
applied
sciences

Article

Rapid Prototyping of Multi-Functional Battery Energy
Storage System Applications

Claudia Zanabria 1,*, Filip Pröstl Andrén 1, Johannes Kathan 1 and Thomas I. Strasser 1,2

1 Center for Energy–Electric Energy Systems, AIT Austrian Institute of Technology, 1210 Vienna, Austria;
Filip.Proestl-Andren@ait.ac.at (F.P.A.); Johannes.Kathan@ait.ac.at (J.K.); Thomas.Strasser@ait.ac.at (T.I.S.)

2 Institute of Mechanics and Mechatronics, Vienna University of Technology, 1040 Vienna, Austria
* Correspondence: claudia.zanabria@ait.ac.at

Received: 18 July 2018; Accepted: 4 August 2018; Published: 8 August 2018

Abstract: Battery Energy Storage Systems (BESS) are starting to play an important role in today’s
power distribution networks. They provide a manifold of services for fulfilling demands and
requests from diverse stakeholders, such as distribution system operators, energy market operators,
aggregators but also end-users. Such services are usually provided by corresponding Energy
Management Systems (EMS). This paper analyzes the complexity of the EMS development
process resulting from an evolving power utility automation. As a result, flexibility, complexity,
interoperability, and overlapping issues were identified as main concerns to be faced during the
design and implementation stages of BESS control applications. Current efforts from smart grid
and power utility automation standards partially tackle the issues mentioned above. Nevertheless,
an integrated methodology that guides and supports control engineers during the whole development
chain is still missing. Hence, the conception of EMSOnto is introduced. The main achievements of
this approach include the alignment of BESS design with broadly accepted smart grid standards
(i.e., IEC 61850, smart grid architecture model), a common understanding of EMS control applications
based on the conception of an ontology, the identification of conflicts within a multi-function BESS
and the semi-automatic generation of software artifacts mainly important for EMS validation.
To demonstrate the effectiveness of the approach, a selected use case example is designed and
validated in a hardware-in-the-loop basis. This proves that EMSOnto eases the work of control
engineers resulting in a flexible, adaptable, and error-free EMS design. In addition to this, limitations
of EMSOnto as well as future work are grasped.

Keywords: battery energy storage systems; rapid prototyping; conflicts identification; power utility
automation; power distribution grid; semantic web technologies; ontology; description logics;
model-driven engineering; smart grid architecture model; IEC 61850

1. Introduction

The reduction of greenhouse gas emissions motivates a high penetration of renewable Distributed
Energy Resources (DERs). However, this may negatively influence the power quality (i.e., frequency
and voltage) and surpass the hosting capacity of the corresponding power distribution grids. Battery
Energy Storage Systems (BESS) are becoming an important actor in the power utility grid due to their
flexibility and support that they offer. Use Cases (UCs) based on BESS participation are considered in
different studies [1,2], attempting to contribute to voltage and frequency regulation. Other services
such as improvement of the hosting capacity and peak-shaving are also possible [3]. Additionally, BESS
supports Energy Market Operators (EMO) to benefit from the spot market prices [4] and the end-user
to minimize their energy costs [5]. The implementation of the mentioned UCs implies an efficient use
of the Information and Communication Technology (ICT) infrastructure and the integration between
various stakeholders and DERs.

Appl. Sci. 2018, 8, 1326; doi:10.3390/app8081326 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app8081326
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 1326 2 of 33

Energy Management Systems (EMS) carry out the integration of BESS UCs. Thus, they require to
reach a high degree of flexibility and adaptability. Furthermore, their design becomes quite complex
since different power utility equipment and stakeholders are involved. Additionally, due to the offering
of many services, a coordination and alignment of control strategies is required. Those issues among
others are faced during the development process of EMS. Motivating the conception of a common
vocabulary to be approved by different control engineers dedicated to EMS implementation.

Existent approaches support control engineers during the engineering process; Systems Modeling
Language (SysML) and Smart Grid Architecture Model (SGAM) are highly recommended at the
specification stage [6]. Power System Automation Language (PSAL), a Domain Specific Language
(DSL) for power systems, automates the design and implementation of smart grid applications [7].
Besides this, a power utility automation standard called IEC 61850 models DERs functionalities [8].
The implementation of them is driven by automation standards such as IEC 61499 [9] and
IEC 61131-3 [10]. On this basis, this paper analyzes current smart grid and automation approaches
and points out the lack of an integrated framework and methodology that guides control engineers
during the design and implementation phase of EMS applications. As a solution, this paper proposes
EMSOnto, a framework focused on interoperability, flexibility, complexity, and overlapping issues
raised during BESS UCs implementation. Current efforts to handle those issues are evaluated, hence a
set of four requirements are identified which provides the basis for the EMSOnto conception.

The core part of the EMSOnto approach is an ontology (i.e., EMS-ontology) that models different
aspects of a multi-functional BESS such as potential conflicts between UCs, variables exchanged across
the EMS communication architecture, structure of control strategies, etc. This modeling process is
aligned with domain-specific approaches like IEC 61850 and SGAM. PSAL proposes a data model
for power systems also based on SGAM and IEC 61850, but concepts for the abstraction of BESS
services were not tackled. A main benefit of ontologies is to infer new knowledge from explicit
knowledge. This benefit is key in the identification of conflicts, a feature supported by EMSOnto and
not contemplated by any of the previous mentioned approaches. In addition to this, a friendly method
to gather information from control engineers based on spreadsheet templates (i.e., EMS-templates)
is exposed. This mechanism enables the population of the EMS-ontology. IntelliGrid enables the
gathering of data by UC templates, however they are not suitable for collection of static and dynamic
variables presented in an EMS. On the other hand, Model-Driven Engineering (MDE) is employed to
semi-automatically generate software artifacts to be deployed in power system and automation tools.
The rapid prototyping of smart grid applications by means of MDE techniques is not a completely new
topic since it was already tackled by PSAL and other works [11]; however, the benefits of an automatic
generation of software artifacts for the proof-of-concept of BESS applications is not yet addressed.

This paper is structured as follows: Section 2 presents UCs mainly important to BESS support,
their corresponding development process are analyzed resulting in the identification of issues to
be target by EMSOnto. Section 3 addresses those issues by analyzing current efforts carried out to
handle them. From this evaluation, gaps and open issues are identified resulting in the statement of
four requirements to design EMSOnto. Section 4 presents the core of EMSOnto, an ontology mainly
designed to meet specific requirements. Additionally, a friendly method to populate the ontology
is addressed by spreadsheet templates. As a sequel, Section 5 designs and implements a selected
UC following the EMSOnto basis. This enables the identification of gaps and guidelines to improve
EMSOnto. Finally, Section 6 summarizes and concludes this work.

2. Multi-Functional Energy Storage System Application Development

This section presents a list of selected UCs that address demands from various stakeholders.
A correct operation of those UCs requires the follow up of an engineering process. This involves
specification, design, implementation, and realization stages. Furthermore, the whole development
chain of an EMS realization is also exposed. In that context, important issues to facilitate the control
engineer’s work and also to reach a flexible and interoperable EMS are raised.

Appl. Sci. 2018, 8, 1326 3 of 33

2.1. Use Cases and Applications

The selection of use cases UC1–UC5 is based on common services provided mainly by small
scale energy storage systems (∼ > 3.6 kW & < 4.8 kW), see Table 1. An extended list can be found in
the study [4] where a categorization by objectives, such as reduction of energy costs, power system
stability, and market integration is carried out. A scheme that represents electrical devices connection
and communication links, in the frame of those UC, is depicted in Figure 1. A BESS is integrated within
the low-voltage grid to mainly support the user to minimize energy costs. This is reached by storing
the Photovoltaic (PV) generated energy not consumed by the local load. This mechanism corresponds
to UC3 where the customer is the main benefactor. However, those batteries are able to provide
support to the grid operator for power system stability purposes. Thus, not only self-consumption
(UC3) is pursued but other services such as voltage and frequency regulation (UC1-UC2). Following
that premise, the study [5] is also selected (UC4); it defines a multi-functional system embedded with
peak-shaving and reduction of price services. An ensemble of storage services is also met by UC5 [1].
That case study gathers voltage control and two other services, it is an appealing example since each
service rents one part of the whole capacity of a medium scale BESS. At first glance, it might seem that
services do not need to be aligned because of the capacity allocation procedure. However, study [1]
analyzes conflict issues regarding a full provision of those services. Since conflict identification is a
main requirement to be covered by the EMS-ontology, UC5 is included in the selection of UCs.

Small/ Medium
scale ESS

PPV

Energy
Management
System

PloadPbat Qbat

Low Voltage Grid

Photovoltaic
(PV) Load

Smart meter
PCC

Pgrid

network operatorEMO

Communication link

Figure 1. EMS setup with corresponding communication architecture

Table 1. Use cases derived from the integration of BESS into a low voltage grid

Use Case, Controller Type Description

Volt-VAr mode (UC1) Reactive power from the battery (Qbat) is injected to stabilize the voltage at the
Point of Common Coupling (PCC), see Volt-Var mode VV1 in [12].

Frequency-watt (FW) (UC2) Active power from the battery (Pbat) supports the balancing of frequency of
the grid (Fgrid), see FW mode FW21 in [12].

Self-consumption (UC3) Pbat helps to minimize the energy consumed from the grid (Pgrid), see PVBat1
control strategy in [13].

Min. of costs with peak shaving (UC4) Electricity costs are reduced and peak-shaving is pursued, see [5].

Multi-functional BESS medium scale (UC5) Self-consumption is provided to a group of households by injecting active
power (Pbat), Primary Control Reserve (PCR) participation follows the logic
in UC2. Voltage is controlled by reactive power provision Qbat; to accomplish
this, a Proportional Integral (PI) controller is designed as exposed in [1].

Appl. Sci. 2018, 8, 1326 4 of 33

2.2. Specification and Development Process

The realization of EMS control applications requires following certain stages, which involves
specification, design, proof-of-concept, implementation, and deployment [14]. Those steps are addressed
in this section.

At the specification stage, the stakeholders, DERs, and Intelligent Electronic Devices (IEDs),
involved in the system under study, are identified. In addition to this, the communication and physical
architecture are suggested. This results in a list of requirements to be addressed during the design
phase. Subsequently, at the design level, solutions to define the specific behavior and structure of
control strategies embedded by an EMS are evaluated. Hence, a list of variables encompassing control,
setpoint and measurement signals are properly described. This description also gathers information
related to protocols communication. Thus, the communication interfaces that allow interconnection
across the power distribution application are also specified. Furthermore, the allocation of control
strategies through the ICT hardware infrastructure is determined as well.

The validation of the proposed control strategies is carried out at the proof-of-concept phase.
At that stage, models of IEDs (e.g., smart meters) and DERs (e.g., BESS) are built and deployed into a
power system emulator (e.g., MATLAB/Simulink, DlgSILENT PowerFactory), along with the control
logic of the EMS [15]. The transition from design to proof-of-concept may entail communication and
stability issues that were not considered at the design stage. Hence, an iterative refinement of the control
algorithms are considered. Afterwards, the deployment of the validated control algorithms takes place
at the implementation phase. A programming language compatible with a specific hardware controller
is chosen to deploy the logic, usually this is driven by automation standards such as IEC 61499 [9]
and IEC 61131-3 [10]. The validation of implementation phase is carried out by real-time simulations,
controller-hardware-in-the-loop, and/or laboratory-based tests [16].

2.3. Open Issues

A closer analysis of the abovementioned design and engineering process results in the following
issues which need to be addressed:

• Flexibility: The integration of new and different actors into the power distribution grid such as
Electrical Vehicles (EV) and EMO motivates evolving services focused on BESS participation.
Thus, EMS should be flexible enough to implement those services and future ICT requirements.

• Complexity: The complex-nature of EMS is based on the manifold of services provided by BESS
and the deployment of them in the ICT and power system infrastructure. The implementation of
such services may be centralized or decentralized. In case of a decentralized configuration, where
services are deployed in different hardware controllers, more than one control engineer may be
required for the EMS design. Thereby, the lack of a common vocabulary and design language
may lead to errors during EMS design and later on operation in the field.

• Overlapping: An EMS focused on multi-services for BESS is vulnerable to conflicts between UCs.
This overlapping across them could cause a non-expected function behavior. For instance, an EMS
that operates UC2 and UC3 would need to setup mechanisms to align both use cases in the event
of a simultaneous operation. Otherwise, those UCs would not be attained.

• Interoperability: The realization and validation of smart grid and BESS-based applications entails
the use of a wide range of power system, automation and communication tools. This goes from
power system emulators/design, network simulators to co-simulation frameworks. However,
a method to interoperate those tools during the whole chain of the engineering process is missing.

3. Related Work and Background

Issues which need to be tackled during the engineering process were previously highlighted. In this
section, the state-of-the-art and related work are analyzed and discussed. Necessary requirements for
improving the status-quo are identified, which provide cornerstones for the rapid development of UCs
and applications.

Appl. Sci. 2018, 8, 1326 5 of 33

3.1. Smart Grid Domain Standards

The main concern of the current study is to employ information models from recommended
international standards to derive an interoperable and flexible solution. Data models for the power
system domain are outlined in the IEC Smart Grid Standardization Roadmap [17]. On this basis,
a collection of standards mainly important to DER involved in BESS UCs has been gathered, resulting
in the following list:

• IEC 61970/IEC 61968 Common Information Model (CIM): Its main concern is to ensure interoperability
across power networks, [18]. Thereby, it offers a common semantic for EMS, Supervisory and
Control Data Acquisition (SCADA) and power system topology. This is formally represented by a
Unified Modeling Language (UML) model, including over 1300 classes.

• IEC 61850: It is mainly conceived to improve interoperability between IEDs in a power system
substation; nowadays, it has been extended to DERs and power utility components among other
areas [8]. Functional aspects of an IED are mapped into a Logical Node (LN). They are referenced
in the standard IEC 61850-7-4 and extended by IEC 61850-7-420 [19], where functionalities of DERs
such as inverters and batteries are modeled.

• IEC 62325: It provides a set of standards related to market communication using CIM, covering
data models for market participants and market operators.

• IEC 62056: It applies mainly to smart home and data exchange for meter reading.
• Open Platform Communications Unified Architecture (OPC UA): Since the EMS should support

the exchange with other IEDs distributed along the power utility grid, the consideration of
information models from the automation domain such as OPC UA is relevant. It is a standard
of OPC foundation that focuses on exchanging real-time data within the process automation.
It is platform-independent, thereby not tied to one operating system. It is standardized under
IEC 62541, part 5 of that standard defines the information model (IEC 62541-5) [20].

3.2. Smart Grid Control Application Development Approaches

The development of smart grid control applications has been supported by a collection of
approaches. Those are characterized by domain standards (SGAM, CIM, UML, etc.), well recognized
tools (MATLAB/Simulink, etc.) and frameworks (PSAL, etc.). A comparison that measures the
applicability of them through the design, proof-of-concept and implementation phase is carried out in
this section. A brief introduction to the approaches is firstly described below:

• Unified Modeling Language: UML is a general-purpose language for an object-oriented software
development [21]. It has been standardized by the Object Management Group (OMG) and approved
as an ISO standard. UML specifies behavior and structural diagrams to model software applications.
Thereby, it has been used in the power system domain to model use cases [22].

• System Modeling Language (SysML): SysML is conceived as an extension of a subset of UML. It is
mainly designed to support the system engineering process (i.e., specification, design). Thereby,
elements in UML not required by systems engineering were excluded to conceive SysML [21].

• IntelliGrid (IEC 62559): Intelligrid introduces a methodology to document and detail smart grid
UCs. From this, a UC template [23] that covers best practices to describe requirements engineering
is originated. In those templates, a UC may be described by a visual representation (e.g., UML
diagram). IEC 62559 is largely accepted by the power system community as an example the
adoption of it by the ELECTRA project [22].

• Smart Grid Architecture Model: SGAM is introduced by the SG-CG/RA (Smart Grid Coordination
Group/Reference Architecture) [24]. SGAM is conceived to model smart grid uses cases architecture
in a technology-neutral manner. It consists of five interoperability layers, those layers are matched
to a smart grid plane composed of domains and zones. The domains cover the electricity conversion
chain (i.e., transmission, distribution, etc.). The zones cover the automation pyramid (i.e., process,
field, etc.). An implementation of SGAM is conceived in [25] as a plugin of the Sparx Systems
Enterprise Architecture tool, it is called SGAM-Toolbox (SGAM-TB).

Appl. Sci. 2018, 8, 1326 6 of 33

• Power System Automation Language: PSAL is a DSL to model SGAM compatible use case
specifications. It supports control engineers during the whole development process, from use
case design to implementation and deployment. In addition to this, PSAL offers executable code
and communication configuration file generation [7].

• MATLAB/Simulink: This tool provides libraries to model and simulate electrical power systems.
C-code generation is also contemplated for a rapid prototyping of MATLAB/Simulink models.
Since this tool is largely accepted and employed in the power system domain, it is considered as a
worthy approach to be analyzed along the control application development process.

• IEC 61499: This approach provides a reference model for Distributed Control Systems (DCS) in
the domain of industrial processes. A main objective is to reach portability, configurability and
interoperability across DCSs [9].

• IEC 61131-3: IEC 61131 is an IEC standard supported by Programmable Logic Controller (PLC).
One of the main goals of IEC 61131 is to standardize the programming approaches. Thus, the part
IEC 61131-3 offers graphical and textual programming languages such as function block diagram
and structured text among others [10].

A comparison of the aforementioned approaches is outlined in [6], covering mainly specification
and design stages. A brief discussion of features analyzed at the design stage is addressed in the
following. At the function level, data models for UCs and graphical representations to detail the
structure and behavior of control applications are considered. Semantic data models of information
within control applications and DERs devices are evaluated at the information level. In turn,
mechanisms for representing communication architectures and the allocation of logical components
across hardware devices are assessed at the communication and component level.

The referred comparison study highlights that, in the specification phase, the outstanding
approaches are SysML and SGAM; however, they are not recommended at the design phase. In turn,
PSAL is recommended at the design stage. Nevertheless, the referred study does not consider
overlapping and complexity issues important to a multi-functional BESS implementation. Those issues
are addressed in the present study resulting in Table 2. This analysis demonstrates that there is no
preferable candidate that covers function and information domain at the design phase.

Execution of control strategies (i.e., function domain) at the proof-of-concept and implementation
stages are well supported by IEC 61499, IEC 61131-3 and MATLAB/Simulink. Rapid prototyping is
a feature not well-exploited by all the approaches and only PSAL and MATLAB address it. In this
context, MATLAB proposes generation of C-code from Simulink models and PSAL generates control
applications compliant with IEC 61499.

Table 2. Comparison of approaches and tools.

Phase Design Proof Implementation

Approach function inform. comm. comp. function function rapid prot.

UML # # # # d #

SysML d # # # d #

IntelliGrid d # # # # # #

SGAM-TB # d d # d d

PSAL D D # D D

MATLAB d # d D D D

IEC61499 d D D D D #

IEC61131-3 d D d D D #

Legend: not supported at all (#), not recommended (d), supported but not totally (), and well
supported (D).

Appl. Sci. 2018, 8, 1326 7 of 33

3.3. Ontologies for Smart Grid Applications

Ontologies search for a formal representation and categorization of information abstracted from
real systems. This is achieved by referencing the components: classes, individuals, relations, attributes,
rules, etc. [26]. The main advantage of ontologies is the inference of new knowledge from explicit
knowledge by the execution of reasoning mechanisms. The most well known ontology language is
Ontology Web Language (OWL), a key benefit offered is the expression of complex knowledge in a
machine-readable form. Moreover, due to OWL being based on description logics (DL), an expressive
formal knowledge representation is obtained.

DL give mechanisms to describe accurately ontologies by introducing the terminological (TBox)
and assertional (ABox) component [27]. The TBox contains sentences describing concepts and
relation between concepts. Instantiation of those concepts are carried out by the ABox. For instance,
the statement: an EMS embeds more than one service, belongs to the TBox, and the concepts identified
are EMS and service. In turn, the sentence: frequency-watt mode is a service belongs to the ABox, where
the individual frequency-watt is an instance of the concept service.

A mechanism to enhance the reasoning process embedded within ontologies is by stating rules,
which are statements in the form of “if X then Y” sentence. The W3C consortium recommends Semantic
Web Rules Languages (SWRL) to denote them.

The tasks typically solved with ontologies corresponds mainly to three categories. The first
one is the ontology alignment, the study [28] proposes an ontology matching process to align data
models of two broadly accepted smart grid standards the CIM and IEC 61850. Additionally, in the
study [29] an ontology-driven approach transforms control systems into IEC 61499 control applications
by using eSWRL an extension of the SWRL. Another goal of the various ontology applications is
the integration of knowledge (second category). An ontology for smart grid interactions in Building
Energy Management Systems (BEMS) to optimize end-user consumption is built in [30]. In that light,
models for communication technologies, interaction between stakeholders and grid structure were
addressed. Another example is an smart grid information model that combines weather, spatial and
time ontology applied to dynamic demand response applications [31]. The third category is related to
identification of critical errors and faults at the design phase of the engineering process [32,33]. It is
worth noting that none of the exposed approaches is multi-functional BESS oriented.

3.4. Model-Driven Engineering in Power Systems

The main focus of MDE is to improve the engineering process by enhancing the compatibility
between systems. Thus, MDE defines a common understanding of the system under study by the
establishment of models. In that basis, meta-modeling, model transformation and code generation
mechanisms are carried out [34]. MDE has been largely applied to manufacture systems [35] but not
substantially to the power utility domain. In this light, studies that support the automation of the
smart grid control application process by means of MDE are given in [7,11,36].

3.5. Research Needs and Requirements

A previous study evaluates the efforts done to tackle the issues exposed in Section 2.3, resulting
in the following four main requirements for this work:

• Alignment with Domain Standards (R1): An appropriate solution to model a multi-functional BESS
should benefit from the extensive data models provided by the mentioned standards in Section 3.1.

• Common Ontology for Multi-Functional BESS (R2): A comparison of smart grid control development
approaches was carried out in Section 3.2. This demonstrates a lack of one approach that fully
covers the function and information domains during the design phase. What is not covered is
a method to handle a high amount of data and also a vocabulary for a common understanding
of EMS applications. The characterization of EMS behavior is dismissed since it is completely
covered by other approaches (e.g., MATLAB, IEC 61499). Attempts to propose a pattern for control

Appl. Sci. 2018, 8, 1326 8 of 33

strategies were done in SGAM. However, it needs to be enlarged in order to cover features mainly
important to BESS use cases. An ontology is a good candidate to integrate the knowledge from
EMS as highlighted in Section 3.3. Thereby, R2 searches for an ontology focused on multi-functional
BESS and also for mechanisms to achieve a population of it. The resulting ontology that represents
and describes EMS should guide control engineers during the design stage. A derived benefit
from this is to enable the access of EMS capabilities to external systems (e.g., EMO).

• Identification of Conflicts and Inconsistencies (R3): An early diagnosis of potential conflicts within
EMS corresponds to the overlapping issue in Section 2.3. That topic was tackled in [37], as a result a
classification of conflicts (Conflict CI −CVI) and its modeling by ontologies is achieved. In addition
to this, the study formally defines DL queries to identify the classified conflicts and a handling
solution per conflict type is exposed and recommended. The outcomes from [37] should be
implemented in a whole solution that supports the design of EMS.

• Generation of Software Artifacts (R4): One of the issues highlighted in Section 2.3 requires
implementing EMS applications into different power system tools (i.e., design, emulator). Thereby,
the generation of software artifacts at the proof-of-concept and implementation phase should be
assured. MDE invokes two types of transformations: Model-to-model (M2M) and Model-to-text
(M2T) transformations by the setting up of transformation rules. Both transformations should be
carried out at the design stage, and this would improve the rapidity and interoperability of the
EMS engineering process. The generation of code and models from an EMS platform-independent
model is part of the requirement R4.

In summary, current efforts to face the issues encountered during the EMS development process
were evaluated. Thereby, current standards for the power utility automation domain are studied
(e.g., IEC 61850). As a result, R1 motivates the use of existent information models. Moreover,
approaches that support the whole chain of the development process (e.g., SGAM, PSAL) are compared
to realize the specific points that need to be targeted to address the complexity issue. This results in
R2, and it searches for a common vocabulary for BESS UCs. Afterwards, the overlapping within a
multi-functional BESS motivates the assessment of ontologies in smart grids. That topic was already
addressed in [38]. Hence, R3 envisages the implementation of the outcomes from the mentioned study
in EMSOnto. The interoperability issue is tackled by model-driven engineering techniques, and this
is conceptualized in R4. As a result, the basis for the conception of EMSOnto are formulated under
requirements R1-R4.

4. Application Development with the EMSOnto Approach

In the last section, the need for an engineering support for designing multi-functional BESS
control applications has been identified and discussed. This design is driven by the fulfillment of
certain requirements (i.e., R1–R4). In this context, model-driven engineering together with ontologies
are combined to offer a flexible solution—the so-called EMSOnto approach. This section introduces
the main ideas and concepts behind it, especially the EMS-ontology which forms the main part of
this approach. Thus, the design of the EMS-ontology is presented and discussed accordingly to
requirements R1–R4. Additionally, a user-friendly method to populate the ontology is also addressed.

4.1. General Overview of the Approach

The whole picture of the EMSOnto framework and the support it provides to control engineers
during EMS-development are shown in Figure 2. Across the different phases in the design and
development process, requirements R1–R4 are properly addressed.

Appl. Sci. 2018, 8, 1326 9 of 33

report of
inconsistencies

&
inferences

inference
of knowledge

EMSontology (OWL)

consistency
checking is
performed

align to

(concepts and
roles)

EMS − TBox

data storage

power system
simulator

software artifacts

configuration
file

reasoner

R4
specification
approach

Specification Design Proofofconcept, Implementation

smart grid
models

align to

 EMS − ABox

OWL
reasonner
engine &

rules to enlarge
inference

generate

set of queries

R3

Transformation
rules

populate the
with the use case
knowledge

ABox

reports are analyzed

(inferred data)
ABox

is queried by

Control engineerControl engineer

customize the software artifacts
build function behavior

R1

R2
use case &

IED
repository

use knowledge

Figure 2. Overview of the EMSOnto framework and corresponding design and engineering process.

As an initial step, the control engineer defines the specification of an EMS by selecting one of the
approaches from the list presented in Section 3.2. This knowledge may be used during the design
stage to pre-fill the assertional component of the EMS-ontology (ABox). Additionally, at the design
phase, further information about structure and data exchanged in the scope of the EMS application is
included within the EMS-ABox. Current smart grid data models ease the realization of the EMS-ABox
by providing knowledge of IEDs and corresponding control functions (like the Frequency-Watt or
Volt-VAR functions in IEC 61850 [12]). Such device-specific models are usually stored within a
repository and are being made available to the control engineer during the whole engineering process.

The other component needed to fully define the EMS-ontology is the terminological box (TBox).
A set of axioms conforms the EMS-TBox which serve as the basis for the inference of knowledge.
A main advantage of ontologies is consistency checking of the ABox regarding the pre-defined
TBox. This and the inference of knowledge are achieved by the setting up of a reasoner engine [39].
Additionally, a set of premises that lead to conclusions (i.e., rules) extends the quantity of knowledge
that can be inferred by just the EMS-TBox setup. On top of that, a list of queries leads to the extraction
of selected data. As a result, to achieve data inference the EMS-TBox, pre-defined rules and also
queries are implemented by the EMSOnto. This setup is transparent to the control engineer.

Once the ABox is fully defined and compliant to the TBox, corresponding reports can be generated
showing the critical and severe issues regarding the ABox. At this stage, the control engineer gets
helpful information about potential controller conflicts (i.e., at ABox level) which can be solved before
starting the implementation and proof-of-concept of EMS applications. Additionally, a list of potential
conflict-solving solutions per triggered inconsistency is also generated. At this stage, control engineers
require adapting the EMS-ABox to reach an error-free EMS database. The final step in the overall
process is to use model-driven engineering techniques in order to generate software artifacts and
platform-specific code as outlined in Figure 2.

4.2. Core EMS-Ontology Use Cases

The core part of the EMSOnto approach as depicted in Figure 2 is based on the design of the
EMS-TBox. This involves a deep understanding of the EMS application itself, the services deployed
within it, and the components controlled or monitored by the EMS. Because of that, an evaluation of
services provided by the EMS is carried out. Those services are exemplified by use cases UC1–UC5
(already introduced in Table 1). From that, a pattern to guide the design of the EMS-Tbox is presented.

Typically, an EMS application involves a main controller and its environment as shown in Figure 3.
The controller K carries out the corresponding control and optimization functions. The EMS itself
is focused on the provision of multiple services supported by a BESS (see UC1–UC5). Thus, many
services (Service1, . . . , Servicen) may be embedded in K. Each service follows specific control strategies.

Appl. Sci. 2018, 8, 1326 10 of 33

Hence, they need to measure states from the electrical process G, composed by IED such as batteries,
smart meters, photovoltaic generators, etc. Furthermore, services should receive setpoints (w1, . . . , wn)
to regulate certain states of the electrical process (y). As a result of the regulation process, command
values (u) are sent to G. Those control values are taken into account by G as long as a setpoint (m)
is available within IEDs. A similar occurrence is noted in the measurements f . They are available
only if the IEDs give access to their states (s). Besides the aforementioned values, a set of parameters
within the controllers (K1, . . . , Kn) defines the control behavior. For instance, the controller within UC1
(Qbat = αVpcc + β) requires the setting up of α and β.

Use cases UC1–UC5 are mapped into the control scheme presented in Figure 3 resulting in
Table 3. This mapping validates the modelling of EMS by the previous mentioned information
(i.e., w, Service, f , etc.). Other elements to be considered in the modelling of EMS are systems that
interact with EMS besides the process G. The aforementioned use cases address services interacting
with other stakeholders spread out in the distribution network (Distribution System Operator (DSO))
and the transmission network (Transmission System Operator (TSO)). In certain use cases, those
systems, denoted by A, require setting variables of K remotely (e.g., parameters). For instance, UC2
deploys within the controller K the logic Pbat = γFgrid + θ. The charging of the battery (Pbat) may be
configured remotely by the TSO by modifying the parameters γ and θ. Furthermore, case A needs
to monitor values from K, and the controller K should be capable of sending status values (s). At the
same time, A would receive feedback (f) from K. This leads to the conclusion that systems A, K and G
share many similarities and can be represented under a common pattern composed of variables shown
in Figure 3 and Table 3 (i.e., y, u, w, K, Service, . . .).

Controller
Service1

K1

BESS, Grid, PV,...

w1

Energy Management System

u

Process G

y

f

Controller K

= Ax + bux
′

s

System A

SCADA,
Market
operator,
TSO, DSO

≤ x ≤xmin xmaxController
Servicen

Kn

wn

m

Figure 3. Usage of EMS in the context of multi-functional BESS.

Table 3. Use cases built-in an EMS.

Servicen Regulat.-y Setpoint-wn Controller-Kn Control-u

Volt-VAr mode
(UC1)

δV

δV = Vpcc −Vnom
δV ≤ 3%Vnom
Vpcc: voltage at PCC
Vnom: nominal voltage

open loop
Qbat = αVpcc + β
α, β: constants

Qbat

Frequency-watt
(UC2)

δF
δF = Fgrid − Fnom
δF ≤ 2%Fnom
Fnom: nominal frequency

open loop
Pbat = γFgrid + θ

γ, θ: constants
Pbat

Self-consumption
(UC3)

Pgrid Pgrid = 0 PI control Pbat

Minimization of
costs with peak
shaving (UC4)

CF = Pgrid.FiT −Pgrid.EgP
CF: cash flow
FiT: feed-in tarif
EgP: electricity grid price

-
dynamic
programming,
Min ∑T

t=0(CF)
Pbat

Multi-functional
BESS (UC5)

δV
Pbat

δV ≤ 3%Vnom
Pbat = Phh + Ppcr
Phh: setpoint from house-holds
Ppcr: setpoint from PCR service

PI control
Pbat
Qbat

Appl. Sci. 2018, 8, 1326 11 of 33

4.3. Alignment with Smart Grid Domain Models

The EMS-ontology is aligned with smart grid domain standards to provide a broadly accepted
generic use case representation, covering requirement R1. In this context, appropriate domain
approaches have been analyzed and used as basis to formulate the EMS-ontology. In the following,
the concepts taken from those approaches are outlined.

The structure of the EMS-ontology is motivated from concepts defined within the SGAM
framework [24] and by elements introduced in the generic use case suggested by the Smart Grid
Coordination Group (SGCG)—sustainable processes [40]. Both approaches are being used in various
smart grid research and demonstration projects and are taken as a basis for modelling use cases [25],
indicating a broad acceptance of them by the power system community. The study [40] suggests a
classification of devices, actors and systems involved in a use case. Some of them are following outlined:
the concept High Level Use Case (HLUC) gives a general idea of a function and is technology-neutral.
An HLUC invokes Primary Use Cases (PUC) to detail its functionalities. In turn, the concept System is an
arrangement of components and systems to accomplish a use case. The mentioned concepts are taken
as a basis for modelling the function layer of the EMS-ontology.

Previous studies carried out in Section 3.1 presented a list of smart grid data models. Among
them, this article selects an IEC 61850 approach because of its maturity and the availability of data
models for power system components and functions mainly concerned by UC1–UC5. The standard
IEC 61850-7-3 [41] proposes data models for run-time signals in a communication structure. Hence,
the definition of common data classes for status information (CDCStatusInfo), measured information
(AnalogueInfo), control signals (CDCStatusCtl, CDCAnalogueCtl), status settings (CDCStatusSet), etc.
The attributes of that data are of type Boolean, TimeStamp, String, etc. The mentioned concepts
motivate the design of the information layer within the EMS-ontology.

4.4. EMS-Ontology for Modelling BESS Applications

This section provides an overview of the core elements of the EMS-ontology covering concepts,
roles, individuals and axioms.

As shown in Figure 3, the implementation of any UC requires the modeling of a controller K,
external systems A and electrical devices defined as components of the process G. The aforementioned
elements (A, K, G) are represented by the concept Application. Hence, Application contains
sub-classes of type Battery, EMS, Meter, etc. The concept System is created as a root of the
EMS-ontology. It gathers Application by the role hasApplication. As a consequence, a System
is composed of control applications (e.g., EMS), external systems (e.g., SCADA) and electrical
devices (e.g., BESS, PV). On the other hand, the controller K may implement more than one service
(Service1, . . . , Servicen). To represent those services, the concept HLUC is introduced. For instance,
voltage control, Primary Control Reserve (PCR) and self-consumption are abstracted by an HLUC.
Furthermore, a categorization of HLUC is carried out by the concepts: Power Quality (PQ), Power
Stability (PS), Minimization of Supply Costs (MSC), etc. [4].

Further details of an HLUC are given by a PUC, where the services provided by a HLUC are listed.
Moreover, a PUC may contain other services, which in turn are also represented by a PUC. For instance,
a PUC(voltage control) requires embedding further services such as a PUC(state estimator) and PUC(PI
controller). To achieve that, the role hasPUC is created. It has the concepts PUC, HLUC as domain and PUC
as range. Additionally, in case a PUC requires implementing a control scheme, the concepts ControlGoal
and Constraint are suggested. ControlGoal represents a control problem lim

t→∞
(yre f − y) → 0 or an

optimization problem Minimize f (x) subject to gi(x) ≤ 0, hj(x) = 0 constraints. The equality and
inequality constraints are represented by the Constraint concept.

The introduced concepts and roles are illustrated in Figure 4. To fully understand such representation,
it is imperative to comprehend the core elements of an ontology (i.e., role, concepts, etc.) [26]. The formal

Appl. Sci. 2018, 8, 1326 12 of 33

representation of EMS-ontology is based on DL [27] extended with the concrete-domain concept [42].
A full description of it is given in Appendix A.

hasHLUC
hasType

Application HLUC

BESS EMS

hasApplication

System

hasPUC

hasPUC

manipulate

PUC

hasType
hasDescription

UC hasVariable

Variable

concrete value
concept

role
concrete role

PQ MSC

is a

hasFctVar

ControlGoal ConstrainthasConst

IsVarLinkVar

xsd:string

xsd:string

... ...

IsFcLinkFc

Figure 4. Graph representation of EMS structure.

The implementation of a multi-functional system within the controller requires the exchange of
information with the field process and other systems. A model of this data is formally defined by a set
of concepts having as the main class the concept External (see Figure 5). External is of type Input
or Output. An Input is classified by Feedback and Setpoint. In turn, the concept Output is specified
under Control and Status. A mapping of those concepts to the scheme in Figure 3 is stated as follows:
Control(u), Setpoint{w1, ..., wn, m}, Feedback (f), Status (s).

On the other hand, internal variables of A, K, G are modeled by the Internal concept. Thereby,
Internal is structured under State and Param. Param represents variables that do not change
dynamically (i.e., parameters). State conceptualizes variables that change over time. For instance,
if G is represented under a Linear Time Invariant (LTI) Single Input Single Output (SISO) system
x
′
= Ax + bu, then the variable x is represented by a State and b by a Param.

Values attributed to dynamic and static variables may be binary (i.e., 1 and 0), numeric data
(i.e., continuous and discrete) and character. Those are represented by Binary, Numeric, Char
concepts. Attributes assigned to them are modeled by the roles hasTimeStamp, hasUnit, hasFormat,
etc. (see Figure 6). The role hasTimeStamp is used to reach accuracy in acquired values, enabling the
synchronization of an internal time (e.g., time in K) with an external time (e.g., time in G). Other
attributes of numeric values such as the format, unit and range are also addressed.

hasName
hasDescription

hasType
Variable

External
IsAssignedTo

Internal

Input IsAssignedTo Output Param

Feedback Setpoint Control Status

State

xsd:string

Manipulated

Figure 5. Graph representation of variables’ types.

Appl. Sci. 2018, 8, 1326 13 of 33

Variable VariableValue hasTimeStamp

hasFormat
hasUnit

hasMax
hasMin

hasAnaValue

Numeric

hasDiValue

Binary

hasVarValue xsd:DateTime

xsd:string

hasCharValue

Char

xsd:float xsd:boolean xsd:string

Figure 6. Graph representation of variables’ attributes.

UCs embedded within an EMS that involves battery support are surrounded by common
particularities. Thus, a pattern that represents a generic UC can be reached (i.e., HLUC or PUC). One of
those particularities is based on the fact that a UC is bound to a minimal storage capacity. For instance,
a PCR use case requires a minimum of 1 MW to allow a pool of small BESS to participate [2], hence
the concept BessSize. In a multi-functional BESS context, the battery needs to share its full capacity
among services. Thus, the capacity rented per HLUC is modelled by the UCAh concept. An example
of this is presented in UC5, where three services rent the whole capacity of the BESS. Household,
PCR, and voltage control rent 20%, 40% and 40%, respectively. Those values are modelled by UCAh.
On the other hand, not all the UCs are enabled at the same time, thus a flag that represents the current
operation of a UC is modeled by Ena. Moreover, a State-of-Charge (SoC) is calculated per UC and
represented by the concept UCSoC. This value monitors the support given by a battery to a certain UC
and guides the monetization of provided power. Furthermore, a way to manage conflicts when more
than one UC operates is by setting up priorities, hence the concept Priority.

The mentioned concepts are subclasses of the concept ParamUC (see Figure 7). Additionally,
parameters of a battery are grouped and modelled within the concept ParamDevice. For instance,
the concept Pmax represents maximum active power to be set into the battery and BattAh the capacity
of a battery. States of an electrical device such as active power, reactive power, etc. are modelled
within the concept State by P, Q, respectively. In addition to this, information regarding controller
requirements such as error, settling time, available time, etc. are represented under the concept
ParamCont.

ParamDeviceState

Param

Pmax BattAh P Q

ParamUC

Ena Priority ...

Internal

... ...

ParamCont

AvailTime SettlingTime ...

Figure 7. Graph representation of parameters and states.

Concepts and roles of the TBox component were previously addressed. They enable the
classification of EMS-knowledge by concepts and the modeling of relations between data according
to roles specification. Besides this, axioms defined within the TBox and a set of rules guarantee the
inference of implicit data from initial knowledge stated by domain experts. An extract of those rules
and axioms are described by DL language and SWRL in Table 4 as follows.

Appl. Sci. 2018, 8, 1326 14 of 33

Table 4. Axioms within the EMS-TBox and SWRL rules.

SWRL Rule & DL Axiom Description

hasControl v hasVariable,
T v ∀hasControl.Control

The role hasControl is included within hasVariable. The range of
hasControl is Control.

hasVariable(x, y)
∧

Control(y)→
hasControl(x, y)

An individual x hasVariable y, if the variable y is of type Control. Then,
it is deduced that, the individual x hasControl y.

T v ∀IsVarLinkVar.Variable,
∃IsVarLinkVar.T v Variable

The role IsVarLinkVar has as range and domain the concept Variable.
The assertion IsVarLinkVar(x,y) states that a manipulation of Variable(x)
would affect the value of Variable(y).

hasFctVar ◦ IsVarLinkVar v hasFctVar,
hasFctVar ◦ hasFctVar− v IsFcLinkFc,
manipulate ◦ IsFcLinkFc v manipulate

The role hasFctVar relates a ControlGoal with a Variable. The role
IsFcLinkFc has as range and domain the concept ControlGoal.
The constructor ◦ is of type composition [27]. It allows for stating a complex
role inclusion axiom. The referred axioms investigate a ControlGoal that is
manipulated by a PUC.

4.5. Templates for Application Design

This section addresses requirement R2. Thereby, a mechanism to instantiate the previous
introduced EMS-TBox is proposed, resulting in the realization of the EMS-ABox.

In order to provide the necessary information about the EMS, EMSOnto proposes the use
of EMS-templates, a set of spreadsheets providing an environment for collecting and storing
EMS-application related data. In this context, the usability of those templates is demonstrated by
considering use case UC5 as an example.

The structure of UC5 is represented in Table 5. From there, the following knowledge is
available: A System(Sys) contains four applications: Application{Battery, HouseHold, Meter, EMS}.
In addition to that, an application type is conferred to them by instantiating the role hasType.
Hence, hasType {(Battery, BESS), (HouseHold, Load), . . . }. This allows for importing models already
defined within the IED repository such as BESS, Meter, Load. The Application(EMS) requires
providing three services that are represented under HLUC{VoltageCtr, FW, Sel f C}, the description
of them is given in Table 5. Sub-concepts of HLUC (e.g., PQ, PS) are introduced to classify the
services, hence the definition of hasType{(VoltageCtr, PQ), (FW, PS), (Sel f C, MSC)}. Furthermore,
an extended specification of functions within HLUC are given by the role hasPUC as follows hasPUC
{(VoltageCtr, PIControl), (FW, K1), (Sel f C, K2)}. The first pair represents the assertion: an HLUC
called VoltageCtr contains a PUC called PIControl (i.e., PI controller). The same is expected for the
other pairs. Further details of an HLUC and PUC are hereinafter given.

The concept ParamUC suggests parameters for a generic UC (PUC or HLUC). Thereby, the inheritance
of a generic UC by the previously defined HLUC such as VoltageCtr would generate a list of attached
parameters. As a result, the inference of the following assertions is achieved: Priority(prt), UCSoC(SoC)
and hasParameter{(VoltageCtr, prt), (VoltageCtr, SoC)}. The role hasParameter represents a sub-role
of hasVariable having as a range the concept Param. The priority and SoC assigned to VoltageCtr are
represented by Priority(prt) and UCSoC(SoC), respectively (see Table 6). Other parameters were also
generated, but not presented in the table.

Appl. Sci. 2018, 8, 1326 15 of 33

Table 5. Structure of an EMS (e.g., UC5).

System Application Application
Description

Type HLUC HLUC description Type PUC

Sys Battery battery connected
to the grid

BESS - - - -

Sys Meter model of a meter
located at PCC

Meter - - - -

Sys HouseHold pool of households
that demands
active power

Load - - - -

Sys EMS control
application
that deploys
multi-services

- VoltageCtr battery supports
the control of
voltage at PCC
point

PQ PIControl

Sys EMS control
application
that deploys
multi-services

- FW battery supports
the regulation of
grid frequency

PS K1

Sys EMS control
application
that deploys
multi-services

- SelfC self-consumption
is provided to a
pool of houses

MSC K2

Table 6. Parameters of a HLUC (e.g., VoltageCtr).

HLUC Variable Type Variable Description Value Format Unit Min Max

VoltageCtr prt Priority priority of the use case 2 Float - - -

VoltageCtr SoC UCSoC SoC of the use case 40 Float % 20 80

A PUC usually needs to read measurement values from a process (G), and, according to
stipulated references, a control algorithm is carried out and control commands are sent back to
G. Bringing this to the UC5 example, a PI controller searches for the control of the voltage deviation
at the PCC point (i.e., δV). To this end, the voltage of the PCC point (f d_Vpcc) is measured
and retrieved from a meter. Additionally, a control signal is sent to charge or discharge the
battery (ct_Qbat). Formatting those assertions according to the ABox syntax produces the following
instantiations: hasControl(PIControl, ct_Qbat), Control(ct_Qbat), hasFeedback(PIControl, f d_Vpcc)

and Feedback(f d_Vpcc). The role hasControl was introduced in Table 4, and a similar logic applies for
hasFeedback, but having as range the concept Feedback. Table 7 shows the EMS-template to gather
the aforementioned knowledge, and a detail of variables’ attributes is also exposed.

The table referred to also exposes the knowledge needed to represent the control goal assigned to
PUC(PIControl). The value to be regulated by PUC(PIControl) is represented by ControlGoal(Cg1) and
manipulate(PIControl, Cg1). Due to ControlGoal(Cg1) searching for the regulation of (Vpcc −Vnom),
the instantiations Manipulated(Vpcc) and Param(Vnom) are created. The association of them to
ControlGoal(Cg1) is given by the role hasFctVar, previously introduced in Table 4.

Table 7. Tabular data to implement detail of a PUC (e.g., PIControl).

PUC Variable Type variable description Value Format Unit Min Max

PIControl f d_Vpcc Feedback voltage read from meter 230 double volt - -

PIControl ct_Qbat Control signal to control react.
power of a battery

8 double kVar -10 +10

PUC ControlGoal control goal description Var. Type IsVarLinkVar

PIControl Cg1 (Vpcc −Vnom) is regulated Vpcc Manipulated -

PIControl Cg1 (Vpcc −Vnom) is regulated Vnom Param -

Appl. Sci. 2018, 8, 1326 16 of 33

Elements within the process G and external applications A are also modelled by the EMS-ontology
using the previously presented templates. Benefits arising from EMS-template practices are
discussed below:

• Knowledge is consistent with the TBox: EMS-templates set restrictions to the data gathered within
the spreadsheets. Control engineers manually fill those spreadsheets, where data entered
is pre-checked to be aligned to the already specified TBox. For instance, the knowledge:
a control signal is assigned only to variables of type setpoint, is represented by the axiom Control v
∀IsAssignedBy.Setpoint within the TBox. Due to EMS-templates being built under the TBox basis,
only setpoints can be associated with control variables in the scope of EMS-templates.

• Gathering unlimited amount of data: None of the approaches already presented in Table 2 support
control engineers with an easy collection and treatment of data. EMS-templates ease the gathering
of data because of the tabular format. Moreover, filtering, comparison, ordering, exporting, data
formatting, etc. are also possible in a large set of tools to process tabular format (e.g., Microsoft
Excel, OpenOffice, LibreOffice Calc, etc.).

• Setting-up of models: EMS-templates facilitate the creation of pre-defined models to be stored within
the IED and use case repository for further use (e.g., VoltageCtr, PIControl). Those models are
afterward assigned to individuals of type EMS, BESS, HLUC, etc. by the role hasType. Moreover,
EMS-templates enable the inspection of available models within the repository.

4.6. Controller Inconsistencies Identification

At this stage, all the required knowledge is gathered through EMS-templates. Further analysis
enables consistency checking and inference of conflicts. Consistency checking determines if the ABox
is an instance of the TBox. Once this is accomplished, inferences within the ABox are discovered due
to axioms defined in the TBox and also a set of rules as depicted in Table 4. This section presents the
inconsistencies addressed by EMSOnto, conforming to the requirement R3.

A deep study of conflicts identification and handling is carried out in [37]. A classification of
conflicts types (CI − CVI) is formally defined and evaluated there. The encoding and formulation
of conflict detection are defined by DL queries. The ontology defined in [37] is considered in the
EMS-ontology design. As a consequence, EMS-ontology is able to respond to conflict identification and
their handling. To cover the mentioned features, an extension of EMS-templates targeting knowledge
especially important to conflict detection is carried out. An extract of those EMS-templates is presented
in Table 8.

The example in Table 8 states assertions regarding a control goal and its environment in order to
investigate the conflict CI . To this end, the following assertions are included: manipulate{(puc1, Cg1),
(puc2, Cg2)}, Control(x), Manipulated(y), hasFctVar{(Cg1, x), (Cg2, y)} and IsVarLinkVar(x, y).
Applying the axioms regarding the role manipulate and hasFctVar defined in Table 4, the inference
manipulate(puc1, Cg2) is raised. Inferred knowledge is highlighted in Table 8.

The aformentioned knowledge is enough to investigate the conflict CI by executing the query QCI
given by the axiom: ControlGoal u 2Manipulated−.PUC, which investigates control goals manipulated
or affected by at least two different UCs. The execution of that query concludes that ControlGoal{Cg2}
and ControlGoal{Cg1} are in conflict with type CI .

Table 8. EMS-template to detect conflict CI .

PUC ControlGoal Control Goal Description manipulated− Variable Type IsVarLinkVar

puc1 Cg1 Min(F(x)) puc1 x Control y

puc2 Cg2

lim
t→∞

(y− yre f)→ 0,

y: manipulated value,
yre f : setpoint

puc2, puc1 y Manipulated -

Appl. Sci. 2018, 8, 1326 17 of 33

4.7. Generation of Software Artifacts

As a final step, the generation of code from a neutral-technology platform is achieved. This code is
not restricted to programming languages. Thus, other kinds of software artifacts such as documentation
or configuration files may be produced as well. To accomplish that, specific information from
EMS-templates is extracted and formated according to a target platform. That information is gathered
by the means of selected queries. A non-exhaustive list of them is presented in Table 9. Information
retrieved from query QI helps to gather the attributes regarding the status of an HLUC (i.e., enabled
or disabled). Besides this, the query QI I is used to know the priority values set into a HLUC. On the
other hand, reports that show the functionalities provided by an EMS can be obtained from the queries
QI I I −QV .

In this work, a MATLAB/Simulink block is generated as well as MATLAB-code (for details,
see Section 5). It should be stressed that EMS-ontology do not offer support for function behaviour
representation. Indeed, in the related work section (see Section 3.2), it is mentioned that other
approaches such as IEC 61499, IEC 61131-3 and MATLAB/Simulink cover adequately that feature.
Hence, EMSOnto is meant to work with the support of other approaches to accomplish a full control
application implementation.

Table 9. Querying the EMS-ABox.

Query Description DL Query

QI What is the Enable parameter of a specific HLUC named hluc? Ena u hasVariable−.HLUC{hluc}

QI I What is the Priority parameter of a specific HLUC named hluc ? Priority u hasVariable−.HLUC{hluc}

QI I I What are the main functionalities to be provided by an application
of type EMS ?

HLUC u hasHLUC−.(Application u EMS)

QIV What are the sub-functionalities provided by a HLUC? PUC u hasPUC−.(HLUC)

QV What are the parameters of a specific controller named cont? ParamCon u hasVariable−.PUC{cont}

5. Proof-of-Concept Evaluation

In this section, the steps to be followed by a control engineer to achieve the design and validation
of a selected use case example by the support of EMSOnto are shown. In this context, the phases
specification, design, proof-of-concept and laboratory validation are covered. The realization of the
mentioned development process enables demonstrating the benefits of EMSOnto as well as to grasp
its limitations. Moreover, potential future work to improve EMSOnto are also apprehended.

5.1. Framework Prototype and Validation Example

EMSOnto is evaluated under the execution of a control application that implements an
arrangement of use cases referenced in Table 3. The control application to be analyzed implements
Frequency-Watt (FW)-UC2 and Self-Consumption(SelfC)-UC3. This UC example is called Customer
Energy Management System (CEMS), a schema of the CEMS architecture is depicted in Figure 8.
Mathematical models of the battery and control strategies embedded within the CEMS, besides profiles
for PV generation, load consumption and grid behavior are outlined below.

Appl. Sci. 2018, 8, 1326 18 of 33

Meter

LinearControl Limit_SoC

PI_Control

PFW
ref

ProcessController (CEMS)

FW

SelfC

Pgrid

SoCbat

SoCbat

measured

control

Pref

Pbat

BESS

PV

Load

Grid

Pbat

Ppv

Pload

Pgrid

Limit_SoC
P

SelfC

ref

Pref

Fgrid

P
ref

grid

SoCbat

Fgrid

Pgrid

Fgrid

Figure 8. CEMS structure, systems and sub-systems

5.1.1. BESS Model

The used battery model follows the mechanisms as described in [43]. Thereby, the model is
represented by a voltage source (Ebat) in series with a resistance (Rbat) as indicated in Equation (1).
The voltage of the battery (Vbat) depends nonlinearly on the SoC of the battery (SoCbat), and this is
derived from the value of Ebat given by Equation (2). The identification of the parameters A and B are
detailed in [43]. The SoCbat is estimated by integrating the battery’s current (Ibat) on an interval time as
shown in Equation (3), where Q represents the battery’s total capacity and SoC(0) the initial SoC:

Vbat = Ebat − Rbat Ibat, (1)

Ebat = E0 − k(
1− SoCbat

SoCbat
)Q + Ae−B(1−SoCbat)Q, (2)

SoCbat = SoC(0) +
∫ Ibat

Q
dt. (3)

5.1.2. PV, Load, Grid Profiles

The PV DC generation was obtained from a model dependent in temperature and irradiance
level as suggested by [44]. The temperature and irradiance data are measured with a sampling rate of
60 s and were taken over the year 2005 in Vienna, Austria from the satellite-derived HC3 Archives
Web service [45]. A 60 s PV DC measurement profile is used as input data for the PV inverter model.
This DC measurement is converted into AC power by considering an efficiency conversion factor.
Active power generation data from Austrian households was provided by the project Autonomous
Decentralised Renewable Energy Systems (ADRES) [46]. The measurements correspond to the year
2009 and are taken with a resolution of 1 s. On the other hand, the frequency profile was obtained from
ENTSO-E Netzfrequenz [47] and corresponds to January 2018. The power of the grid is calculated
from Equation (4) assuming that the measurements Pbat, Ppv, Pload are known:

Pgrid + Pbat + Ppv + Pload = 0. (4)

5.1.3. Control Mechanism

The CEI 0-21 standard specifies a frequency-dependent active power limitation for DER connected
into the low-voltage grid [48]. Guidelines defined in that standard are fulfilled in the FW mode. In that
sense, FW commands the active power of the battery to balance the frequency of the grid as stated in
Equation (5). The resulted active power value PFW

re f is restricted to technical limitations of the battery
(i.e., SoC and active power limits) as indicated in Equation (6). SelfC controls the BESS to assure that
no energy from the grid is taken. To achieve that a PI controller is designed by following Equation (7),
the resulted active power value PSel f C

re f is also restricted by Equation (6):

Appl. Sci. 2018, 8, 1326 19 of 33

∆PFW
re f = α∆Fgrid, (5)

SoCmin < SoC < SoCmax, Pmin
bat < Pbat < Pmax

bat , (6)

e = Pre f
grid − Pgrid, Pre f

grid = 0, PSel f C
re f = Kpe + Ki

∫ t

0
e(τ)dτ. (7)

The specification, design and proof-of-concept of CEMS are deployed under EMSOnto, and these
steps are addressed in the following.

5.2. Realized Development Example

This section focuses on the steps carried out by the control engineer in order to realize the
aforementioned CEMS application. The whole realization process is structured in four steps as shown
in Figure 9. The first step is focused on the description of function and information domain of the CEMS,
and this knowledge is gathered within the EMS-ABox. This is realized by the control engineer having
as a guideline the EMS-templates. Once the EMS-ABox is filled, an analysis to infer implicit knowledge
is undertaken by one engine reasoner. The inferred data is queried to evaluate inconsistencies that
need to be solved before any further design of the CEMS, and those inconsistencies are presented
in the form of reports. They are analyzed by the control engineer. This in turn performs a clearance
and corrections over the EMS-ABox. This process is repeated until the control engineer approves the
absence of inconsistencies within the EMS-ABox. The EMS-ABox is transformed into software artifacts
that are useful during the proof-of-concept phase. A clearance and adjustment of them is also required.
Details of the aforementioned steps are explained as follows.

Conflict between
FW and SelfC,

CI

…

SGAM
Toolbox

Specification Design Proofofconcept

 () analysisABox

use case
knowledge

EMS
data base
() ABox

1

inferenceOWL ontology
SWRL rules transformEMS

data base
(inferred)

is queried and processed by

SPARQL
queries &

processing of
data by JAVA

reports are analyzed and the
EMStemplates are
corrected.

3

report of
inconsistencies

generate
Transformation

rules
(M2M, M2T)

�����������(CEMS),

�������(CEMS, FW),

�������(CEMS, Self C), …

��������(FW, prt),

��������(FW, SettlingTime), …

Function blocks

configuration
scripts

build functions
behavior and
customize
software artifacts

4

2

use case &
IED

repository

create IEDs models:

create use case models:

detail use cases:

�����������(BESS),

�����������(BESS, sp_P),

��������(BESS,)Pmax

����{PS, MSC}

�������(FW, PS),

�������(Self C, MSC), …

Control engineer

use generic models

Control engineer

Figure 9. EMSOnto in practice by realizing the CEMS.

5.2.1. Step 1: CEMS Description via EMS-Templates

Control engineers employ the EMS-templates to specify knowledge about the information,
function and component layers of the CEMS. This action is referenced in Figure 9 by Step 1 and
detailed in the following paragraphs.

In the specification phase, a list of approaches are offered to control engineers to formally describe
the CEMS (e.g., UML, SysML) as exposed in Table 2. Among the different options, the SGAM-Toolbox
was chosen. Hence, a representation of the CEMS previously outlined in Figure 8 is matched to
the SGAM matrix (information layer), where components of the system under study and also the
exchanged information across them is illustrated, see Figure 10. The CEMS controller is located at
the customer premises. The BESS and PV are situated at the DER-domain and field/process-zone.

Appl. Sci. 2018, 8, 1326 20 of 33

The meter located at the PCC point belongs to the customer-domain and field-zone. In turn, the
low-voltage distribution grid and loads are matched to the process-zone. SGAM-Toolbox offers more
schemes to detail the structure and behavior of control applications, covering the other layers of SGAM
such as component and communication.

After the specification phase is concluded, control engineers reuse the derived knowledge
at the design stage to fill the EMS-templates. One template is focused only on the structure and
functionalities covered by CEMS (see Table 10). A System(Sys) is composed of Application{CEMS,
BESS, PV, . . . }. Services carried out by them are described under HLUC, for instance Application(CEMS)
owns HLUC{FW, SelfC}. A description and a type are assigned to HLUC and Application by the roles
hasDescription and hasType. Hence, hasDescription(FW, active power . . .) and hasType(FW,PS)
belong to HLUC(FW).

Generation Transmission Distribution DER Customer

Market

 ,Pgrid Fgrid

Station

Entreprise

Operation

Field

Process

Pref

So ,Cbat Pbat

BESS PV

Meter

CEMS

Load

Figure 10. CEMS represented under a SGAM information layer.

Table 10. Knowledge of CEMS-structure.

System Application Description Type HLUC Description Type

Sys

CEMS customer energy management
system -

FW active power is injected
to support frequency
regulation

PS

SelfC power from the grid is
avoided

MSC

BESS battery energy storage
system

BESS - - -

PV photovoltaic system PV - - -

Meter meter located at the pcc
point

Meter - - -

Load consumption of energy by
the household

Load - - -

Grid grid simulation to model
the frequency and power
behavior

Grid - - -

A further description of HLUC is given by the concept PUC as shown in Table 11. Hence, the
HLUC(FW) contains PUC{Linear-Control, Limit_SoC}. A description of PUCs is given as well as
the category details (e.g., FWHZ). Type specification leads to inherit Variables from the UC
repository. Therefore, variables not inherited should be specified by the control engineer as follows:
the PUC(Limit_SoC) controls Application(BESS) through Control(ct_BESS_P), the measurement of
the frequency at the PCC point is derived from Feedback(f d_Meter_F). Moreover, PUC(PI_Control)
controls the battery by commanding Control(ct_BESS_P).

Appl. Sci. 2018, 8, 1326 21 of 33

Table 11. Description of PUCs within HLUC(FW, SelfC).

HLUC PUC Description Type Variable Description Type

FW Linear-Control The active power
is decreased or
augmented linearly
according to
frequency variations

FWHZ f d_Meter_F feedback of the
frequency at the
PCC point

Feedback

FW Limit_SoC SoC of the battery
is monitored before
setting Pbat

- ct_BESS_P signal to control the
active power of the
battery

Control

SelfC PI_Control PI control is
executed to keep
Pgrid equal to zero

- ct_BESS_P signal to control the
active power of the
battery

Control

A generic HLUC was achieved by the definition of ParamUC and ParamCont as exposed in Section 4.4.
PS and MSC being generic HLUCs, the matching of HLUC{FW, SelfC} to PS and MSC respectively derives
the population of HLUCs as shown in Table 12. In this context, a priority is set to HLUC(FW) by stating
ParamUC(Prt). Information related to the controller features is described under ParamCont. Hence,
the settling-time of HLUC(FW) is set to 30 s and stated by ParamCont(SettlingTime).

Table 12. Parameters of HLUC(FW).

HLUC Variable Description Type Value Format Unit

FW Prt priority of the use case ParamUC 1 Float -

FW SettlingTime time within the reference value is reached ParamCont 30 Float sec

IED data models (e.g., BESS, meter) are created by the control engineer and stored within the IED
repository to be used in future EMS design. A battery model is shown in Table 13. It was not the aim of
EMS-templates to gather data from control algorithms deployed within the BESS. Thus, only internal
and external variables of the battery are considered within the model. In addition to this, those models
assist with identifying the variables available to the CEMS such as Setpoint and Status.

Table 13. Battery model created by a control engineer.

Application Variable Description Type Value Format Unit

BESS sp_P reference active power to control
charge/discharge

Setpoint - double kW

Pmax maximum active power Param 4 double kW

The IED repository leverages models from IEC 61850, a large list of function and IED models is
detailed in the standard. A model suitable to PUC(Linear-Control) is extracted from the logical node
FWHZ exposed in the standard IEC 61850-90-7 [12], resulting in Table 14.

Table 14. PUC(Linear-Control) conception from LN-FWHZ.

PUC Variable Description Type Value Format Unit

Linear-Control Wgra active power gradient in percent of frozen
active power value per Hz

Param 40% Float W/Hz

Linear-Control HzStr delta frequency between start frequency
and nominal frequency

Param 0.04 Float Hz

Linear-Control HzStop delta frequency between stop frequency and
nominal frequency

Param 0.01 Float Hz

Appl. Sci. 2018, 8, 1326 22 of 33

The detection of certain inconsistencies requires the gathering of extra specific information—for
instance, the detection of conflict CI requires filling Table 15. That conflict looks for a coupling across
PUCs or HLUCs. The CI identification is based on a proper definition of control goals to be carried out
by PUCs. In this light, the variables involved within a control goal are specified (i.e., Manipulated,
Control) as follows: PUC(Linear-Control) performs ControlGoal(Cg1), its objective is to manipulate
the power at the electrical connection point of the battery (Pbat). In turn, PUC(PI_Control) satisfies
ControlGoal(Cg2) and requires the manipulation of Pgrid. In addition to this, the dependency between
the variables Pbat and Pgrid is derived from Pbat + Pload + Pgrid + Ppv = 0. Hence, Linear-Control.Pbat
affects the value of PI_Control.Pgrid.

Table 15. Information to detect conflict CI .

PUC ControlGoal Control Goal Description Variable Type IsVarLinkVar

Linear-Control Cg1 Pbat = γFgrid + θ Pbat Manipulated PI_Control.Pgrid

PI_Control Cg2 Pgrid = 0 Pgrid Manipulated -

5.2.2. Step 2: Assertions Derived from EMS-ABox

This section describes the support given by EMSOnto to control engineers in order to build
an error-free EMS-ABox. In that sense, an inference process based on the knowledge reached from
Step 1 is carried out. The inferred data is queried to generate reports that highlight inconsistencies
within the EMS-ABox. Additionally, conflict-solving solutions are included in those reports. Tools and
approaches to implement the mentioned procedures are also introduced in this section.

Once the gathering of knowledge about the CEMS is complete (EMS-ABox), mechanisms for
consistency-checking and inference need to be carried out. Those mechanisms are implemented by the
Apache Jena framework, an open source Java framework used to implement semantic web applications.
Jena provides a predefined OWL reasoner and a generic rule reasoner, especially important to SWRL
rules’ definition. It is worth mentioning that Jena requires the knowledge in Resource Description
Framework (RDF) format to perform any type of inference. Thus, Google Refine with RDF extension is
employed to transform data from EMS-templates into RDF format.

The inferred knowledge is queried to localize any inconsistency as defined in Section 4.6. Those
queries are implemented using SPARQL update, an RDF query language. A set of handling solutions
to detect conflicts (CI , . . . , CVI) is properly addressed in [38] and implemented by EMSOnto. In case
CI and CV are raised together, EMSOnto proposes the setting up of priorities per PUC. The PUC with
highest priority is considered and the others are dismissed. Knowledge needed to carry out the
mentioned handling solution is attached to a PUC named CI.

The data retrieved from EMS-ABox is formatted and handled to control engineers in the form
of reports, and an extraction of those reports is shown in Table 16. The final analysis carried out by
control engineers is also depicted. Due to the conflicts CI and CV being raised together, the handling
solution advised by EMSOnto is PUC(CI).

Table 16. Conflicts triggered by reports and control engineer analysis.

Inconsistency Detected Conclusion Derived from Queries Control Engineer Analysis

Multi-objective
optimization/CI

D Linear-Control and PI_Control affect the
same variable Pgrid. PI_Control requires
Pgrid to be zero and Linear-Control
requires Pbat equal to γFgrid + θ, which
indirectly affects Pgrid

This conflict is considered as severe, the
recommendation from EMSOnto (PUC(CI)) is
implemented

Setpoint set by
at least two use
cases/CV

D The setpoint sp_P of the PUC(BESS) is set
by two PUC{Limit_SoC, PI_Control}

The commanding of the same setpoint by two
different PUC are not considered as a harmful
conflict. However due to the presence of CI ,
only one control signal should be sent

Appl. Sci. 2018, 8, 1326 23 of 33

5.2.3. Step3: Design of the EMS based on Analysis of Reports

Step3 involves the manual work realized by control engineers to reach an error-free EMS-ABox
that will be deployed during the proof-of-concept and implementation phase.

An analysis of reports generated during Step2 is carried out, leading in some cases to an
adjustment and correction of the EMS-ABox. This correction may depend on the handling solutions
provided by EMSOnto. EMSOnto owns a set of pre-defined PUC to handle conflicts, and they are
available within the UC repository. The one that manages the conflict CI and CV is PUC(CI).

The PUC(Handling) is created by the control engineer to manage CI and CV . The type of it is
assigned to CI, thus an automatic generation of variables is achieved. An extract of this is shown
in Table 17. A unique active power signal to control the battery is chosen among the variables
Sel f C_BESS_P and FW_BESS_P. The higher priority is allocated to HLUC(FW) as assigned in Table 18.
Once the EMS-ABox is updated and extended, Step 2 is executed again, and the new report does not
detect new inconsistencies.

Table 17. PUC(Handling) to resolve CI and CV .

HLUC PUC Description Type Variable Description Type

CEMS Handling
A function that resolves
the conflicts between FW
and SelfC

CI

SelfC_BESS_P signal sent by the HLUC
SelfC to control the
active power of the
battery

Feedback

FW_BESS_P signal sent by the HLUC
FW to control the active
power of the battery

Feedback

Table 18. Configuration of priorities.

HLUC Variable Description Type Value Format Unit

FW Prt priority of the use case ParamUC 2 Float -

SelfC Prt priority of the use case ParamUC 1 Float -

5.2.4. Step 4: Customization of the Software Artifacts

The knowledge derived from Steps 1–3 is transformed into software artifacts important for the
validation of EMS. This is achieved in Step 4 by performing model-driven engineering techniques.

The proof-of-concept of the CEMS is implemented in MATLAB/Simulink. A simulink model
supports a block diagram representation, code generation, simulation of dynamic systems and
customized block libraries. In turn, MATLAB provides the development of algorithms in textual
programming form. The EMS-templates contain information about the CEMS structure, which is
transformed into block diagrams within a Simulink model. This is reached by a set of transformation
rules implemented in Atlas Transformation Language (ATL) and Eclipse Modeling Framework (EMF).
EMF implements the key aspects of MDE practices by exploiting the facilities provided by Eclipse
tools. Furthermore, the EMS-ABox being in RDF format, a conversion from RDF into a format to
be processed and understood by EMF is required, and this is reached by employing the EMFTriple
project. As a sequel, a transformation from the EMF model into a MATLAB/Simulink model (M2T)
is automatically generated by the Massif framework for Eclipse, resulting in the model depicted in
Figure 11, which was tailored and customized by the control engineer. A matching between knowledge
regarding EMS structure in Table 10 and the Simulink/model is resulted.

Appl. Sci. 2018, 8, 1326 24 of 33

st_P

Load

st_P

PV

fd_BESS_P

fd_PV_P

fd_Load_P

st_P

st_F

Grid

fd_BESS_SoC

fd_BESS_P

fd_Meter_P

fd_Meter_F

ct_BESS_P

CEMS

sp_P
st_SoC

st_P

BESS

fd_P

fd_F

st_P

st_F

Meter

Figure 11. Structure of the CEMS-Simulink model generated.

An extra amount of work realized by the control engineer is the design of control strategies.
The behavior to be performed within PUC{Linear-Control, Limit_SoC, . . . } is not considered within
the EMS-templates, and this is carried out in MATLAB/Simulink by customized block libraries
and MATLAB-scripts. For instance, PUC(Linear-Control) is performed by a state-flow diagram in a
Simulink model. As previously stated, PUC(Linear-Control) follows the control behavior defined in the
Italian standard [48]. The mechanisms to be followed due to under-frequency events are illustrated
in Figure 12. When the event [ECPNomHz − Fgrid >= DeltaHzStr] takes place, active power is
injected into the grid. Power injected depends linearly on the frequency, and it is calculated in the state
Ramp. A return to normal condition is reached when the event [ECPNomHz− HzStop < Fgrid] is
raised. ECPNomHz is the nominal frequency, and DeltaHzStr and HzStop represent deviations from
ECPNomHz. See Table 14.

normal
during:Pset=Pgrid;

Ramp
entry: WGra=abs(FrozenPower-Pmax_bat)/deltaF;
during:Pset=FrozenPower+ (FrozenF-Fgrid)*WGra;

Low_Frequency
entry: FrozenPower=Pgrid;
 FrozenF=Fgrid;

Frozen
entry:FrozenPower=Pset;
during:Pset=FrozenPower;

[((Ft0-Fgrid)<0]
[ECPNomHz-HzStop<Fgrid]

[(ECPNomHz-Fgrid)>=DeltaHzStr] [true]

Figure 12. Behavior of the PUC(Linear-Control).

The information regarding conflict resolution exposed in Table 17 is transformed into a block
diagram as shown in Figure 13a. However, not all the connections and inputs are generated. Some of
them are manually included by the control engineer—for instance, the input fd_FW_Ena within the
SelfC-block. The need for that input was realized during the running of simulations.

Besides block generation, the function code embedded within the handling-block is also generated
as shown in Figure 13b. The function CI retrieves the two control signals sent by PUC{SelfC}
(Control{Self_BESS_P}) and PUC{FW} (Control{FW_BESS_P}). The priorities defined within the PUCs
are also retrieved by the inputs Sel f _prt and FW_prt. Based on that, the code decides which control
signal should be sent to the battery. The data depicted in the code is defined within the EMS-ABox and
were retrieved by performing certain SPARQL queries such as QI and QI I already defined in Table 9.
The performing of M2T transformations is reached by Acceleo, an open-source code generator, where
templates are designed according to models and a conversion from models into text is achievable.

Appl. Sci. 2018, 8, 1326 25 of 33

fd_P

sp_P

fd_SoC

fd_FW_Ena

ct_BESS_P

st_Ena

st_Prt

SelfC

fd_SoC

fd_P

fd_F

ct_BESS_P

st_Ena

st_Prt

FW

SelfC_BESS_P

SelfC_Ena

SelfC_prt

FW_BESS_P

FW_Ena

FW_prt

BESS_P

Handling

1
fd_BESS_SoC

2
fd_BESS_P

4
fd_Meter_F

-C-

sp_P

3
fd_Meter_P

(a)

�
function BESS_P = CI(SelfC_BESS_P ,SelfC_Ena ,
SelfC_prt ,FW_BESS_P ,FW_Ena ,FW_prt)
%FW mode is active
if(eq(SelfC_Ena ,1) && eq(FW_Ena ,0))

BESS_P=SelfC_BESS_P;
%SelfC mode is active

elseif (eq(FW_Ena ,1) && eq(SelfC_Ena ,0))
BESS_P=FW_BESS_P;
%FW and SelfC are active

elseif (eq(FW_Ena ,1) && eq(SelfC_Ena ,1))
% Sending command based on priorities
if (FW_prt >SelfC_prt)

BESS_P=FW_BESS_P;
elseif FW_prt <SelfC_prt

BESS_P=SelfC_BESS_P;
else

BESS_P=FW_BESS_P+SelfC_BESS_P;
end

else
%Any use case is enabled
BESS_P =0;

end� �
(b)

Figure 13. Software artifacts generated to be loaded within the power system emulator. (a) Simulink
model generated; (b) CI function code generated.

Simulations are performed to validate the behavior of control applications within PUC{Sel f C, FW}.
The power balancing required to meet Pgrid = 0 and Pbat = γFgrid + θ is shown in Figure 14. Parameters
related to PUC(FW) function are: ECPNomHz = 50, DeltaHzStr = 0.04 and HzStop = 0.01. Thereby,
limits for over and under-frequency events are reached at 50.04 Hz and 49.96 Hz respectively, indicated
by red and black dashed lines. At time 3640 s, an under-frequency event takes place, producing a
discharge of the battery to inject more power into the grid. Once the frequency starts recovering,
a snapshot of the instantaneous power is taken and used as a cap to set Pbat. This continues until the
frequency value is higher than 49.99 Hz (ECPNomHz− HzStop). At that moment, the cap on the
power output is removed. Additionally, the PUC(FW) is released and PUC(SelfC) is activated. Thereby,
the battery is still discharging to support the load consumption, resulting in Pgrid = 0. The control
signal ct_BESS_P coming from the PUC(FW) to set the active power of the battery is depicted in red
color. Thereby, this setpoint is followed by the battery during the under-frequency event.

Figure 14. Offline simulation of the CEMS use case to achieve FW and SelfC.

Appl. Sci. 2018, 8, 1326 26 of 33

5.3. Laboratory Implementation and Results

The main objective of the laboratory implementation is to validate the executable software
artifacts generated by EMSOnto and also to evaluate the benefits and limitations of EMSOnto during
the proof-of-concept with real hardware devices. It is important to highlight that performance of
control strategies (HLUC {SelfC, FW}) is not the main focus. A representation of the laboratory setup
is illustrated in Figure 15. In order to keep a simplicity in the validation experiments, only the battery
and battery inverter are represented by real hardware. In this context, a Tesla Powerwall and Sunny
boy storage 2.5 are employed. The other components such as smart meter, PV generator, and loads are
simulated within the power system emulator (Simulink/MATLAB) as well as the control strategies.

The battery inverter communicates battery status (SoCbat, Pbat) by Modbus TCP/IP. The setting
up of active power within the battery (Pre f) is done also by Modbus TCP/IP through the Sunny Home
Manager, a control center for energy management. An interface between the power system emulator
and the real hardware is needed to get and set data. Thereby, a Java program that carries out two
Modbus clients and a MATLAB API is implemented. Modbus clients are configured to exchange data
with the real devices. In turn, a library that enables Java programs to pass data from MATLAB to
Java and vice versa supports the communication between the Java program and the Simulink model
(CEMS). The hardware used in the laboratory setup is shown in Figure 16.

Grid

Battery
(Tesla Powerwall)

So ,Cbat Pbat

Sunny
Home
Manager

Battery inverter
(Sunny boy storage 2.5)

Modbus
client

Modbus
client Matlab

engine
API

Matlab/
Simulink
(CEMS)

Pref

So ,Cbat Pbat

Pref

PC basedSpeedwire
Modbus TCP/IP

Java program

Figure 15. Laboratory setup for the validation of CEMS use case.

Figure 16. Laboratory setup with the Tesla Powerwall and the Sunny boy storage 2.5.

The results obtained from the laboratory tests are shown in Figure 17. In order to show the
behavior of CEMS, a specific frequency profile with over-frequency occurrences is built. The FW mode
parameters are set to ECPNomHz = 50, DeltaHzStr = 0.3 and HzStop = 0.1. As a consequence,

Appl. Sci. 2018, 8, 1326 27 of 33

as soon as the frequency exceeds 50.3 Hz (ECPNomHz + DeltaHzStr), the Tesla Powerwall starts
taking power from the utility grid. The active power charged into the Tesla battery depends linearly
on the frequency values. This dynamic continues until the battery reaches its technical limitations at
2.5 kW (Sunny boy storage 2.5 supports a maximum charge of 2.5 kW). The values of 50.3 Hz and
50.1 Hz are represented by magenta and black dashed lines, respectively.

FW mode is not requested more when frequency gets lower than 50.1 Hz (ECPNomHz + HzStop).
Thereby, at 40,640 s, the FW mode is deactivated and self-consumption conducts the battery behavior.
Hence, a PI control drives the value of Pgrid towards zero. As mentioned before, only the battery
is considered as real-device. Thus, Pbat and SoCbat are real-values, and other values such as
Pload, Ppv, Pgrid, Fgrid were simulated. Communication delays and the time needed by the battery
to provide the expected setpoint (Pre f) were considered in the synchronization between the Java
program, the Simulink model and the real devices.

The lab tests point out the benefits of EMSOnto at the proof-of-concept stage and motivate
the extension of EMSOnto features. In that sense, benefits lie in the formal structure behind a UC
representation. Thereby, the parameters such as HzStop and DeltaHzStr to be tuned within use cases
were rapidly identified. On the other hand, conception of EMSOnto tackles information and function
domain but not communication domain, which should be also supported. In that sense, manual
work performed by control engineers to implement communication interfaces may be reduced by
extending EMSOnto. For instance, an automatic generation and configuration of Modbus clients could
be achieved. On top of that, the mapping of variables between MATLAB/Simulink and Modbus
clients could also be covered. In addition to this, improvements such as the extension of the battery
model presented in Table 13 with the information of Modbus registers are highly recommended.

Figure 17. Real measurements (Pbat, SoCbat) and simulated values to perform FW and SelfC.

5.4. Evaluation of Requirements and Open Issues

EMSOnto is conceived under the fulfillment of requirements R1–R4. As a result, this approach
claims to support control engineers during the design of EMS applications. In order to demonstrate
and evaluate it, a use case example (CEMS) is designed and validated. This section analyzes how far
the initial stated requirements (R1-R4) were satisfied.

Repository based on SGAM and IEC 61850. R1 requires benefitting from existent smart grid
data models. Hence, EMS-ontology is conceived under the standards IEC 61850 and SGAM. This OWL
ontology defines the structure of spreadsheet templates, which facilitate the creation of pre-defined

Appl. Sci. 2018, 8, 1326 28 of 33

models (e.g., battery inverter [19] and frequency-watt [12]) to be stored within the IED and use case
repository. The referred repository is built and available to the control engineer to start the design
of EMS applications. In the CEMS example, the PUC(Linear-Control) uses knowledge from a FWHZ
Logical Node accelerating the collection of CEMS data.

EMS-ontology and EMS-templates. R2 searches for an ontology that reflects a common
understanding of multi-functional BESS. Thereby, a pattern that models different BESS use cases
(UC1–UC5) is established resulting in EMS-ontology. The proposed OWL ontology was used to detail
functions, parameters and information flows within the CEMS use case. This demonstrates that roles
and concepts defined in the scope of EMS-ontology are appropriate for EMS description. Population
of the ontology is achieved by filling out EMS-templates. Control engineers became familiar with this
method quite fast, demonstrating that it is a good practice in gathering and documenting of data at the
design phase. A feature not supported by the approaches presented in Table 2.

A benefit derived from ontologies is the extraction of data from ABox by means of queries.
In that sense, once the filling process of EMS-templates is complete, a set of reports to determine
EMS functional capabilities can be queried by an external system (e.g., EMO) (see Table 9). However,
it is worth noting that information in the design phase may evolve during the proof-of-concept phase
(e.g., a signal f d_FW_Ena was included during the validation of the CEMS). Hence, the final state of the
EMS knowledge may differ from the information gathered at design time. Thus, a reverse engineering
process [49] between the design and proof-of-concept stage is suggested to keep EMS data updated.

As mentioned before, the conception of EMS-ontology is aligned to the broadly recognized SGAM
and IEC 61850 data models. Nevertheless, interoperability between EMSOnto and information models
such as CIM and OPC UA should also be considered since they are strongly recommended in the
semantics for smart grids [50].

Detection and Handling of Conflicts. R3 requires the implementation of the study [38] to support
the design of EMS. To achieve the aforementioned, EMS-ontology and the OWL ontology proposed
in [38] are aligned. Furthermore, EMS-templates are suggested to gather information mainly important
for conflict identification. As a consequence, an error-free EMS-ABox is achieved before starting any
implementation of the control applications. This was exemplified by the CEMS, where conflicts CI
and CV were detected and the handling solution proposed by EMSOnto was considered in order to
correct the CEMS design. Nevertheless, other kinds of inconsistencies not covered by EMSOnto may
be raised during the EMS operation such as an erroneous sensor (i.e., smart meter), a measurement
signal with a low sampling rate or the setting up of out-of-range values into the BESS inverter. Those
inconsistencies were not considered by EMSOnto, in order to detect them an observation of states over
time is necessary. This would require bringing the concept of temporal logic and concrete logic into
description logic as performed in [51].

Code and Model Generation. Generation of software artifacts that support the proof-of-concept
and implementation phases are required in R4. Hence, code important to the proof-of-concept
stage is automatically generated. This involves the creation of M2M and M2T transformations from
EMS-templates into a specific platform tool. On that basis, MATLAB code and a Simulink model were
generated and upload into a MATLAB/Simulink project for CEMS validation purposes. A benefit
from that is the reduction of errors susceptible to be introduced during the implementation of control
applications. Moreover, the software artifacts generated were integrated in offline simulations and
hardware-in-the-loop tests, contributing to an acceleration of the development process.

Code and models generation were imported in a power system emulator (i.e., MATLAB/Simulink).
Nevertheless, other tools such as co-simulators and communication network simulators are also important
during the proof-of-concept stage. Thereby, the adaptability of EMSOnto with other tools is contemplated
as future work.

A complete EMS implementation requires the establishment of control algorithms’ behavior.
However, it was not the aim of EMSOnto to model the behavior of BESS use cases. A comparison and
analysis of smart grid and automation approaches in Section 3.2 show that supports for implementing

Appl. Sci. 2018, 8, 1326 29 of 33

system behavior are available (i.e., MATLAB, IEC 61499 and IEC 61131-3). Thus, to reach a full
implementation of EMS, the complement of EMSOnto with other existent smart grids and automation
approaches is necessary.

6. Conclusions

A BESS provides support to many stakeholders of the grid going from end-user, distribution and
transmission system operator to EMO. This support may require the deployment of a large set of use
cases into an EMS. Such a development process is surrounded by different issues such as flexibility,
complexity, overlapping and interoperability. Mechanisms to overcome the mentioned issues are
studied in this paper; as a result, a framework (i.e., EMSOnto) to support control engineers during the
design and proof-of-concept of EMS control applications is achieved.

A common understanding about EMS control applications is reached, resulting in the conception
of an OWL ontology called EMS-ontology, which focuses on EMS structure and information exchanged
across the EMS control architecture. Thereby, EMS-ontology is inspired from broadly accepted smart
grid approaches: SGAM and IEC 61850. On the other hand, the population of the ontology is achieved
by filling out spreadsheet templates (i.e., EMS-templates). Those templates ease the gathering of
information at the design phase, a feature that is not provided by any of the approaches (see Table 2).
Moreover, due to EMS-templates being aligned with smart grid standards, a selection of existing
data models (e.g., LN from IEC 61850) was carried out to pre-fill a database that assists during the
collection of EMS knowledge (use case and IED repository). It is worth mentioning that EMS-templates
do not contemplate the behavior of control applications. Thus, EMSOnto needs to be supported by
automation approaches such as IEC 61131-3 and IEC 61499 to achieve a full implementation.

Detection of conflicts within BESS control applications was already addressed in [38]. However,
control engineers were not encouraged to use the referred study due to the amount of work involved
at the design phase. They argued that conflict issues could be handled by a meticulous study of
the control application. This encouraged the implementation of [38] within EMSOnto as it contains
important knowledge of EMS that can be used for the inference of conflicts.

A UC example (i.e., CEMS) is developed under the EMSOnto basis showing the benefits and
restrictions of the framework. Moreover, from that implementation, a list of recommendations for
future work came out. Hence, it is suggested to interoperate EMSOnto with other power system
tools, in order to perform reverse engineering methodologies for the consistency between the design
and implementation phases. Additionally, the use of temporal logic to investigate other kinds of
inconsistencies is also encouraged.

Specific planned future work concentrates its efforts in providing flexibility to EMSOnto and
to investigate mechanisms for automating the development process. This contemplates enlarging
the inference of knowledge and generating software artifacts relevant for the implementation stage.
Moreover, information sources available at the specification phase such as IED configuration files,
information models, etc. will be exploited to enhance the collection of data within the EMS-ABox.

Author Contributions: C.Z. wrote the paper and carried out the conceptualization, investigation and validation
of the work. F.P.A., J.K., and T.I.S. participated in the conceptualization of the proposed approach and reviewed
the final manuscript. T.I.S. supervised the overall work.

Funding: This work is partly supported by the Austrian Ministry for Transport, Innovation and Technology
(bmvit) and the Austrian Research Promotion Agency (FFG) under the ICT of the Future Programme in the MESSE
project (FFG No. 861265).

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2018, 8, 1326 30 of 33

Appendix A. TBox of the EMS Ontology

TBox = {System v System u ∃hasApplication.Application

Application v Application u ∃hasHLUC.HLUC

HLUC t PUC v UC, HLUC v HLUC u ∃hasPUC.PUC

BESS t EMS t Load tMeter t Generator v Application

PQ tMSC t PS v HLUC

PUC v PUC u ∃hasPUC.PUC u ∃manipulate.ControlGoal

ControlGoal v ControlGoal u ∃IsFcLinkFc.ControlGoal u ∃hasFctVar.Variable

∃hasVariable.T v (Application t HLUC t PUC)

T v ∀hasVariable.Variable, T v ∀hasParam.Param, T v ∀hasStatus.Status

T v ∀hasControl.Control, T v ∀hasSetpoint.Setpoint, T v ∀hasFeedback.Feedback

hasParam v hasVariable, hasStatus v hasVariable, hasControl v hasVariable

hasSetpoint v hasVariable, hasFeedback v hasVariable

Variable v Variable u ∃IsVarLinkVar.Variable u ∃hasVarValue.VariableValue

T v ∀IsVarLinkVar.Variable, ∃IsVarLinkVar.T v Variable

hasFctVar ◦ IsVarLinkVar ◦ hasFctVar− v IsFcLinkFc

trans(IsVarLinkVar), trans(IsFcLinkFc)

manipulate ◦ IsFcLinkFc v manipulate, hasFctVar ◦ IsVarLinkVar v hasFctVar

Feedback t Setpoint v Input, Control t Status v Output, Input tOutput v External

State tManipulated t Param v Internal, Internal t External v Variable

∃IsAssignedTo.T v Internal tOutput, T v ∀IsAssignedTo.(Output t Input)

Numeric t Binary t Char v VariableValue

(hasName t hasDescription) key f or T, hasType key f or (UC t Application tVariable)

(hasUnit t hasFormat t hasMax t hasMin t hasAnaValue) key f or Numeric

hasTimeStamp key f or VariableValue, hasCharValue key f or Char, hasDiValue key f or Binary

P tQ v State, ParamDevice t ParamUC t ParamCont v Param, Pmax t Pmin t BattAh v ParamDevice

UCAh tUCSoC t Ena t Priority t BessSize v ParamUC, SettlingTime t AvailTime v ParamCont}

References

1. Tayyebi, A.; Bletterie, B.; Kupzog, F. Primary Control Reserve and Self-Sufficiency Provision with Central
Battery Energy Storage Systems. In Proceedings of the 2017 Conference on Sustainable Energy Supply and
Energy Storage Systems (NEIS), Hamburg, Germany, 21–22 September 2017; pp. 21–22.

2. Braam, F.; Diazgranados, L.M.; Hollinger, R.; Engel, B.; Bopp, G.; Erge, T. Distributed Solar Battery Systems
Providing Primary Control Reserve. IET Renew. Power Gener. 2016, 10, 63–70.

3. Kathan, J. Increasing the Hosting Capacity of Photovoltaics with Electric Storage-Simulation and
Hardware-in-the-Loop Concept. Master’s Thesis, Vienna University of Technology, Wien, Austria, 2011.

4. EERA Joint Programme on Smart Grids-Sub-Programme 4-Electrical Energy Technologies; Technical Report D4.3
Integration of Storage Resources to Smart Grids: Possible Services, D4.4 Control Algorithms for Storage
Applications in Smart Grid; EERA: Brussels, Belgium, 2014.

5. Riffonneau, Y.; Bacha, S.; Barruel, F.; Ploix, S. Optimal Power Flow Management for Grid Connected PV
Systems With Batteries. IEEE Trans. Sustain. Energy 2011, 2, 309–320.

6. Zanabria, C.; Pröstl Andrén, F.; Strasser, T.I. Comparing Specification and Design Approaches for Power
Systems Applications. In Proceedings of the 2018 IEEE PES Transmission and Distribution Conference and
Exhibition–Latin America, Lima, Peru, 18–21 September 2018; p. 5, in press.

Appl. Sci. 2018, 8, 1326 31 of 33

7. Andrén, F.; Strasser, T.; Kastner, W. Engineering Smart Grids: Applying Model-Driven Development from
Use Case Design to Deployment. Energies 2017, 10, 374.

8. International Electrotechnical Commission. IEC 61850: Communication Networks and Systems for Power Utility
Automation; International Electrotechnical Commission: Geneva, Switzerland, 2010.

9. Zoitl, A.; Lewis, R. Modelling Control Systems Using IEC 61499; The Institution of Engineering and Technology:
Stevenage, UK, 2014.

10. International Electrotechnical Commission. IEC 61131-3: Programmable Controllers—Part 3: Programming
Languages; International Electrotechnical Commission: Geneva, Switzerland, 2012.

11. Zanabria, C.; Pröstl Andrén, F.; Kathan, J.; Strasser, T. Towards an Integrated Development of Control
Applications for Multi-Functional Energy Storages. In Proceedings of the IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–4.

12. International Electrotechnical Commission. IEC/TR 61850-90-7—Communication Networks and Systems for
Power Utility Automation—Part 90-7: Object Models for Power Converters in Distributed Energy Resources (DER)
Systems; International Electrotechnical Commission: Geneva, Switzerland, 2013.

13. Von Appen, J.; Stetz, T.; Braun, M.; Schmiegel, A. Local Voltage Control Strategies for PV Storage Systems in
Distribution Grids. IEEE Trans. Smart Grid 2014, 5, 1002–1009.

14. Faschang, M. Rapid Control Prototyping for Networked Smart Grid Systems Based on an Agile Development
Process. Ph.D. Thesis, Vienna University of Technology, Wien, Austria, 2015.

15. Faschang, M.; Schwalbe, R.; Einfalt, A.; Mosshammer, R. Controller Hardware in the Loop Approaches
Supporting Rapid Prototyping of Smart Low Voltage Grid Control. In Proceedings of the IEEE PES
Innovative Smart Grid Technologies, Istanbul, Turkey, 12–15 October 2014; pp. 1–5.

16. Andrén, F.; Lehfuss, F.; Strasser, T. A Development and Validation Environment for Real-Time
Controller-Hardware-in-the-Loop Experiments in Smart Grids. Int. J. Distrib. Energy Resour. Smart Grids
2013, 9.1, 27–50.

17. International Electrotechnical Commission. IEC Smart Grid Standardization Roadmap; International Electrotechnical
Commission: Geneva, Switzerland, 2013.

18. Uslar, M.; Specht, M.; Rohjans, S.; Trefke, J.; González, J.M. The Common Information Model CIM: IEC
61968/61970 and 62325-A Practical Introduction to the CIM; Springer Science & Business Media: Berlin,
Germany, 2012; Volume 66.

19. International Electrotechnical Commission (IEC). Communication Networks and Systems in Substations–Part 7-420:
Communications Systems for Distributed Energy Resources (DER)–Logical Nodes; International Electrotechnical
Commission: Geneva, Switzerland, 2006.

20. Mahnke, W.; Leitner, S.H.; Damm, M. OPC Unified Architecture; Springer: Berlin, Germany, 2009.
21. Weilkiens, T. Systems Engineering with SysML/UML: Modeling, Analysis, Design; Elsevier: New York, NY,

USA, 2011.
22. Tornelli, C.; Radaelli, L.; Rikos, E.; Uslar, M. WP 4 Fully Interoperable Systems. Deliverable R4.1: Description of

the Methodology for the Detailed Functional Specification of the ELECTRA Solutions; Technical Report; ELECTRA
IRP, 2015.

23. International Electrotechnical Commission (IEC). IEC 62559-2 Use Case Methodology-Part2: Definition of the
Templates for Use Cases, Actor List and Requirement List; IEC: Geneva, Switzerland, 2015.

24. CEN-CENELEC-ETSI Smart Grid Coordination Group. Reference Architecture for the Smart Grid; Technical
Report; CEN-CENELEC-ETSI Smart Grid Coordination Group: Brussels, Belgium, 2012.

25. Dänekas, C.; Neureiter, C.; Rohjans, S.; Uslar, M.; Engel, D. Towards a Model-Driven-Architecture Process
for Smart Grid Projects. In Digital Enterprise Design & Management; Springer: Cham, Switzerland, 2014;
Volume 261, pp. 47–58.

26. Hitzler, P.; Krotzsch, M.; Rudolph, S. Foundations Of Semantic Web Technologies; CRC Press: Boca Raton, FL,
USA, 2009.

27. Baader, F. The Description Logic Handbook: Theory, Implementation and Applications; Cambridge University
Press: Cambridge, UK, 2003.

28. Santodomingo, R.; Rohjans, S.; Uslar, M.; Rodríguez-Mondéjar, J.; Sanz-Bobi, M. Ontology Matching System
for Future Energy Smart Grids. Eng. Appl. Artif. Intell. 2014, 32, 242–257.

Appl. Sci. 2018, 8, 1326 32 of 33

29. Dubinin, V.; Vyatkin, V.; Yang, C.W.; Pang, C. Automatic Generation of Automation Applications Based
on Ontology Transformations. In Proceedings of the 2014 IEEE International Conference on Emerging
Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–4.

30. Schachinger, D.; Kastner, W.; Gaida, S. Ontology-Based Abstraction Layer for Smart Grid Interaction in
Building Energy Management Systems. In Proceedings of the 2016 IEEE International Energy Conference
(ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 1–6.

31. Zhou, Q.; Natarajan, S.; Simmhan, Y.; Prasanna, V. Semantic Information Modeling for Emerging
Applications in Smart Grid. In Proceedings of the 2012 Ninth International Conference on Information
Technology—New Generations, Las Vegas, NV, USA, 2012; pp. 775–782.

32. Samirmi, F.D.; Tang, W.; Wu, Q. Fuzzy Ontology Reasoning for Power Transformer Fault Diagnosis.
Adv. Electr. Comput. Eng. 2015, 15, 107–114.

33. Feldmann, S.; Herzig, S.J.; Kernschmidt, K.; Wolfenstetter, T.; Kammerl, D.; Qamar, A.; Lindemann, U.;
Krcmar, H.; Paredis, C.J.J.; Vogel-Heuser, B. Towards Effective Management of Inconsistencies in
Model-Based Engineering of Automated Production Systems. IFAC-PapersOnLine 2015, 48, 916–923.

34. Brambilla, M.; Cabot, J.; Wimmer, M. Model-Driven Software Engineering in Practice. Synth. Lect. Softw. Eng.
2012, 1, 1–182.

35. Strasser, T.; Rooker, M.; Ebenhofer, G.; Hegny, I.; Wenger, M.; Sünder, C.; Martel, A.; Valentini, A.
Multi-Domain Model-Driven Design of Industrial Automation and Control Systems. In Proceedings
of the 2008 IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
Hamburg, Germany, 15–18 September 2008; pp. 1067–1071.

36. Andrén, F.; Strasser, T.; Kastner, W. Model-Driven Engineering Applied to Smart Grid Automation Using
IEC 61850 and IEC 61499. In Proceedings of the Power Systems Computation Conference (PSCC), Wroclaw,
Poland, 18–22 August 2014; pp. 1–7.

37. Zanabria, C.; Pröstl Andrén, F.; Kathan, J.; Strasser, T. Approach for Handling Controller Conflicts within
Multi-Functional Energy Storage Systems. CIRED-Open Access Proc. J. 2017, 2017, 1575–1578.

38. Zanabria, C.; Tayyebi, A.; Pröstl Andrén, F.; Kathan, J.; Strasser, T. Engineering Support for Handling
Controller Conflicts in Energy Storage Systems Applications. Energies 2017, 10, 1595.

39. Sirin, E.; Parsia, B.; Grau, B.C.; Kalyanpur, A.; Katz, Y. Pellet: A Practical OWL-DL Reasoner. Web Semant.
Sci. Serv. Agents World Wide Web 2007, 5, 51–53.

40. Working Group Sustainable Processes (SG-CG/SP). CEN-CENELEC-ETSI Smart Grid Coordination
Group—Sustainable Processes; Technical Report, CEN-CENELEC-ETSI; Working Group Sustainable Processes
(SG-CG/SP): Brussels, Belgium, 2012.

41. International Electrotechnical Commission. Communication Networks and Systems for Power Utility Automation.
Part 7-3: Basic Communication Structure-Common Data Classes; International Electrotechnical Commission:
Geneva, Switzerland, 2011.

42. Lutz, C.; Areces, C.; Horrocks, I.; Sattler, U. Keys, Nominals, and Concrete Domains. J. Artif. Intell. Res. 2005,
23, 667–726.

43. Tremblay, O.; Dessaint, L.A.; Dekkiche, A.I. A Generic Battery Model for the Dynamic Simulation of Hybrid
Electric Vehicles. In Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference, Arlington, TX,
USA, 9–12 September 2007; pp. 284–289.

44. Skoplaki, E.; Palyvos, J. On the Temperature Dependence of Photovoltaic Module Electrical Performance:
A Review of Efficiency/Power Correlations. Sol. Energy 2009, 83, 614–624.

45. HELIOCLIM-3, 2005. Available online: http://www.soda-pro.com/web-services/radiation/helioclim-3-
archives-for-free (accessed on January 2015).

46. Autonomous Decentralised Renewable Energy Systems-ADRES, 2009. Available online: https://www.ea.
tuwien.ac.at/projects/adres_concept/EN/ (accessed on January 2015).

47. ENTSO-E Netzfrequenz, 2018. Available online: http://www.50hertz.com/de/Maerkte/Regelenergie/
Regelenergie-Downloadbereich (accessed on June 2018).

48. Norma Italiana, CEI. Reference Technical Rules for the Connection of Active and Passive Users to the LV Electrical
Utilities (in Italian); Norma Italiana, CEI: Milano, Italy, 2012.

49. Martinez-Gil, J.; Aldana-Montes, J.F. Reverse Ontology Matching. ACM SIGMOD Rec. 2011, 39, 5.

http://www.soda-pro.com/web-services/radiation/helioclim-3-archives-for-free
http://www.soda-pro.com/web-services/radiation/helioclim-3-archives-for-free
https://www.ea.tuwien.ac.at/projects/adres_concept/EN/
https://www.ea.tuwien.ac.at/projects/adres_concept/EN/
http://www.50hertz.com/de/Maerkte/Regelenergie/Regelenergie-Downloadbereich
http://www.50hertz.com/de/Maerkte/Regelenergie/Regelenergie-Downloadbereich

Appl. Sci. 2018, 8, 1326 33 of 33

50. Rohjans, S.; Uslar, M.; Juergen Appelrath, H. OPC UA and CIM: Semantics for the Smart Grid. In Proceedings
of the Transmission and Distribution Conference and Exposition, 2010 IEEE PES, New Orleans, LA, USA,
19–22 April 2010; pp. 1–8.

51. Baader, F.; Lippmann, M. Runtime Verification Using the Temporal Description Logic ALC-LTL Revisited.
J. Appl. Log. 2014, 12, 584–613.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Multi-Functional Energy Storage System Application Development
	Use Cases and Applications
	Specification and Development Process
	Open Issues

	Related Work and Background
	Smart Grid Domain Standards
	Smart Grid Control Application Development Approaches
	Ontologies for Smart Grid Applications
	Model-Driven Engineering in Power Systems
	Research Needs and Requirements

	Application Development with the EMSOnto Approach
	General Overview of the Approach
	Core EMS-Ontology Use Cases
	Alignment with Smart Grid Domain Models
	EMS-Ontology for Modelling BESS Applications
	Templates for Application Design
	Controller Inconsistencies Identification
	Generation of Software Artifacts

	Proof-of-Concept Evaluation
	Framework Prototype and Validation Example
	BESS Model
	PV, Load, Grid Profiles
	Control Mechanism

	Realized Development Example
	Step 1: CEMS Description via EMS-Templates
	Step 2: Assertions Derived from EMS-ABox
	Step3: Design of the EMS based on Analysis of Reports
	Step 4: Customization of the Software Artifacts

	Laboratory Implementation and Results
	Evaluation of Requirements and Open Issues

	Conclusions
	TBox of the EMS Ontology
	References

