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Abstract: As the risk of diseases diabetes and hypertension increases, machine learning algorithms
are being utilized to improve early stage diagnosis. This study proposes a Hybrid Prediction
Model (HPM), which can provide early prediction of type 2 diabetes (T2D) and hypertension
based on input risk-factors from individuals. The proposed HPM consists of Density-based Spatial
Clustering of Applications with Noise (DBSCAN)-based outlier detection to remove the outlier
data, Synthetic Minority Over-Sampling Technique (SMOTE) to balance the distribution of class,
and Random Forest (RF) to classify the diseases. Three benchmark datasets were utilized to predict
the risk of diabetes and hypertension at the initial stage. The result showed that by integrating
DBSCAN-based outlier detection, SMOTE, and RF, diabetes and hypertension could be successfully
predicted. The proposed HPM provided the best performance result as compared to other models
for predicting diabetes as well as hypertension. Furthermore, our study has demonstrated that the
proposed HPM can be applied in real cases in the IoT-based Health-care Monitoring System, so that
the input risk-factors from end-user android application can be stored and analyzed in a secure
remote server. The prediction result from the proposed HPM can be accessed by users through an
Android application; thus, it is expected to provide an effective way to find the risk of diabetes and
hypertension at the initial stage.

Keywords: type 2 diabetes; hypertension; classification; DBSCAN; SMOTE; Random Forest; Internet
of Things

1. Introduction

Type 2 diabetes (T2D) is an enduring metabolic disorder wherein the blood glucose level changes,
and it might be due to the body’s incompetence to use its generated insulin [1–3]. T2D is quite
endemic that has plagued the health care systems in developing countries [4]. Diabetes patients are
quite vulnerable to stroke and high mortalities [5]. However, the continuous monitoring of blood
glucose level performs an eminent part in mitigating and preventing complications of diabetes [6–8].
Hypertension, which is a root cause of high blood pressure, is a quite normal and harmful condition.
As per a World Health Organization (WHO) report, hypertension could provide bases for cardiac
arrest, heart swelling, and eventually the failure of heart [9]. In America alone, around 75 million
people (1 in 3) are suffering with high blood pressure [10], which is one of the highest factors of
death for Americans [11]. In 2009 alone, it was a key factor of for 348,000 Americans deaths and costs
47.5 billion dollars each year [12].
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Due to increasing risk of diabetes and hypertension, recent studies have utilized machine learning
algorithms as decision-making tools to diagnose diabetes and hypertension at an early stage, so that
preventive action can be taken by individuals. The machine learning algorithms have showed high
performance on predicting the diabetes [13–16] as well as hypertension [17–19] based on current
conditions of individuals. Furthermore, the machine learning-based algorithm random forest (RF)
has been proven to be successful at predicting diabetes [20,21] as well as hypertension [22,23], with
the highest model accuracy compared to other classification models. However, the machine learning
algorithms encounter challenging problems, such as outlier data and imbalanced datasets, which can
reduce accuracy. Several studies have demonstrated that by removing the outliers while using the
Density-based Spatial Clustering of Applications with Noise (DBSCAN) method [24–28] and utilizing
an oversampling method, such as Synthetic Minority Over Sampling Technique (SMOTE) to balance
imbalanced data [21,29–37], the performance of prediction system is improved.

Nevertheless, there is no study about model integration between DBSCAN based outlier detection
and SMOTE for RF classifier accuracy improvement, specifically for diabetes and hypertension. Thus,
this study proposes Hybrid Prediction Model (HPM) by utilizing DBSCAN-based outlier detection,
SMOTE, and RF to predict diabetes, as well as hypertension t based on input risk-factors from users.
Furthermore, past literature revealed that the recent technologies, such as Internet of Things (IoT),
big data, cloud computing, novel biosensors and machine learning can perform a significant part in
enhancing the diabetes management [38]. Therefore, the present study has shown that the proposed
HPM can be applied to IoT-based healthcare monitoring systems (HMS), offering users an effective
way to identify the danger that is involved in high diabetes and hypertension shortly.

The rest of the paper organization is provided in the next. Section 2 explains the related works on
prediction models for diabetes and hypertension, outlier detection methods, and SMOTE. Section 3
presents the dataset and feature selection. In Section 4, the proposed HPM is presented, while in
Section 5, the results and discussions are explained. In Section 6, concluding remarks are presented
and several limitations and remaining challenges are discussed.

2. Literature Review

2.1. Prediction Model for Diabetes and Hypertension

Diabetes has turned into a worldwide pandemic that puts a grave load on healthcare systems,
particularly in developing countries [4]. On a global stage, the total number of diabetic patients is
estimated to increase from 171 million to 366 million in 2000 and 2030, respectively [39]. T2D is an
advanced stage in which the body becomes stiff to normal effects of insulin and slowly loses the
capacity to generate enough insulin in the pancreas. It is necessary for persons ≥45 years, with
a BMI ≥25 kg/m2, to experience screening to detect pre-diabetes and diabetes [2]. Furthermore,
hypertension, which is usually referred as systolic blood pressure ≥140 mmHg and diastolic blood
pressure≥90 mmHg, is a normal long-term disease that presently impacts 77 million Americans [40–42].
It is a noteworthy risk element for the lethal cardiovascular diseases, developing heart failure in 91% of
cases; it is present in 69% of persons who suffer their first heart attack and in 77% of those having their
first stroke [41]. Past studies have shown firm positive relationships among blood pressure, danger
of cardiovascular diseases, and mortality [43,44]. Together, hypertension and diabetes are stroke risk
factors, but they can be avoided if individuals take a healthy diet as well as physical exercise every
day [45]. Therefore, in the future, a prediction model that notifies people on the chance of diabetes and
hypertension is required, and it would permit them to take preemptive action. The machine learning
algorithms can be used to diagnose diabetes and hypertension that is based on the present condition
of patients.

Several studies have shown a positive impact of the application of machine learning for diabetes
classification. Patil et al. proposed HPM for T2D [13]. The proposed model consists of a K-means
algorithm to remove incorrectly classified instance and C4.5 to classify the diabetes dataset. The Pima
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Indian dataset and k-fold cross-validation are utilized. The result revealed that the HPM showed
the highest accuracy, as high as 92.38%, among other methods. Wu et al. utilized an HPM for
predicting T2D [14]. The model consists of an improved K-means and the logistic regression model.
The improved K-means algorithm was used to confiscate incorrect clustered data, later the logistic
regression algorithm was used to classify the remaining data. The findings indicated that the proposed
model demonstrated greater prediction accuracy as compared with past work. Previous literature
compared the performance of logistic regression, artificial neural networks (ANNs), and decision tree
models for anticipating diabetes or prediabetes employing common risk factors [15]. The dataset was
gathered from Guangzhou, China, and 735 patients were validated as having diabetes or prediabetes,
while 752 were normal controls. The findings indicated that the greatest classification accuracy as
compared to other model is shown by decision tree model C5.0. Finally, past literature proposed a
machine learning model to predict the prevalence of diabetes and hypertension, with a dataset having
13,647,408 medical records for diverse ethnicities in Kuwait [16]. The classification models, for example,
logistic regression, K-Nearest Neighbors (KNN), Multi-factor Dimensionality Reduction (MDR),
and Support Vector Machines (SVM), were used and indicated noteworthy finding on predicting
diabetes and hypertension. Besides, the study inferred that ethnicity is a critical ingredient for
anticipating diabetes.

Furthermore, several studies have been conducted and revealed that the machine learning
algorithms provide early prediction as well as treatment for hypertension. Koren et al. investigated
the advantage of machine learning for treatment of hypertension [17]. They used machine learning
methods to distinguish determinants that add to the accomplishment of hypertension drug treatment
on a massive set of patients. The result showed that a fully connected neural network could achieve
AUC as much as 0.82. The result of their study showed that machine learning algorithms can provide
the hypertension treatment with combinations of three or four medications. Tayefi et al. built up a
decision tree model to distinguish the risk factors that are related to hypertension [18]. A dataset
comprising of 9078 subjects was part to 70% as training set and 30% as the testing dataset to assess the
performance of the decision tree. Two models are proposed based on different risk factors. The result
showed that the accuracy of the decision tree for both models could be as much as 73% and 70%,
respectively. The finding is assumed to distinguish the risk factors that are related to hypertension
that may be utilized to create programs for hypertension management. Finally, Golino et al. presented
the Classification and Regression Tree (CART) to predict hypertension based on several factor such as
body mass index (BMI), waist (WC), and hip circumference (HC), and waist hip ratio (WHR) [19].
The finding demonstrates that, for women, BMI, WC, and WHR is the blend that creates the best
prediction, while for men, BMI, WC, HC, and WHC are the topmost risk factors.

Random Forest is an ensemble prediction technique by amassing the finding of individual decision
trees [46]. Generally, Random Forest works by utilizing the bagging method to generate subsets of
training data. For each training dataset, a decision tree algorithm is utilized. Lastly, the prediction
results are acquired from the model (most frequent class) of every decision tree in the forest. A study
regarding RF for early prediction of diabetes as well hypertension has been conducted and shown
significant results. Nai-arun et al. utilized Random Forest as a classifier for diabetes risk prediction [20].
The dataset was gathered from 30,122 persons in Sawanpracharak Regional Hospital, Thailand,
between 2012 and 2013. The features comprise of medical information for example BMI, age, weight,
height, blood pressure, a history of diabetes, and hypertension in the family, gender, and liquor and
smoking patterns. The findings manifest that RF performance is excellent as compared to rest of
algorithms. Finally, Alghamdi et al. used an ensembling strategy that consolidated three decision tree
classification strategies (RF, Naïve Bayes [NB] Tree, and Logistic Model Tree [LMT]) for foreseeing the
diabetes [21]. The finding demonstrated that the performance of the predictive model has accomplished
topmost accuracy for anticipating incident diabetes using cardiorespiratory fitness data among models.
Furthermore, RF also showed a significant result for hypertension prediction. Sakr et al. evaluated
and compared the performance of various machine learning methods on foreseeing the people in
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danger of growing hypertension [22]. The dataset utilized data of 23,095 patients at Henry Ford Health
Systems from 1991 to 2009. Six machine learning methods were researched: LogitBoost (LB), Bayesian
Network classifier (BN), Locally Weighted Naïve Bayes (LWB), ANN, SVM, and Random Tree Forest
(RTF). The result showed that the RTF model had the best performance (AUC = 0.93) among the
machine learning methods that were investigated in this study. Finally, Sun et al. utilized the RF
classifier as a model for transitions in hypertension control [23]. The dataset consisted of 1294 patients
with hypertension at the Vanderbilt University Medical Center. The result showed that proposed RF
accomplished exact forecast of change points of hypertension control status. The result of their study
is expected to be used for personalized hypertension management plans.

Existing studies show that the RF can be utilized for early prediction of diabetes as well as
hypertension with high classification accuracy. However, several studies have revealed that the outlier
data as well as imbalanced datasets are challenging problems in classification, as they can reduce the
system performance. Hence, the present study proposes an HPM that consists of DBSCAN-based
outlier detection to remove the outlier data, SMOTE for balancing the distribution of class, and RF
to discover the diabetes and hypertension at an earlier stage. By removing the outlier data as well as
balancing the dataset, the RF is expected to provide high classification accuracy.

2.2. Outlier Detection Method

Most existing research focuses on developing more accurate models rather than on the importance
of data pre-processing. The outlier detection method can be utilized in the pre-processing step to
identify inconsistencies in data/outliers; thus, a good classifier can be generated for better decision
making. Eliminating the outliers from the training dataset will enhance the classification accuracy.
Outlier detection constitutes an important issue for many research areas, including medical, document
management, social network, and sensor networks. Several studies have been conducted and showed
significant results of outlier detection on improving the classification accuracy. Shin et al. studied
text classification in order to improve document management utilizing outlier detection and kNN
classifier [47]. The findings indicated that omitting outliers from the training data considerably refined
the kNN classifier. In a general case study, Tallon-Ballesteros and Riquelme evaluated the outlier
effect in classification problems [48]. The study proposed a statistical outlier detection method to
determine the outliers based on inter-quartile range (lQR) by classes. The result showed that by partially
eliminating the outliers from training dataset, the classification performance of C4.5 was enhanced.
Furthermore, in the case of medical application, the outlier detection showed significant result.
Past literature used an outlier prediction technique that can enhance the classification performance in
the medical dataset [49]. The findings showed that, by eliminating the detected outliers from training
set, the classification accuracy was enhanced particularly for Naïve Bayes classifier. Finally, past
literature builds up a burn tissue classification device to help burn surgeons in planning and executing
debridement surgery [50]. The study used the multistage technique to build on Z-test and univariate
analysis to recognize and eliminate outliers from the training dataset. The findings demonstrated
that the outlier detection and elimination technique lessened the difference of the training data and
enhanced the classification accuracy.

Clustering method is a technique that can be used for outlier detection. The clustering method
depends on the fundamental supposition that normal cases correspond to big and dense clusters, while
outliers make little groups or do not have a place with any cluster whatsoever [51]. DBSCAN is
clustering based outlier detection technique that can be utilized to distinguish the outliers [52].
The objective is to recognize the dense regions, which might be calculated by the quantity of objects
near a given point. Outliers are the points that do not belong to any cluster. The DBSCAN relies on
two important parameters: epsilon (eps) and minimum points (MinPts). The eps represents the radius
of neighborhood about a point x (ε-neighborhood of x), while MinPts represents the minimum number
of neighbors within the eps radius.
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Regarding application of DBSCAN for outlier detection, several studies have been conducted
and showed significant results in identifying outliers as well as improving the classification
result. Past literature showed that by removing noise the quality of real datasets is enhanced [24].
Support vector data description (SVDD) was utilized to classify the dataset. The University of
California, Irvine (UCI) dataset has been utilized for the experimental scenario and the proposed
method showed an efficient result. In the case of social network, ElBarawy et al. utilized DBSCAN
to emphasize community detection. The result showed that the DBSCAN successfully identifies
outliers [25]. Eliminating the outliers prompts a precise clustering result that assists with the community
identification issue in the area of social network analysis. The DBSCAN-based outlier detection also
showed significant results on detecting the outlier sensor data. Alfian et al. proposed a real-time
monitoring system that is based on smartphone sensors for perishable food [26]. As outliers arise in
sensor data due to inadequacies in sensing devices and network communication glitches, Alfian et al.
used outlier detection that is based on DBSCAN to refine the outlier data. The findings demonstrated
that DBSCAN was utilized to effectively recognize/characterize outlier data as isolated from normal
sensor data. Abid et al. proposed outlier detection based on DBSCAN for sensor data in wireless sensor
networks [27]. The proposed model successfully separated outliers from normal sensors data. Based on
the experiment on synthetic datasets, their proposed model showed significant results in detecting
outliers, with an accuracy rate of 99%. Finally, Tian et al. proposed an outlier detection method of
soft sensor modeling of time series [28]. They utilized DBSCAN for the outlier detection method.
The experiment showed that the proposed outlier detection method generated good performance.

Utilizing DBSCAN-based outlier detection provides an efficient way for detecting the outlier
data. The current literatures showed that removing outliers improves the classification accuracy.
Furthermore, the majority of real-world datasets are imbalanced; thus, an oversampling method to
generate artificial data from minority class is needed to improve the classification accuracy. A previous
study showed that the combination data cleaning (outlier removal) and oversampling method
generated a significant result [34]. In this manner, combining DBSCAN-based outlier detection and
oversampling technique is predicted to enhance the accuracy of classification model.

2.3. Oversampling Method for Imbalance Dataset

Classification datasets usually have great differences of distribution between the quantities of
majority class and the minority class, which is alluded as an imbalanced dataset. Learning from
imbalanced datasets is a demanding problem in supervised learning as standard classification
algorithms are intended to explain balanced class distributions. One of the methods is called
oversampling, and it works by creating artificial data to attain a balanced class distribution. SMOTE is
a kind of oversampling technique that has appeared to be great and it is generally utilized as a part
of machine learning to balance imbalanced data. The SMOTE creates arbitrarily new instances of
minority class from the closest neighbors of the minority class sample. These instances are made in
view of the features of the original dataset with the goal that they end up like the original instances of
the minority class [53].

Regarding the implementation of oversampling method, several studies have been conducted
and have showed significant results. The SMOTE has been integrated with classification algorithms
and it has improved the performance of prediction systems, such as in network intrusion detection,
bankruptcy prediction, credit scoring, and medical diagnosis. Yan et al. proposed Region Adaptive
Synthetic Minority Oversampling Technique (RA-SMOTE) and applied it to intrusion detection to
recognize the attack behaviours in the network [29]. Three distinct sorts of classifiers, including SVM,
BP neural system (BPNN), and RFs, were utilized to test the capability of the algorithm. The findings
demonstrated that the proposed algorithm could successfully take care of the class imbalance issue and
enhance the detection rate of low-visit attacks. Sun et al. proposed a hybrid model by utilizing SMOTE
for imbalanced dataset to be used as a tool for bank to evaluate the enterprise credit [30]. The proposed
model was applied to the financial data of 552 Chinese listed companies and outperformed the
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traditional models. Le et al. used numerous oversampling methods to manage imbalance problems
on the financial related dataset that was gathered from Korean organizations between 2016 and
2017 [31]. The findings showed a blend of SMOTE and Edited Nearest Neighbor (SMOTE + ENN),
as well as RF achieved highest accuracy on bankruptcy prediction. Finally, a past study proposed
a method combining SMOTE with SVM to enhance the predication accuracy for old banknotes [32].
The findings revealed that the proposed method could enhance the performance by as much as 20%
when compared with standard SVM algorithm. Generally, greater prediction performance can be
attained with balanced data. Past study integrated the SMOTE, the particle swarm optimization
(PSO), and radial basis function (RBF) classifier [33]. The experimental results showed that the
SMOTE + PSO-RBF provides an extremely well-defined explanation for other present advanced
techniques for fighting imbalanced problems. Verbiest et al. utilized data-cleaning before and after
applying SMOTE by proposing selection techniques that are based on fuzzy rough set theory to remove
the noisy instances from the dataset [34]. The results indicated that their proposed technique upgrades
present pre-processing methods for imbalanced classification. Past study proposed the SMOTE–IPF
(Iterative-Partitioning Filter), which can tackle the issues that are created by noisy and borderline
cases in imbalanced datasets [35]. The findings revealed that the proposed model worked superior
than the present SMOTE. Finally, Douzas et al. presented an impressive oversampling method based
on k-means clustering and SMOTE, which can prevent the creation of noise and successfully beats
imbalances between and within classes [36]. The result showed that their proposed method was
applied to 90 datasets and improved the performance of classification.

In the case of medical diagnosis or disease classification, the combination of SMOTE with
classification algorithms has shown significant results. Wang et al. proposed hybrid algorithm
by utilizing well-known classifier, SMOTE, and particle swarm optimization (PSO) to improve the
competence of classification for five-year survivability of breast cancer patients from a gigantic dataset
with imbalanced property [37]. The findings revealed that the hybrid algorithm surpassed other
algorithms. Moreover, applying SMOTE in appropriate searching algorithms, for example, PSO and
classifiers, such as C5, can considerably enhance the efficiency of classification for gigantic imbalanced
data sets. Furthermore, Alghamdi et al. investigated the performance of machine learning methods for
predicting diabetes incidence while using medical records of cardiorespiratory fitness [21]. The dataset
consists of 32,555 patients of whom 5099 have developed diabetes after five years. The dataset
contained 62 attributes that are classified into four categories: demographic characteristics, disease
history, medication use history, and stress test vital signs. The study utilized SMOTE to deal with
imbalance dataset. The result showed that, with the help of SMOTE, the performance of the predictive
model was enhanced. Furthermore, the study showed that ensembling and SMOTE approaches
achieve the highest accuracy for predicting incident diabetes while using cardiorespiratory fitness data.

The present literature demonstrates that greater prediction performance is attained by utilizing
SMOTE to balance data. Therefore, an HPM that consists of DBSCAN-based outlier detection to
identify and remove the outlier and SMOTE to balance the distribution dataset is proposed in our
study. The hybrid model is predicted to enhance the classification accuracy, in this way helping people
to detect the danger of diabetes and hypertension at the initial stage. Along these lines, a person can
evade the most exceedingly bad conditions later on.

3. Dataset and Feature Selection

This section explains the dataset description and feature selection procedures. In order to
investigate how the diabetes and hypertension can be predicted in early stage, this study was
conducted on three different sources. The proposed HPM is applied to the three different dataset and
is expected to generalize the robust classifier. The datasets on diabetes, hypertension, and Chronic
Kidney Disease (CKD) are considered as dataset I, II, and III, respectively. Dataset I was provided
by Dr John Schorling, Department of Medicine, University of Virginia School of Medicine [54,55].
The data contained 403 instances. The subjects were interviewed to understand the prevalence of
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obesity, diabetes, and other cardiovascular risk factors in central Virginia for African Americans.
The original features were 19 features without class variable. We defined the class variable as whether
the subject is diagnosed with diabetes or not. This decision is based on the Glycosylated Hemoglobin
of the subject, if the value >7.0 is diagnosed as diabetes, otherwise as normal. Based on this scenario,
the updated dataset consists of 330 negative (normal) subjects and 73 positive (diabetes) subjects.
The proposed HPM is expected to foresee that either the subject is diagnosed with diabetes or is not
given several inputs of risk factors. The detail of dataset attributes with its rank is presented in Table 1.

Table 1. The feature of dataset I and its Information Gain (IG) Rank.

Feature Explanation IG Rank

stab.glu Stabilized Glucose (mg/dL) 0.24978
age Age (years) 0.076107

ratio Cholesterol/ High Density Lipoproteins (HDL) Ratio 0.044198
waist Waist (inches) 0.035667
chol Total Cholesterol (mg/dL) 0.034227
bp.1s First Systolic Blood Pressure (mmHg) 0.030449
frame A factor with levels (small, medium, large) 0.014988

location Location of subject (Buckingham, Louisa) 0.002732
gender Gender of subject (male, female) 0.000697

hdl High Density Lipoprotein (mg/dL) 0
time.ppn Postprandial time when labs were drawn (minutes) 0

height Height (inches) 0
hip Hip (inches) 0

bp.2d Second Diastolic Blood Pressure (mmHg) 0
bp.2s Second Diastolic Blood Pressure (mmHg) 0
bp.1d First Diastolic Blood Pressure (mmHg) 0

weight Weight (pounds) 0
id Subject ID 0

Dataset II is provided by Golino et al. and it is utilized to reveal the relationship of increased
blood pressure by BMI, WC, and HC, and WHR on male subject [19,56]. Original dataset consists of
nine features with one output class. We have removed the attributes Systolic Blood Pressure (SBP)
and Diastolic Blood Pressure (DBP) due to its similarity with output class. The dataset consists of
175 male subjects, of whom 128 tested negatives (regular/normal) and 47 tested positive (hypertension).
The hypertension is classified when the systolic blood pressure of subject >140 mmHg. By utilizing
this dataset, the HPM is expected to foresee whether the subject is diagnosed with hypertension or not
given several features, such as obesity, WHR, HC, BMI, WC, and age. The detail of dataset attributes
with their ranks is presented in Table 2.

Table 2. The feature of dataset II and its Information Gain (IG) Rank.

Feature Explanation IG Rank

is.obese The subject is obese (yes, no) 0.0203
whr Waist hip ratio 0
hc Hip circumference (cm) 0

bmi Body mass index (kg/m2) 0
wc Waist circumference (cm) 0
age Age (years) 0
id Subject ID 0

Finally, dataset III is provided by Dr. P. Soundarapandian, M.D., D.M, from Apollo Hospitals,
Tamilnadu, India [57]. The dataset originally has 24 features with 400 instances, where its class is
either the subject is diagnosed with chronic kidney disease (CKD) or not. However, our study is
focusing on the relationship between hypertension and diabetes; thus, most of the features from
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original dataset are removed and the class outcome is modified. Finally, the attributes of updated
dataset consist of age, bp (blood pressure), and htn (hypertension), while the class is whether the
subject is diagnosed with diabetes mellitus. The dataset consists of 261 tested negative (normal),
137 tested positive (diabetes), and two unlabeled data. The HPM is expected to foresee either the
subject is diagnosed with diabetes based on risk factor, such as age and hypertension; thus, it can
reveal the relationship between hypertension and diabetes. The details of dataset attributes with its
rank are presented in Table 3.

Table 3. The feature of dataset III and its Information Gain (IG) Rank.

Feature Explanation IG Rank

htn Hypertension (yes, no) 0.2732
age Age (years) 0.1199
bp Blood pressure (mmHg) 0.0542

By utilizing the above datasets, it is expected to predict the diseases (i.e., diabetes and
hypertension) and reveal their risk factors. In this study, the dataset I is utilized by proposed HPM
to predict whether the subject is diagnosed with diabetes or not, while the dataset II is utilized to
predict whether there is presence of hypertension on the subject or not. Finally, dataset III is utilized
to reveal the relationship between the hypertension and diabetes. The proposed HPM is expected to
reveal the presence of diabetes given the input risk factors, such as age and hypertension. Furthermore,
these benchmark datasets have been utilized by previous machine learning-related studies, thus the
performance comparison with previous studies can be presented and the proposed HPM is expected
to improve the model accuracy.

The data pre-processing acts a key part as it can improve the classifier accuracy. Feature selection is
employed to choose subset of features that contributes considerably to the objective class. The objective
of the feature selection technique is to enhance the accuracy, lessens the process length, and the cost
computation [58,59]. One method for selecting pertinent features from a dataset is to choose them
based on their computed significance. Lastly, the unrelated features can be erased from the dataset.

In this study, the Information Gain (IG) technique is applied to evaluate the significance of features
from all the datasets [51]. The Weka version 3.6.15 software is utilized to evaluate the significant of
features by using IG [60]. Based on the attributed ranking provided by IG, the final features are selected
based on the highest ranked attributes and highlighted in italic font in the Tables 1–3 for dataset I,
II, and III, respectively. The exception is made for dataset II as the rank only appears for the is.obese
attribute. Therefore, we have ignored IG rank result and instead followed a previous approach [19] by
utilizing all of the features from the dataset except id (Subject ID) for dataset II.

4. Hybrid Prediction Model

This section explains the detail of proposed HPM. The dataset and feature selection have been
presented in the previous section. Furthermore, data pre-processing, which involves removing the
inappropriate, inconsistent, and missing-value data has been performed. Figure 1 shows the proposed
HPM for T2D and hypertension. The proposed HPM consists of several modules, such as outlier
detection based on the DBSCAN, over-sampling the minority class based on SMOTE, and RF model
to classify the diabetes, as well as hypertension of the subject. Detailed descriptions of each module
and its implementation to datasets are presented in following subsections. Finally, the performance
evaluation is presented by comparing the proposed of HPM with other existing models.
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In order to perform the outlier detection based on DBSCAN, the optimal value of MinPts and eps
must be defined first. We have defined the value of MinPts as 5 (i.e., the cluster is created when the
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minimum number of data is 5). Next, the optimal number of eps must be defined. First, we calculate the
average of the distances of every point to its k-nearest neighbors. The value of k refers to MinPts and it
is defined by the user. Finally, these k-distances are plotted in an ascending order and called the sorted
k-dist graph. The objective is to calculate the “knee” for estimating the set of eps parameter. A “knee”
denotes to a threshold where a sharp change appears beside the k-distance curve. The calculation of
k-nearest neighbor distance and DBSCAN are applied in R programming language version 3.4.4 [61].
In order to allow for the DBSCAN to cluster the dataset, all the categorical value in each dataset must
be converted into numerical values.

Figure 2a,c,e show the sorted k-dist graph and optimal value of eps for datasets I, II, III, respectively.
For dataset I, the “knee” is appearing around the distance of 36, while for dataset II and III, they
appear at around 9 and 6, respectively. Furthermore, the DBSCAN technique is applied for each
dataset given optimal MinPts and eps. Figure 2b,d shows the result of clustering implementation for
datasets I and II plotted in two-dimensional graphs. The result showed that for datasets I and II,
the DBSCAN performed clustering by grouping the data into single cluster and presented as cluster
1 (see Figure 2b,d). The outliers are un-clustered data and presented as cluster 0 (see Figure 2b,d).
Furthermore, for dataset III, the DBSCAN successfully cluster the dataset into five groups (see Figure 2f).
The outlier is defined as un-clustered data (i.e., defined as cluster 0 in Figure 2f). The description of
dataset, optimal parameters, and final outlier data are presented Table 4. Finally, for each dataset,
the outlier data are removed, and normal data are utilized for further analysis.
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Table 4. The result of DBSCAN-based outlier detection.

Dataset # Instance
(Original)

# Instances (After
Data Cleaning) MinPts eps # Outlier Data # Normal Data

I 403 384 5 36 33 351
II 175 175 5 9 20 155
III 400 377 5 6 18 359

4.2. SMOTE for Imbalanced Dataset

In this study, the proposed HPM utilizes SMOTE to balance the imbalance dataset. Table 5
shows the number of instances increase by SMOTE. For all of the datasets, the distribution between
minority and majority cases is imbalanced. In datasets I and III, the minority cases are the subjects
who are diagnosed with diabetes (class “Yes”), while for dataset II, the minority cases are the subjects
who are diagnosed with hypertension (class “Yes”). The original percentage of minority cases over
the total number of instances for datasets I, II, and III are 13.67%, 23.87%, and 34.54%, respectively.
The SMOTE technique is applied to randomly generate new instances of the minority class from the
nearest neighbors of the minority class sample, so that it would increase the number of minority cases.
In the present study, SMOTE was employed for every dataset with different percentage to increase the
balance of datasets; they are 500%, 200%, and 100% for dataset I, II, and III, respectively. After SMOTE
implementation, the total instance of minority cases increases, and the updated datasets I, II, and III
become more balanced, with 48%, 48.47%, and 51.35% minority cases, respectively. The application of
SMOTE for all of the datasets is performed by utilizing Weka Software version 3.6.15 [60]. The detail
impact of SMOTE increase can be seen in Table 5.

The SMOTE ensures that when generating the new artificial data, it will follow the distribution
from the original dataset. Figure 3 showed the distribution of all dataset and the data is presented
based on the attribute Age. For each dataset, the distribution of age for “Yes” and “No” classes
follow normal distribution. Figure 3a showed the distribution of age in minority cases (“Yes” class)
before SMOTE implementation and it showed less amount of data compared to majority cases (“No”
class). After SMOTE is applied to dataset I, the number of instance in minority cases (class “Yes”)
increases, and the updated dataset becomes balanced (Figure 3b). The SMOTE implementation keeps
the originality of dataset pattern as Figure 3b showed that, in updated dataset I, the minority cases
still follow the original distribution (i.e., normal distribution). The same result applied in dataset II as
the similar distribution found in the original dataset (Figure 3c) and updated dataset after SMOTE
implementation (Figure 3d). A similar pattern appears in dataset III, as the updated dataset (Figure 3f)
still follows the original pattern of the old dataset (Figure 3e). SMOTE algorithm uses oversampling
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where synthetic instances are added, which are “close to” the given sample of minority cases; thus,
it maintains the originality the distribution of dataset. The conventional classification algorithms aim
to minimize the number of errors that are made during learning process. Hence, when the dataset is
balanced it is expected to enhance the classifier accuracy.
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Table 5. Number of instances increase by Synthetic Minority Over Sampling Technique (SMOTE).

Dataset
Percentage of SMOTE

Increase (%)

Class “Yes” Class “No”
Total Instances

# Instance % # Instance %

I
0 48 13.67 303 86.33 351

500 288 48.73 303 51.27 591

II
0 37 23.87 118 76.13 155

200 111 48.47 118 51.53 229

III
0 124 34.54 235 65.46 359

100 248 51.35 235 48.65 483

4.3. Random Forest

The RF algorithm is a type of classification method that is formed via combining decision trees.
Past study described a randomization approach that works way better with bagging or random space
method [46]. The randomization introduced by bootstrap sampling of the original data and at the
node level when growing the tree. RF chooses just a random subset of factors at every node and uses
them as contenders to locate the best split for the node. The generation of each tree in RF is presented
in Algorithm 2.

Algorithm 2. Pseudocode for Random Forest

Input: dataset D, ensemble size T, subspace dimension d
Output: average of prediction from tree models
for t = 1 to T do

build a bootstrap sample Dt from D
select d features randomly and reduce dimensionality of Dt accordingly
train a tree model Mt on Dt

split on the best feature in d
let the Mt growing without pruning

end

The RFs overcome several problems with decision trees, such as reduction in overfitting and
generate low variance. In this study, the outlier data from diabetes and hypertension are removed
by DBSCAN-based outlier detection, and the SMOTE is utilized to balance the dataset. Finally, RF is
utilized to learn from the training set, and the result of prediction is then compared with the testing set
in order to obtain the model accuracy.

A single output prediction has four different potential outcomes, as depicted in Table 6. The true
positive (TP) and true negative (TN) are correct classifications. False positive (FP) occurs when the
output is incorrectly predicted as yes (positive) when it is actually no (negative), while false negative
(FN) occurs when the output is incorrectly predicted as no (negative) when it is actually yes (positive).
For datasets I and III, the patients that are diagnosed with diabetes are defined as “Yes” class, while for
dataset II, the “Yes” class reveal the patients who diagnosed with hypertension. In order to train and
test the entire classification model, 10 fold cross validation was used. The final performance measure
will be the average of all test performances of all folds. The application of classification models for all
dataset is performed by Weka Software 3.6.15 [60]. The performance metrics of the classification model
were calculated based on precision, recall, specificity, F1 score, and accuracy, and they are exhibited in
Table 7.
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Table 6. Different outcomes of two-class prediction.

Predicted as “Yes” Predicted as “No”

Actual “Yes” True Positive (TP) False Negative (FN)
Actual “No” False Positive (FP) True Negative (TN)

Table 7. Performance metrics for the classification model.

Performance Metric Formula

Precision TP/(TP + FP)
Recall/Sensitivity TP/(TP + FN)

Specificity/True Negative Rate TN/(TN + FP)
F1 Score 2 * (Precision * Recall)/(Precision + Recall)
Accuracy (TP + TN)/(TP + TN + FP + FN)

5. Results and Discussion

This section is comprised of the performance evaluation of HPM, the impact of DBSCAN-based
outlier detection and SMOTE, and managerial implication of the proposed model. The detail discussion
of each part is presented one by one as subsection in detail.

5.1. Performance Evaluation of Hybrid Prediction Model

The proposed HPM is compared with other classification algorithms as well as the results from
previous studies. The HPM is applied for dataset I to foresee either the subject is diagnosed with
diabetes or not with several input of risk factors. Table 8 showed the detail performance of HPM,
as well as other conventional classification models. The result showed that the proposed HPM
outperformed traditional models such as SVM, Multilayer Perceptron (MLP), Logistic regression, Naïve
Bayes, C4.5 and RF in term of precision, recall, F1 score, and accuracy. Furthermore, the proposed HPM
is compared to a previous study conducted by Wu et al. [14], and it shows better performance in model
accuracy. The accuracy of proposed model achieved highest value as much as 92.555% when compared
to the previous study (90.7%). Wu et al. combined K-means and the logistic regression model to predict
the existence of diabetes [14]. The improved K-means algorithm was used to eliminate incorrectly
clustered data; afterwards, the logistic regression algorithm was applied to classify the remaining data.
The feature selection is different compared to our study, as their study utilized 12 significant attributes
and the decision was based on the comparison with the attributes of the Pima Dataset [62] and some
clinical experience. Our study utilized IG for feature selection, and finally decided that nine significant
attributes are utilized to build the classifier model. Overall, we can conclude that the proposed HPM
perform better with regard to model accuracy when compared with other models.

Table 8. Performance evaluation of classification model for dataset I.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 88.235 41.096 98.788 56.075 88.337
MLP 74.545 56.164 95.757 64.062 88.586

Logistic Regression 84.783 53.425 97.879 65.546 89.826
Naïve Bayes 73.333 60.274 95.151 66.165 88.834

C4.5 68.421 53.425 94.545 60 87.097
Random Forest 78.846 56.164 96.667 65.6 89.33
Wu et al. (2018) 91.6 96.4 - - 90.7
Proposed HPM 91.497 93.403 91.749 92.440 92.555

In order to validate the prediction accuracy and adaptability of present model, the hypertension
dataset (dataset II) that was provided by Golino et al. was used [19]. The classification models are
expected to predict whether the subject is diagnosed with hypertension or not given several features,
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such as Obesity, WHR, HC, BMI, WC, and Age. Table 9 shows the detail performance of proposed
HPM as well as other conventional classification models, such as SVM, MLP, Logistic Regression,
Naïve Bayes, C4.5, and RF. The findings revealed that the proposed HPM excelled traditional models
with respect to precision, recall, F1 score, and accuracy of the model. Furthermore, the proposed
HPM is compared with past work by Golino et al., which used Classification and Regression Tree
(CART) to predict the hypertension [19]. Regarding the feature selection, we have followed a previous
scenario [19] by utilizing all of the features from the dataset. The proposed HPM showed better
performance, as the recall and specificity are 70.270% and 82.203%, respectively, when compared the
previous study (52.38% and 69.70%). Overall, we can conclude that the proposed HPM achieved
highest performance (up to 76.419%) as compared to other models.

Table 9. Performance evaluation of classification model for dataset II.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 16.667 2.128 96.094 3.774 70.857
MLP 35.714 10.638 92.969 16.393 70.857

Logistic Regression 40 8.511 95.312 14.035 72
Naïve Bayes 42.308 23.404 88.281 30.137 70.857

C4.5 28.571 4.255 96.094 7.407 71.429
Random Forest 28 14.894 85.937 19.444 66.857

Golino et al. (2014) - 52.38 69.70 - -
Proposed HPM 78.788 70.270 82.203 74.286 76.419

Finally, the proposed HPM is compared with conventional classification algorithms and applied
to the dataset III to reveal the relationship between age, hypertension, and diabetes. Table 10 showed
the detail performance of HPM as well as other conventional classification models, such as SVM,
MLP, Logistic Regression, Naïve Bayes, C4.5, and RF. The result showed that the proposed HPM
outperformed traditional model as much as 83.665%, 84.677%, 84.168%, and 83.644% for precision,
recall, F1 score, and accuracy, respectively. However, for specificity, the C4.5 performed better, as the
result achieved as much as 88.123% when compared to 82.553% in our proposed model. Overall,
the proposed HPM achieved highest performance (accuracy up to 83.644%) as compared to other
models. The attributes of dataset III are age and the current state whether the subject is diagnosed with
hypertension, while the output class is whether the subject diagnosed with diabetes or not. In dataset
III, the value of hypertension attribute depends on the input blood pressure of the subject. The subject
has hypertension when systolic blood pressure ≥140 mmHg and diastolic blood pressure ≥90 mmHg.
The proposed HPM successfully predicts the presence of diabetes given input, such as age and blood
pressure from users. Finally, we can conclude that there are significant risk factors on diabetes, such as
age and blood pressure/hypertension.

Table 10. Performance evaluation of classification model for dataset III.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 72.109 77.372 84.291 74.648 81.909
MLP 73.381 74.452 85.824 73.913 81.909

Logistic Regression 71.724 75.912 84.291 73.759 81.407
Naïve Bayes 73.050 75.182 85.441 74.101 81.909

C4.5 75.590 70.073 88.123 72.727 81.909
Random Forest 67.164 65.693 83.142 66.421 77.136
Proposed HPM 83.665 84.677 82.553 84.168 83.644

A series of experiments were conducted on three datasets and concluded that the proposed
HPM showed significant improvement when compared to other classification methods. The proposed
HPM consists of DBSCAN-based outlier detection, SMOTE, and RF classifier. In terms of model
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accuracy, the proposed HPM can be considered as the improvement of conventional RF as it performs
consistently better than the traditional one.

The proposed HPM utilizes DBSCAN-based outlier detection to remove the noise/outlier data.
Furthermore, the imbalance class distribution appears in three datasets, and the SMOTE is applied to
balance the dataset. The combination of DBSCAN-based outlier detection and SMOTE has improved
the performance of the model. The details on the impact of DBSCAN-based outlier detection and
SMOTE are presented in the following subsection.

5.2. Impact of DBSCAN and SMOTE

In this part, the impact of DBSCAN-based outlier detection on the accuracy of RF classifier
is presented. The detail size of original dataset before and after DBSCAN-outlier detection was
presented in Table 4. The accuracy of RF classifier for the original dataset are 89.33%, 66.86%,
and 77.14% for dataset I, II, and III, respectively. There were slightly improved for two datasets
after the implementation of DBSCAN-based outlier detection. After removing the noise/outlier data,
the result of RF classifier are 89.17%, 69.68%, and 79.11% for datasets I, II, and III, respectively. The result
showed that by integrating DBSCAN-based outlier detection with the RF model, the average from the
three datasets increased as much as 1.543% for model accuracy when compared to conventional RF.
The detailed impact of DBSCAN-based outlier detection on improving the accuracy of RF classifier can
be seen in Figure 4a. Overall, we can conclude that by integrating DBSCAN-based outlier detection on
the RF classifier, it will enhance the model accuracy.
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Furthermore, we combined the result from DBSCAN-based outlier detection with SMOTE, and the
model accuracy is presented for RF Classifier. Table 11 showed the detail of estimation of distribution
of minority cases for three datasets. The estimated distribution of minority cases is defined as total
number of minority cases over total number of instances. The original size of dataset I, II, and III
after outlier removal from DBSCAN are 351, 155, and 359, respectively. As increasing the distribution
of minority cases, the number of instance of minority class also increase. Originally, dataset I is an
imbalanced dataset where the minority cases (the subjects who diagnoses as diabetes) are 48 instances,
while the majority cases (normal subjects) are 303 instances. After SMOTE implementation with 500%
increase on minority cases, the updated dataset is becoming more balance with its minority cases is
288 (out of 591). The imbalanced dataset is also present in datasets II and III, in which numbers of
minority cases are 37 (out of 155) and 124 (out of 359). By applying SMOTE with 200% and 100%
increases, the updated dataset II and III become more balanced, where numbers of minority cases are
111 (out of 229) and 248 (out of 483).
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Table 11. Distribution of minority cases.

Dataset Estimated Distribution of
Minority Cases

% SMOTE
Increase

# Minority Cases
(“Yes” Class)

# Majority Cases
(“No” Class)

Total Number
of Instance

I

0.1 0 48 303 351
0.2 70 76 303 379
0.3 170 129 303 432
0.4 350 216 303 519
0.5 500 288 303 591

II

0.2 0 37 118 155
0.3 50 55 118 173
0.4 130 85 118 203
0.5 200 111 118 229

III
0.3 0 124 235 359
0.4 50 186 235 421
0.5 100 248 235 483

Finally, the model accuracy of DBSCAN-based outlier detection with different percent of SMOTE
increase is presented for RF classifier. Figure 4b manifests the model accuracy on different distribution
of minority cases. For all three datasets, the small increasing of distribution of minority cases will
slightly reduce the model accuracy. However, once the datasets achieve balance condition (when the
distribution of minority cases approximately close to 0.5), the model accuracy of RF classifier presents
its best performance. As average from three dataset, by applying SMOTE, there was increasing
as much as 4.885% for the model accuracy when compared to conventional RF without SMOTE
integration. After SMOTE integration, the RF classifier can achieve the model accuracy by up to
92.555%, 76.419%, and 83.644% for dataset I, II, and III, respectively. Overall, we can conclude that
integrating DBSCAN-based outlier detection, SMOTE for balancing the dataset and RF for classifier
model will improve the accuracy of the model.

5.3. Managerial Implications

Rodriguez-Rodriguez et al. revealed that recent technologies, such as IoT, big data, cloud
computing, novel biosensors, and machine learning can perform significant part in improving
the diabetes management [38]. The previous studies have shown significant results with the
implementation of IoT in healthcare systems. Dziak et al. proposed an IoT-based Information System
for Healthcare Applications that enables the localization of a monitored person [63]. The proposed
system successfully categorizes present activities of patients as normal, suspicious, or dangerous,
which are utilized to inform the healthcare staff about potential problems. Park et al. proposed an
IoT System for the remote monitoring of patients at home and utilized Personal Healthcare Devices
(PHDs) that sense and calculate persons’ biomedical signals [64]. The proposed system informs
medical staffs when the patients encounter emergency situations in real-time. Due to successful IoT
implementation from previous studies, the results of our study also could be applied to IoT-based
Health-care Monitoring Systems. Figure 5a showed the proposed IoT-based Health-care Monitoring
that can be utilized by individuals to record their risk factors as well as predicting the presence of
hypertension and diabetes. The final end-user application, such as an Android app, collects the vital
signs data from sensor device: i.e., weight scale through Bluetooth Low Energy (BLE) communication.
The user weight data from BLE-based sensor device is combined with other risk factors some of which
are DOB (date of birth), height, HC (hip circumference), and WC (waist circumference) are sent to
the Representational State Transfer (REST API) to be stored in a secure remote server. As the count
of devices gathering health data of patient grows, the chances of using new kind of applications
that can handle the input of big amounts of health data (big data), such as NoSQL database, also
grows. The proposed IoT-based Health-care Monitoring system utilized NoSQL MongoDB to store the
user data, including their detail of health condition. Finally, the proposed HPM is utilized to predict
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the presence of hypertension and diabetes by providing risk factors input by the user. The result of
prediction is delivered to individual’s smartphone app.
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Figure 5b shows the weight data from BLE-based sensor device is combined with other risk
factors that are manually defined by the user. The sensor data from BLE-based weight scale (i.e.,
Mi Scale) is delivered to the Android app by BLE communication. BLE is the right option for sending
sensor data wirelessly while keeping low power consumption [65–67]. Communication between the
BLE-based sensors and a smartphone is explained with the help of Generic Attributes (GATT) [68].
A prototype of an Android app was developed to retrieve the weight data from BLE-based sensor
devices to smartphone. By pressing the “send” button, the input user risk factors are stored in the
remote server, and the proposed HPM is triggered to predict the presence of hypertension as well as
diabetes for the user. Figure 5c shows the interface of the app when the user receives the prediction
from HPM. By utilizing the IoT-based Health-care Monitoring System, the history of user health data
can be presented. Also, the prediction results from the proposed HPM can be accessed by user through
their Android app; thus, it is expected to help users in finding the danger of diabetes and hypertension
efficiently at initial phase.

6. Conclusions

The present study proposed HPM by combining DBSCAN-based outlier detection, SMOTE,
and RF classifier. The proposed model is believed to help users to find the danger of diabetes and
hypertension at the initial phase. Three datasets that are related with diabetes and hypertension are
utilized in this study. The HPM is applied for dataset I, to foresee the existence of diabetes given
input of several risk factors. Dataset II reveals risk factor for hypertension, and the proposed HPM
is expected to predict the presence of hypertension. Finally, dataset III revealed the relationship
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between age, hypertension, and diabetes. The result showed that the proposed HPM outperformed the
conventional classification models as well as models that are presented from previous studies with an
accuracy up to 92.555%, 76.419%, and 83.644% for datasets I, II, and III, respectively. In addition, the IG
technique can be applied to evaluate the significant of features from all datasets; thus, the highest risk
factors of diabetes as well as hypertension can be extracted. Furthermore, the result of this study also
revealed a significant relationship between the age, hypertension/blood pressure, and diabetes as
presented in dataset III. The proposed HPM successfully detected the presence of diabetes given age
and blood pressure as inputs. Therefore, the age and blood pressure can be considered as high-risk
factors for detecting diabetes.

The proposed HPM could be integrated with an IoT-based Health-care Monitoring System.
The IoT-based Health-care Monitoring System utilizes an Android app to gather the vital signs
data (i.e., weight data) from sensor devices through Bluetooth Low Energy (BLE) communication.
The data is then combined with other risk factors and stored in a remote server, which utilizes
NoSQL MongoDB, so that the voluminous incoming health data can be handled efficiently. Finally,
the IoT-based Health-care monitoring system provides the prediction result from the proposed HPM
and transmits it to the user’s Android app; thus, it would assist users in finding the danger of diabetes
and hypertension in efficient way.

The comparison with other prediction models, as well as evaluation of other clinical datasets,
needs to be considered in the near future. Furthermore, once the model validation is performed in
other datasets, other risk factors that are affecting hypertension as well as diabetes can be revealed.
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