevation difference of cable from support point to segment i can be obtained,
as follows:

dY =
i

∑
m=1

dh =
i

∑
m=1

(D11dVi) =dV
i

∑
m=1

D11 (19)

dV =
1

i
∑

m=1
D11

dY (20)

where, 1
i

∑
m=1

D11

is defined as the stiffness due to vertical deformation of main cable at side span.

3.2.2. Improved Numerical Analysis Method for Side Span and Its Iteration Steps

The main cable system calculation at side span under the condition that saddle position is known,
using the method that un-stressed cable length iterated once, is illustrated as an example, and the
iteration steps are shown, as follows:

Step 1 Set initial value of horizontal angle βq(1), βq(2) for tangent line of suspension cable at saddle
point of support ends.

Step 2 Set the initial value of Kq and reference value of Kq1 of tangent slope of suspension cable at
saddle point of start support:

Kq1 ⇐ tan
[
βq1(1)

]
, Kq ⇐ Kq1

Step 3 Determine whether the iterative equations are solvable or not, and set initial value to sign IBZ,
IBZ⇐ 1 (Note: IBZ = 1: solvable, IBZ = 0: unsolvable).

Step 4 J2 ⇐ 1 (J2 is the modification time of initial slope or vertical component of initial iterated
internal forces, when there is no solution for iterative equations)

Step 5 If IBZ = 0, obtain correction factor according to J2 to modify the vertical component of initial
iterated internal forces.

J2⇐ J2 + 1

C3⇐ 1 + (−1)[J2−int( J2
2 )×2+1] × int

(
J2 + 1

2

)
× 0.05

Assign initial value of the slope at start point: Kq ⇐ C3 × Kq1, then go to Step 6. If IBZ = 1, go
to Step 6.

Step 6 Calculate the vertical component and horizontal inclination at start point:

V(1)⇐ Kq·H(1); βq1(1) = ATAN(Kq) (21)
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where, H(1) is horizontal component at start point which is determined according to the
condition that the horizontal forces at both side of the saddle are equal.

Step 7 Calculate tangent point coordinate (Xq2, Yq2) between the line with horizontal angle βq(2) and
the end point of cable at saddle.

Step 8 Calculate tangent point coordinate (Xq1, Yq1) between the line with horizontal angle βq(1) and
the start point of cable at saddle.

Step 9 Calculate coordinates and internal forces of cable segments from left to right point (or right to
left point):

(1) According to the internal forces (horizontal and vertical components) at one end and
the horizontal distance between two ends of a cable segment k (k = 1, 2, . . . , n), calculate
the unstressed cable length S0(k) and the elevation difference ∆hk between two ends by
Equations (1) and (2). If there is no solution, then IBZ⇐ 0, go to Step 5. Otherwise, IBZ
⇐ 1, and calculates the coordinates yk, horizontal, vertical component Hj(k), Vj(k) of
the cable segment at right point k, respectively.

(2) Calculate the internal force (Hi
(k+1),Vi

(k+1)) at left end (i) of cable segment k + 1 while
using equilibrium condition.

Step 10 Calculate the elevation Yn at end point and the elevation error ∆n ⇐ Yn − Yq2.
Step 11 If |∆n| ≤ ε (set ε = 10−4 m~10−6 m), go to Step 16; otherwise, go to Step 12.
Step 12 Calculate the stiffness due to vertical deformation of main cable at side span by Equation (18),

and compute dV: dV = 1
n
∑

m=1
D11

∆YN

Step 13 determine α: If |dV| >
√

V(1)2 + H(1)2, α⇐ 0.1×
√

V(1)2 + H(1)2/|dV| Otherwise, α⇐ 1.

Step 14 modify V(1): V(1)⇐ V(1) + α·dV.

Step 15 Calculate new inclination angle βq(1) of cable at start point: βq1(1) = ATAN
[

V(1)
H(1)

]
, then go to

Step 8.
Step 16 According to horizontal and vertical forces of cable at end point, calculate the error of

horizontal angle ∆βn, and set a new value of horizontal angle βq(2) at end point:

∆βn = βq(2)− ATAN

V(n)
j

H(n)
j

; βq(2)⇐ ATAN

V(n)
j

H(n)
j


Step 17 If |∆βn| ≤ ε1 (let ε1 = 10−3~10−5), go to Step 18; otherwise, go to Step 7.
Step 18 End.

The results of each variable at the last step are what we want.

4. Numerical Examples

The numerical analysis program for calculating the main cable system of suspension bridge was
developed based on the segmental catenary theory and the improved iteration method proposed in
this paper. The accuracy and effectiveness of proposed numerical analysis method have been verified
by a commercial finite element software ANSYS, also this method has been successfully applied
to monitor the construction of some suspension bridges in China, such as Pingsheng Bridge [38],
Jiangdong Bridge [39], and Taohuayu Bridge [40].

4.1. Example 1

To illustrate the advantages of this method, a three-span suspension bridge with a main span
of 400m is chosen as an example, the coordinates of two theoretical vertex positions are (−200, 45)
and (200, 45), the coordinate at center of main span is (0, 0), while the coordinates at both ends of side
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span are (−250, 10) and (250, 10), respectively. The area of cable cross section is 0.5 m2, and the elastic
modulus is 2.0 × 105 MPa, the equivalent density is 77 kN/m3. Calculate the unstressed cable length,
internal forces, and other coordinates of the main cable system under two load cases, as shown in
Figure 2:

Load case 1: P1 = 3000 kN, P2 = 3500 kN, P3 = 3000 kN;

Load case 2: P1 = 2.0 × 105 kN, P2 = 0 kN, P3 = 0 kN.
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Figure 2. A three-span suspension cable system.

The main cable system is calculated while using the traditional (without introduction of search
algorithms) and the improved numerical analysis method. The calculation results are almost the same
under load case 1, as shown in Tables 1 and 2; however, under load case 2, there was no solution using
traditional numerical analysis method, the calculation results by improved numerical analysis method
were shown in Tables 1 and 3.

Table 1. Results of y-coordinate under two load cases (unit: m).

Item Load Case 1 Load Case 2

Node No. 2 4 6 8 2 4 6 8

x −225.0000 −195.0000 195.0000 225.0000 −225.0000 −195.0000 195.0000 225.0000
y 26.9209 42.5396 42.5396 26.9209 26.9795 9.1986 43.1848 26.9795

Table 2. Results of the length and tension force of each cable element under load case 1.

Element No.
Unstressed Cable

Length/m
Shape

Length/m

Force at Left End/kN Force at Right End/kN

Horizontal
Component

Vertical
Component

Horizontal
Component

Vertical
Component

1© 30.1798 30.1893 −0.2585 × 105 −0.1690 × 105 0.2585 × 105 0.1809 × 105

2© 30.8435 30.8527 −0.2585 × 105 −0.1809 × 105 0.2585 × 105 0.1930 × 105

3© 5.5709 5.5720 −0.2585 × 105 0.1283 × 105 0.2585 × 105 −0.1261 × 105

4© 200.2295 200.2827 −0.2585 × 105 0.9609 × 104 0.2585 × 105 −0.1750 × 104

5© 200.2295 200.2827 −0.2585 × 105 −0.1750 × 104 0.2585 × 105 0.9609 × 104

6© 5.5709 5.5720 −0.2585 × 105 −0.1261 × 105 0.2585 × 105 0.1283 × 105

7© 30.8435 30.8527 −0.2585 × 105 0.1930 × 105 0.2585 × 105 −0.1809 × 105

8© 30.1798 30.1893 −0.2585 × 105 0.1809 × 105 0.2585 × 105 −0.1690 × 105

Table 3. Results of the length and tension force of each cable element under load case 2.

Element No.
Unstressed Cable

Length/m
Shape

Length/m

Force at Left End/kN Force at Right End/kN

Horizontal
Component

Vertical
Component

Horizontal
Component

Vertical
Component

1© 30.2114 30.2219 −0.2876 × 105 −0.1894 × 105 0.2876 × 105 0.2013 × 105

2© 30.8072 30.8171 −0.2876 × 105 −0.2013 × 105 0.2876 × 105 0.2134 × 105

3© 36.0732 36.1472 −0.2876 × 105 0.2066 × 106 0.2876 × 105 −0.2052 × 106

4© 195.7354 195.7919 −0.2876 × 105 0.5206 × 104 0.2876 × 105 0.2477 × 104

5© 200.2276 200.2867 −0.2876 × 105 −0.2477 × 104 0.2876 × 105 0.1034 × 105

6© 5.3176 5.3188 −0.2876 × 105 −0.1034 × 105 0.2876 × 105 0.1054 × 105

7© 30.8078 30.8182 −0.2876 × 105 0.2134× 105 0.2876 × 105 −0.2013 × 105

8© 30.2114 30.2219 −0.2876 × 105 0.2013 × 105 0.2876 × 105 −0.1894 × 105
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4.2. Example 2

A single span flexible cable that is fixed at both ends subjected to multiple concentrated loads
is adopted as an example, as shown in Figure 3, to compare the analytical results from the proposed
algorithm with that from other methods. The node coordinates and unstressed lengths of cable
segments at initial state are shown in Tables 4 and 5, respectively. In addition, the cross-sectional area
of cable is 5.48386 × 10−4 m2, and the elastic modulus is 13,1473.43 MPa, the weight of unit length
cable is 47.02594 kN/m.
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Table 4. Node coordinates of cable segments at initial state (unit: m).

Node 1 2 3 4 5 6 7 8 9 10 11

x 0.0 30.48 60.96 91.44 121.92 152.40 182.88 213.36 243.84 274.32 304.80
y 0.0 −11.0642 −19.5986 −25.6565 −29.2760 −30.4800 −29.2760 −25.6565 −19.5986 −11.0642 0.0

Table 5. Node coordinates of cable segments at initial state (unit: m).

Element 1© 2© 3© 4© 5© 6© 7© 8© 9© 10©

Unstressed Length 32.4175 31.6441 31.0683 30.6865 30.4962 30.4962 30.6865 31.0683 31.6441 32.4175

The configuration and tension force of cable at the equilibrium state under applied load were
calculated by different methods, including method 1: improved analytical algorithm in present study;
method 2: finite element method in Ref. [41]; and, method 3: traditional analytical method in Ref. [42].
The segmental catenary theory is adopted for both method 1 and 3, however, method 1 uses the search
algorithm with penalty factor, while method 3 uses traditional Newton-Raphson iteration algorithm.
The comparison of cable configuration and internal forces are shown in Tables 6 and 7, respectively.
It can be found that the note coordinates and tension force of cable under applied load calculated from
improved analytical algorithm agree well with that from method 2 and 3, the maximum difference of
node coordinate between method 1 and 2 is 6 mm (y of node 3) with relative error of 0.03%, and 1 mm
(y of node 2) between method 1 and 3 with relative error of 0.01%; the maximum difference of the cable
tension force between method 1 and 2 is 0.05 kN (element 5) with a relative error of 0.06%, and 0.12 kN
(element 3) between method 1 and 3 with relative error of 0.1%. In compression of method 2, the initial
node coordinates of cable segments are not necessary for the proposed algorithm to calculate the
configuration and tension force of cable at equilibrium state. In comparison to method 3, the initial
value is not sensitive to solve cable segment equations for the proposed algorithm especially under the
conditions of asymmetric and uneven loads, and also the number of iterations is significantly reduced,
resulting in faster convergence speed.
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Table 6. Node coordinates of cable segments under applied load (unit: m).

Node
x y

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

1 0.000 0.000 0.000 0.000 0.000 0.000
2 30.995 30.996 30.995 −9.641 −9.638 −9.640
3 61.389 61.391 61.389 −18.595 −18.589 −18.595
4 91.357 91.356 91.357 −26.942 −26.945 −26.942
5 121.075 121.075 121.075 −34.748 −34.748 −34.748
6 151.276 151.276 151.276 −30.242 −30.243 −30.242
7 181.404 181.404 181.404 −25.275 −25.277 −25.275
8 211.641 211.641 211.641 −19.818 −19.817 −19.818
9 242.166 242.166 242.166 −13.825 −13.824 −13.825

10 273.159 273.159 273.159 −7.241 −7.240 −7.241
11 304.800 304.800 304.800 0.000 0.000 0.000

Table 7. Tension force of cable segments under applied load (unit: kN).

Element
Tension Force

Method 1 Method 2 Method 3

1© 94.41 94.40 94.40
2© 93.98 94.00 94.00
3© 93.58 93.60 93.70
4© 93.21 93.20 93.30
5© 91.15 91.20 91.20
6© 91.37 91.40 91.40
7© 91.61 91.60 91.70
8© 91.87 91.90 91.90
9© 92.16 92.20 92.20

10© 92.48 92.50 92.50

5. Conclusions

(1) It is theoretically proved that there is no solution for calculating the main cable system in main
span or side span under certain loading conditions.

(2) By introducing the search algorithm and penalty factor, a numerical analysis method was
improved to overcome the problem of no solution under certain loading conditions, and to
develop the segmental catenary theory.

(3) The necessity and effectiveness of the improved analytical method were described by the
theoretical calculation results and numerical examples. The program using proposed method
has been successfully applied in shape finding during design and configuration control during
construction of main cable system for suspension bridges in China.
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