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Abstract: In visual object tracking, the dynamic environment is a challenging issue. Partial occlusion
and scale variation are typical challenging problems. We present a correlation-based object tracking
based on the discriminative model. To attenuate the influence by partial occlusion, partial sub-blocks
are constructed from the original block, and each of them operates independently. The scale space is
employed to deal with scale variation using a feature pyramid. We also present an adaptive update
model with a weighting function to calculate the frame-adaptive learning rate. Theoretical analysis
and experimental results demonstrate that the proposed method can robustly track drastic deformed
objects. The sparse update reduces the computational cost for real-time tracking. Although the partial
block scheme generation increases the computational cost, we present a novel sparse update approach
to reduce the computational cost drastically for real-time tracking. The experiments were performed
on a variety of sequences, and the proposed method exhibited better performance compared with the
state-of-the-art trackers.

Keywords: computer vision; object tacking; correlation filter; partial block; scale space; adaptive
learning; discriminative model; partial occlusion; scale variation

1. Introduction

Tracking the position of objects of interest from a sequence of video frames is a fundamental
problem in computer vision research. Object tracking is an integral part of computer vision and is
applied in various fields including robotics, surveillance system, motion analysis, autonomous cars,
unmanned aerial vehicles (UAVs) and human computer interaction (HCI). However, the research on
object tracking is still recognized as a difficult problem since the object tracking environment contains
various challenging factors, such as illumination variation, scale variation, occlusion, deformation,
motion blur, fast motion and rotation. These factors significantly degrade the performance of object
tracking. For that reason, minimizing the influence of environmental changes in the development
of robust trackers is an important issue. There are many tracking algorithms [1–37] to deal with the
variety of environmental changes. The state-of-the-art tracking algorithms have tried to solve the
problem by analyzing the cause of environmental changes using various classification approaches.

In this paper, we present a novel correlation filter-based object tracking algorithm that focuses
on solving scale variation and partial occlusion problems. The proposed algorithm is based on a
discriminative model tracker with a correlation filter. The kernelized correlation filter (KCF) tracker [21]
has demonstrated outstanding performance for object tracking by drastically reducing computational
cost using an efficient search based on the diagonalization property of a circular matrix and a dual
correlation filter (DCF). However, the KCF tracker is sensitive to environment changes because it
still does not consider partial occlusion and scale variation, which make the performance of the
tracker poor.
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Most tracking-by-detection algorithms consider only object translation [22], but the proposed
algorithm deals with scaling and partial occlusion, as well as object translation. Partial occlusion is a
significant problem that degrades the performance of object detection. We propose a robust KCF-based
tracker to overcome the partial occlusion problem using a partial block scheme. The partial block
scheme facilitates stable object tracking, even if the object is partially occluded. A robust tracker also
needs a strategy for scale estimation to deal with changes of the object size. The scale space [22] creates
an image pyramid and determines the most appropriate size of an object block. We also propose an
adaptive update model using a weighting function by improving the general update model used in
the original version of the kernelized correlation filter [21]. The proposed adaptive update model
calculates the learning rate with a modified sigmoid function as the weighting function, and then, the
optimal learning rate is calculated for each frame.

In summary, the proposed method is developed to deal with partial occlusion, scaling,
illumination variation and deformation. Experimental results demonstrated that the proposed
method exhibits a better performance than existing state-of-the-art algorithms for various test videos
including illumination variation, scale variation, occlusion, deformation, motion blur, fast motion and
rotation. Figure 1 compares the performances of the proposed method and state-of-the-art trackers.
More specifically, Tiger2 including partial occlusion substantiates that the proposed partial block
scheme successfully solves the partial occlusion problem. Freeman3 and Shaking substantiate that the
performance of the proposed method is good enough for the scale variation problem. On the other
hand, existing trackers do not properly respond to occlusion and scale variation problems.

Figure 1. Comparison of the proposed method with the state-of-the-art trackers kernelized correlation
filter (KCF) [21], discriminative scale space tracker (DSST) [22], fragment-based tracker (FRAG) [15],
locality sensitive histograms tracker (LSHT) [37], multiple instance learning (MIL) [6], structured
output tracking with kernels (STRUCK) [5] and tracking-learning-detection (TLD) [9]. The sequences
include Tiger2, Freeman3 and Shaking from OTB-100.
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The composition of this paper is as follows: Section 2 describes the technical background of
tracking with related works. Section 3 presents the proposed method with the object translation
estimation using the partial block scheme, the object scaling estimation using scale space and the
adaptive update model. After summarizing experimental results in Section 4, Section 5 concludes
the paper.

2. Related Works

The existing trackers [1–37] have different approaches and can be classified according to the
model. In recent years, the trackers have been divided into discriminative model-based [1–10,19–22]
and generative model-based [11–18], and the proposed method belong to the discriminative
model. Furthermore, some discriminative model-based trackers can be classified as correlation-based
trackers [19–22].

The generation model-based trackers use a method of modeling the appearance of an object of
interest and have various models for representing the object. Among generation model-based trackers,
incremental visual tracking (IVT) [11] uses a PCA and applies an adaptive appearance update model
to withstand lighting changes and variations. However, IVT is very sensitive to partial occlusion
where the object is partially obscured by other objects. The occlusion problem was improved by
applying the probability continuous outlier model (PCOM) [12] based on IVT. The visual tracking by
decomposition (VTD) tracker [13] extended particle filter tracking (PFT), and the L1-minimization
tracker [14] employed sparse representation. Furthermore, the fragment-based tracker (FRAG) [15]
employed the local patch to ensure robustness for solving the partial occlusion problem, and the
circulant sparse tracker (CST) [16] employed a combination of circularity and scarcity expressions.
In addition, multi-task sparse learning tracker (MTT) [17] and the low-rank sparse trackers [18] belong
to the generation model-based trackers.

The discriminative model employs the method that classifies objects and background, and it learn
the model directly. The ensemble trackers [1] proposed to combine multiple weak classifiers to form
an ensemble structure. The online Ada boosting (OAB) [2] employed identifiable feature selection and
online boosting, and the online random forest (ORF) [3] learned and classified random forests online.
STRUCK [5], using the kernel [6], online support vector machine (SVM) [4] and the multiple instance
learning (MIL) tracker with HAAR features also belong to the discriminative model. The weighted
multiple instance learning (WMIL) [7] improved the weighting of positive samples in the MIL and
reflected the weighting of samples when learning the classifier. The correlation filter-based tracker
also belongs to the discriminative model. The minimizing the output sum of squared error (MOSSE)
tracker [19] proposed an adaptive correlation filter, and circulant structure of circulant structure kernel
(CSK) [20] used the dense sampling with the theory of circulant matrices and fast Fourier transform
(FFT). Furthermore, the kernelized correlation filter (KCF) tracker [21] applied linear and kernel ridge
regression with histogram of oriented gradients (HOG) features for high-speed tracking. However,
the KCF tracker can only be used for object translation estimation. The scale estimation problem was
solved by the discriminative scale space tracker (DSST) [22], which estimates the translation and scale,
independently.

Discriminative Correlation Filter

In recent research, discriminative classifiers were the core component of modern trackers,
and the discriminative model distinguished the object from the surrounding environment [21] to
effectively track the object of interest. To distinguish between the object and surrounding environment,
discriminative model-based trackers [1–10,19–22] learned about the positive samples and the negative
samples. The discriminative model-based trackers were considered to be more significant with respect
to negative samples, and negative samples did not cover the object, completely. This means that the
positive sample was located closer to the location of the object, and the positive sample contained
enough information to represent the object. Generally, a large number of negative samples increases the
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computational cost. Most trackers [3,4,6,8,9,32] employed the random sampling methods to avoid high
computational cost. However, correlation filter-based trackers [20–22] efficiently tracked objects using
the circulant structure [20] and FFT to incorporate all samples without iterating them. In addition, the
dual correlation filter (DCF) was proposed in the literature [21]. The DCF performs linear multi-channel
filtering for a similar performance of a nonlinear kernel with very low complexity. Thus, CSK [20],
KCF [21] and DSST [22] used dense sampling with all samples; nevertheless, they can perform object
tracking in real time because the computational cost is not high. Real-time processing is one of the
significant components in object tracking for various vision applications.

3. Proposed Method

The partial occlusion and scale variation in object tracking comprise a crucial problem. Many
researchers have tried to solve this problem, but it is still known to be a difficult problem. In addition,
object tracking in real-time is also significant because its target is videos. The real-time object tracking
that these problems have solved can be applied to many vision applications. Therefore, our goal is to
develop real-time object tracking with the consideration of partial occlusion and scale variation.

The proposed work is based on KCF, which consists of (i) the detection part for describing objects
and (ii) the training part for learning. The updated model is used in the detection part of the next
frame, and the entire process repeats to track objects continuously.

In this paper, we propose object tracking using the partial block scheme and the adaptive update
model. The partial block scheme is proposed to solve the partial occlusion problem, and the adaptive
update model employs the weighted learning rate. The weighting is calculated from the reliability of
the response of each block with a sigmoid function. If the reliability of the response is high, we use a
higher learning rate. On the other hand, if the reliability of the response is low, we use a lower learning
rate. Furthermore, a sparse update is performed to reduce the increased computation due to multiple
partial blocks. Figure 2 shows the block diagram of the proposed method.

Figure 2. The block diagram of the proposed method. We separate the partial blocks from the object in
the frame and perform the translation estimation and scale estimation. Finally, we perform the model
update with the weighting function or skip the update. PSR, peak-to-sidelobe ratio.
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The proposed methods can be divided into four steps as follows:

1. Partial block separation: separating the partial blocks from the whole block of an object.
Partial blocks can be adjusted in size and position according to the parameter.

2. Translation estimation: calculating the responses using a kernelized correlation filter of all blocks
and then selecting the translation response map.

3. Scale estimation: estimating the object scale with the scale space and calculating the scale factor.
4. Adaptive model update: model updating with the adaptive learning rate considering the reliability

of responses.

3.1. Partial Block Scheme

We propose the partial block scheme to address environmental changes such as partial occlusion,
partial illumination variation and partial blurring. Partial blocks are computed for each frame from
the whole block and divided into four parts. We can generate the partial blocks using the whole block
and Equation (1).

Pm = Wm/d
Pn = Wn/d

(1)

where Wm and Wn are the height and width of the whole block, Pm and Pn are the height and width of
partial blocks and the sizes of partial blocks are identical. d is a factor that adjusts the partial blocks’
size. The centers of partial blocks are obtain with:

Bk(xc, yc) =



W(xc, yc), k = 0
W(xc, yc −ωPm), k = 1
W(xc, yc + ωPm), k = 2
W(xc −ωPn, yc), k = 3
W(xc + ωPn, yc), k = 4

. (2)

In Equation (2), W(xc, yc) is the center position of the whole block, and Bk(xc, yc) is the center
position of all blocks, which include the whole block and partial blocks. k means the index of blocks,
and ω means the factor that adjust the location for partial blocks. The indices of partial blocks are 0–4,
and B0 means the whole block. B1, B2, B3 and B4 mean partial blocks, respectively. As shown Figure 3,
the positions of partial blocks depend on the position of the whole block, and this can adjust the
parameter ω. Furthermore, the sizes of the partial blocks are set to an identical size for the convenience
of calculation by parameter d. We proposed a partial block scheme to deal with the partial occlusion
problem. Partial occlusion can occur in all blocks including the whole block. However, the proposed
method is designed to track any block without partial occlusion.

The whole block is small or unsuitable parameter d can produce too small partial blocks.
The small size of partial blocks among the generated partial blocks can disturb object tracking.
Thus, we employ excluding very small blocks using Equations (3) and (4).

Bw
k∈{1,2} =

{
0, Pm < τ

1, otherwise
(3)

Bw
k∈{3,4} =

{
0, Pn < τ

1, otherwise
(4)

where τ is the threshold for the decision whether to exclude partial blocks. Bw
k means the weighting

for partial blocks. If Pm is smaller than τ, Bw
1 and Bw

2 are excluded blocks. Furthermore, if Pn is smaller
than τ, Bw

3 and Bw
4 are excluded blocks. All partial blocks are not large enough; we can only use whole

blocks, and Bw
0 is always 1.
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(a) (b)

(c) (d)

Figure 3. The whole block and its partial blocks from Tiger2 in OTB-100. (a) 1st frame without
occlusion; (b) 95th frame with slight occlusion; (c) 115th frame with slight occlusion; (d) 256th frame
with large occlusion.

3.2. Translation Estimation

The kernelized correlation filter (KCF) tracker [21] is a representative tracking algorithm based on
correlation filters; it is superior in terms of performance and speed. The correlation filter tracker aims
to calculate a filter h that minimizes the square error of sample data and regression data. The KCF
tracker calculates filter h between sample data xi and regression data yi with:

min
h

n

∑
i=1

(hTxi − yi)
2
+ λ ‖h‖2 (5)

where λ is the regularization parameter. In the KCF tracker, we employ the kernel trick [38] for the
non-linear regression function. Thus, non-linear filters could be as fast as linear correlation filters.
The kernelized version of ridge regression is defined [21] as:

α = (K + λI)−1y. (6)

where K is the kernel matrix, I is the identity matrix and α is the represented vector [20,21] of filter h.
The n× n kernel matrix can be expressed in the circulant matrix [21] as follows.

C(x) =


x1 x2 x3 · · · xn

xn x1 x2 · · · xn−1

xn−1 xn x1 · · · xn−2
...

...
...

. . .
...

x2 x3 x4 · · · x1

 (7)

The circular structure can express the same signal xn according to n shift due to periodic
characteristics. In Equation (7), the first row {x1, · · · , xn} is the base samples, and cyclically-shifted
rows are virtual samples.
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The kernel matrix can be diagonalized by discrete Fourier transform (DFT), and the kernel ridge
regression solution is defined [21] by:

α = F−1
(

F(y)
F(κ) + λ

)
. (8)

Equation (8) is a closed-form solution, which is very efficient; it uses only fast Fourier transform
(FFT) and element-wise operation [20]. The following equation [21] calculates κ,

κxx′ = exp

(
− 1

σ2

(
‖x‖2 +

∥∥x′
∥∥2
)
− 2F−1

(
∑

c
F(x)� F∗(x′)

))
(9)

where � indicates the element-wise product and κxx′ is the kernel correlation of x; it can be computed
quickly with FFT [20]. F means the fast Fourier transform, and F−1 means the inverse transform.

In this paper, we perform the kernel ridge regression solution for all blocks using the
equation below.

R = F−1(F(α̂) · F(κxz)) (10)

where α̂ means the update model of α, R means the response map and R0 is for the whole block. R1,
R2, R3 and R4 are the response maps for partial blocks, respectively. Furthermore, we perform the
weighting for each response map and pick the suitable response map by:

k∗ = arg max
k∈{0,1,2,3,4}

(max(Rk · Bw
k )). (11)

The index for all blocks is k; k∗ means the index of the picked response that includes the highest
value of all response maps. As we mentioned before, Bw

k is the weighting for blocks. The position of
the highest value in the picked response map means the translated position of the object. Then, we can
calculate the center position for the picked block with ∆x, ∆y by:

B̂k(xc, yc) = Bk∗(xc + ∆x, yc + ∆y). (12)

We recalculate the central position for the new whole block using B̂k(xc, yc).

Ŵ(xc, yc) =



B̂0(xc, yc), k∗ = 0
B̂1(xc, yc + ω(η∗Pm)), k∗ = 1
B̂2(xc, yc −ω(η∗Pm)), k∗ = 2
B̂3(xc + ω(η∗Pn), yc), k∗ = 3
B̂4(xc −ω(η∗Pn), yc), k∗ = 4

(13)

where Ŵ(xc, yc) is the updated center position of the whole block and η∗ means the scale factor. Then,
in the next frame, we can obtain new partial blocks using Equation (2).

3.3. Scale Estimation

The translation estimation tracks the horizontal and vertical movements of objects.
Thus, tracking only the translation of the object has limited performance object tracking. The DSST [22]
proposed scale space for accurate scale estimation. Scale space expresses the data in 3 dimensions;
the size is Pm × Pn × D. Here, Pm, Pn and D are the height, width and dimension, respectively.
We compose the image pyramid for scale estimation with Ŵ(xc, yc). The equation for the composition
of the image pyramid consisting of various sizes is as follows.
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ηl = sc, c ∈
{⌊

D
2

⌋
− 1 , · · · ,

⌊
D
2

⌋
− D

}
(14)

The scale factors ηl contains large values to small values to compose the image pyramid. s is
the factor for the scale step. The dimension of features is defined by l ∈ {1, . . . , D}. After the image
pyramid has been composed, we can calculate the scale response using the equation below [22].

β = F−1


D
∑

l=1
F(Al) · F(Zl)

F(S) + λ′

 (15)

where Zl means the object, Al is the desired output and S is the kernel correlation result. The scale
response β has D-th values, and the index of highest value means scale factor η∗.

η∗ = arg max
l∈{1 , ... , D}

(max(βl)) (16)

The picked scale factor η∗ is multiplied by the size and center position of all the blocks.

3.4. Adaptive Update Model

In the tracking process, the attributes of objects change constantly. Furthermore, most objects
maintain continuity with the previous frame. We propose that the adaptive learning rate is applied
using the reliability of the response map. The peak-to-sidelobe ratio (PSR) [19] value of the response
regards the reliability of the response map. It reflects the relationship between the main lobe and the
surrounding side lobe by:

ρk = ψ

(
Rp

k − Rµ
k

Rσ
k

)
(17)

where Rµ
k , Rσ

k and Rp
k are the mean, standard deviation and peak value of the response. ψ is a

regularization parameter. The weighting function calculates the adaptive learning rate ρ̂k.

ρ̂k =

(
ρm

1 + e−v1·(ρk−v2)

)γ

(18)

where v1, v2 and γ are the parameters of the weighting function and ρm controls the maximum
learning rate.

Figure 4 shows the response maps for two different values of the adaptive learning rate.
The reliability of the response map determines the adaptive learning rate value. Specifically, the
higher the rate value, the more it influences the update model, and vice versa. The adaptive update
model is defined by:

α̂t = (1− ρ̂)α̂t−1 + ρ̂ · αt. (19)

The number of ρ̂ depends on the number of blocks. α̂t means the update model for the current
frame, and α̂t−1 means the update model for the previous frame. αt is the calculated kernel regression
solution in the current frame. The adaptive update model is performed to learn the translation
estimation and scale estimation, identically.
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For real-time tracking, we assume that the peak position of the response is the center, and we do
not need to calculate the update model for the next frame. Then, we employ the sparse update for
real-time object tracking. The sparse update is given by:

δ =

{
true, |∆x + ∆y| ≤ τ̂

f alse, otherwise
(20)

where τ̂ is the parameter for the sparse update; when δ is true, we can skip the model update
for efficiency.

(a) (b)

Figure 4. The adaptive learning rate according to response. (a) response map with learning rate value
of 0.0055; (b) response map with learning rate value of 0.0289.

4. Experiments

We evaluated the proposed tracker with state-of-the-art trackers such as KCF [21], DSST [22],
FRAG [15], LSHT [37], MIL [6], STRUCK [5] and TLD [9] for quantitative performance evaluation.
The experiment was conducted with challenging sequences in the OTB-100 [39], and it included various
attributes for natural sequences. Furthermore, we conducted experiments using one-pass evaluation
(OPE). OPE is a general performance evaluation method used by the object tracking benchmark
(OTB) [39].

4.1. Parameters and Experimental Setup

The factor d that adjusts the partial blocks size was set to two. The factor ω that adjusts the
location for partial blocks was set to 0.5. The excluded partial blocks decided by τ were 15 pixels.
The regularization parameter λ was 0.001. We used the scale step s = 1.02 and the dimension of scale
space D = 33. The regularization parameter for adaptive learning rate ψ was 1/14. v1, v2 and γ were
set to 10, 0.5 and 1.5. ρm was set to 0.03 for the maximum learning rate. τ̂ was set to zero for the sparse
update. In addition, we used histogram of oriented gradients (HOG) [40] as a feature to represent
images. We conducted the experiments using MATLAB R2017b with an i7-2600 core 3.40-GHz CPU
with 16 GB RAM.
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4.2. Quantitative Evaluation

We calculated the center location error (CLE) for quantitative performance evaluation; this means
the euclidean distance between the center location of the ground truth and the estimated center location
by the object tracker. The euclidean distance can be calculated as follows:

CLE =
1
N

N

∑
n=1

√
(xn

b − xn
g)

2 + (yn
b − yn

g)
2. (21)

where xn
b and xn

y are the estimated center location by the tracker and xg
b and xg

y are the center location
from the ground truth. N means the total number of pixels in the bounding box. If the center positions
are close, the tracker can obtain a lower value, which means the good performance of the tracker.
The precision was defined as success within 20 pixels (threshold), otherwise precision was defined as a
failure. Thus, precision depended on the CLE results and its threshold.

As another measurement, the success rate was defined as:

S =
|rt
⋂

ra|
|rt
⋃

ra|
, (22)

where rt and ra are bounding boxes for the ground truth and estimated results by the tracking algorithm.⋂
and

⋃
indicate intersection and union. The function | · |means the number of pixels in the bounding

box. The higher the success rate, the more overlap between the estimated bounding box and the ground
truth. The success rate varied according to the threshold, and the threshold used in the experiment was
0.5. We can draw a success rate graph considering all thresholds and define the under area of the graph
as the area under the curve (AUC). Then, we conducted experiments for all sequences in OTB-100.
Table 1 shows the average performance evaluation results of proposed method with the state-of-the-art
trackers. The scores of the proposed method were highest for all measurements. The precision score
was higher than KCF [21] and STRUCK [5], and the success rate and AUC were higher than DSST [22].
Experimental results demonstrated the effectiveness of the proposed method compared to existing
trackers. The results showed that the proposed tracker was suitable for sequences including a variety
of environments. The proposed tracker can be applied to a variety of vision applications such as
robotics, surveillance systems, motion analysis, autonomous cars, unmanned aerial vehicles (UAVs)
and human computer interaction (HCI), as mentioned above.

Table 1. The average performance evaluation results of trackers with the proposed method for
100 sequences in the OTB-100 database. The bold values mean the best performance. CLE, center
location error.

Trackers CLE Precision Success Rate AUC

STRUCK [5] 47.09 0.6381 0.5046 0.4454
MIL [6] 71.96 0.4450 0.3132 0.3162
TLD [9] 60.14 0.5930 0.4819 0.4071

FRAG [15] 80.65 0.4245 0.3368 0.3182
LSHT [37] 68.24 0.4979 0.3742 0.3493
KCF [21] 44.88 0.7002 0.5252 0.4613
DSST [22] 56.47 0.6664 0.5738 0.4923
Proposed 43.50 0.7253 0.6485 0.5280

The precision plots and success plots for all experimental sequences with the proposed method
and the state-of-the-art trackers are shown in Figure 5. The proposed method performed well across
all thresholds, and the translation and scale estimation of the proposed method worked suitably.
In particular, the success rate was generally higher than the precision, which means the estimated
bounding box by our tracker was more overlapped with the bounding box from the ground truth.
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In addition, an experiment was conducted to combine components in various manners using
KCF as a baseline algorithm. Each component was the partial blocks (PB), scale pyramid (SP),
adaptive update (AU) and sparse update (SU). Figure 6 shows the precision plots and success plots
for each combination. Some combinations without considering scale variation such as PB and AU
were detrimental to improving the tracking performance, and the proposed method combining all
components performed better than any other combination.

The OTB-100 contains sequences with attributes such as illumination variation (IV), scale variation
(SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR),
out-of-plane rotation (OPR), out-of-view (OV), background clutter (BC) and low-resolution (LR).
Figure 7 shows the average success rate of trackers for each attribute and demonstrates that the
proposed method outperformed the existing trackers for all attributes.

(a) (b)

Figure 5. The precision plots and success plots over all 100 sequences. The legend of the plots indicates
the state-of-the-art trackers. (a) precision plots; (b) success plots.

(a) (b)

Figure 6. The precision plots and success plots over all 100 sequences for each combination. (a) precision
plots; (b) success plots.
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Figure 7. The average success rate of the proposed tracker and existing trackers with all attribute
sequences in OTB-100. The number indicates the number of sequences including attributes; illumination
variation (IV), scale variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion
(FM), in-plane rotation (IPR), out-of-plane rotation (OPR), out-of-view (OV), background clutter (BC)
and low-resolution (LR).

To consider the real-time tracker, we measured the frames-per-second (FPS) on the correlation
filter-based trackers. KCF [21] and DSST [22] averaged 203 FPS and 43 FPS, respectively. The proposed
method using the non-sparse updating version processed 35 frames per second. However, the sparse
updating version processed 46 FPS on average for 100 sequences. As a result, the proposed method was
slower than the KCF, but could be considered as a real-time tracker. Moreover, the proposed method
outperformed the baseline KCF and DSST in terms of the AUC by 14.45% and 7.25%, respectively.
Figure 8 shows the tracking results of the experimental sequences in OTB-100 database. From the
top-left to bottom-right, the sequences in Figure 8 are Panda, Liquor, Freeman3, Walking2, Car1, Car24,
Human8, Lemming, Box, Dog1, Coke, Vase, Skating1, CarScale, Singer1 and KiteSurf, respectively.
The images contained various attributes, and the results of the proposed method were identified by
a red bounding box. As intended, the proposed method was responsive to partial occlusion and
scale variation.
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Figure 8. The experimental results comparison of the proposed tracker and existing trackers.

5. Conclusions

In this paper, we proposed a kernelized correlation filter-based visual object tracking algorithm
using the partial block scheme and adaptive update model in the scale space. The proposed method
accurately estimated translation and scale using the discriminative model. The proposed adaptive
update model used the weighting function, which can be expressed as the combined sigmoid and
gamma functions, to reduce the computational cost of calculating partial blocks for real-time tracking.

Various experiments were conducted to measure the performance of the trackers with the
OTB-100 database. Experimental results validated that the proposed method outperformed existing
state-of-the-art trackers in the sense of CLE, precision, success rate and AUC.
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