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Abstract: In this article, two techniques that are congruous with the principle of control theory are 

utilized to estimate the state of health (SOH) of real-life plug-in hybrid electric vehicles (PHEVs) 

accurately, which is of vital importance to battery management systems. The relation between the 

battery terminal voltage curve properties and the battery state of health is modelled via an adaptive 

neuron-fuzzy inference system and a group method of data handling. The comparison of the results 

demonstrates the capability of the proposed techniques for accurate SOH estimation. Moreover, the 

estimated results are compared with the direct actual measured SOH indicators using standard 

tests. The results indicate that the adaptive neuron-fuzzy inference system with fifteen rules based 

on a SOH estimator has better performances over the other technique, with a 1.5% maximum error 

in comparison to the experimental data. 
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1. Introduction: 

Notwithstanding the Paris Agreement, a technological transient from a hydrocarbon-based 

economy to the post-petroleum era, there is less tangible projective evidence of declining fossil-fueled 

based economies all over the world. For instance, recent investigation into the projection period, 

conducted in 2017 by the U.S. Energy Information Administration [1], indicates that the demand for 

liquid fuels will increase from 95 to 113 million barrels per day. The proportion of the transportation 

demand to the petroleum demand and other liquid fuels has been predicted to increase from 54% to 

56%, leading this sector to be the main topic of electrification [2]. Nevertheless, the electrification of 

the transportation sector with existing electrical infrastructure leads the power system to collapse. 

However, it can be prevented if electric vehicles are coordinated and scheduled for a proper charging 

time-period and rate. In addition, recent progress in harnessing renewable energy sources (RESs), 

and improving battery characteristics shows that it is possible to completely mitigate the impact of 

connecting a large fleet of electric vehicles (EVs) on the power system. The majority of scientists have 

reached a consensus on viable alternatives for fossil fuels, mainly wind and solar energy, which have 

relatively low generation costs as well as high generation potential, respectively. However, their 

fluctuations in output are a serious problem [3]. To alleviate the oscillations of renewable generation 

sources, the following four possible approaches have been proposed: 



Appl. Sci. 2018, 8, 1301  2 of 16 

(1) Coupling renewable energy systems with different generation characteristics in wider 

distribution via the transmission grids; 

(2) Responding to the demand by adapting consumption patterns;  

(3) Employing fossil-fueled utilities as a traditional back-up (either for meeting peak demand or 

providing spinning reserve); and 

(4) Equipping the grid with storage devices such as compressed air storage, battery storage, and 

hydro pump storage. 

Nevertheless, these approaches suffer from different drawbacks and limitations. For instance, 

dealing with the uncertainties of the renewable energy sources with different characteristics that are 

subjected to their inherent dependency on the weather conditions is a challenging task. Concerning 

the second approach, adapting consumers’ patterns would require a new infrastructure to control the 

consumers’ equipment. Regarding the main drawback of the third solution, fossil-fueled utilities 

would increase the environmental concern, which is contradictory to the objective of the Paris 

Agreement. Moreover, electrical vehicles and electrical energy storage systems equipped with 

lithium-ion batteries assume important roles as both back-up supply systems and primary energy 

sources. Indeed, energy storage systems (ESS) and electrical vehicles can be used to manage the 

demand in response to severe times (e.g., when RESs have fluctuations and load exceeds generation). 

Therefore, ESSs and EVs (in vehicle-to-grid [V2G] services) have been considered as great candidates 

to provide regulation services for frequency fluctuation, voltage deviation, and ancillary services.  

However, EVs and ESSs whose V2G capability decreases because the battery performance 

degrades over time, decreasing both the energy and power capabilities as a result of the dynamic 

nonlinear nature of the electrochemical reactions, which are impacted by external states such as 

charge and discharge methods, usage, temperature, and the chemical makeup of the cell. In the 

meanwhile, battery technology is developing rapidly and battery cells with higher energy and power 

densities are becoming available. Hence, improving the performance of the battery management 

system (BMS) is an equally important task to make the battery reliable, safe, and cost-effective [4]. 

Indeed, the accurate estimator algorithms are essential for the smart battery management to estimate 

and measure the functional states of the battery, and it should contain state-of-the-art mechanisms to 

protect the battery from hazardous and inefficient operating conditions. In this regard, extensive 

research has been carried out for lithium-ion battery systems, investigating their high power density, 

energy efficiency, fast charging capability, light weight, steady-state float current, wide operating 

temperature range, low self-discharging rate, and the possible memory effect [5].  

Furthermore, both the prognostications and engineering maintenance are key figures in various 

industry sectors such as aerospace, chemical, automotive, and so forth. Hence, the obvious 

formidable obstacles to wholesale EVs is a lack of confidence in the battery life-time and performance 

[6], leading the authors to look into two intelligent algorithms, which are capable to be implemented 

in the existing BMS hardware. The state of health can be estimated and classified into offline and 

online procedures, which have different advantages and drawbacks in terms of accuracy, time 

duration, and implementation. Based on the advantages and disadvantages, vehicle manufacturers 

select a suitable technique according to the application. Battery capacity estimation, referring to 

energy capability, poses tremendous challenges to researchers, whose attempts have turned to the 

relationship between capacity fade and an increase in battery resistance. Nevertheless, it has been 

observed that the changes in battery impedance cannot be exactly related to the capacity fade. 

Moreover, this approach needs extensive laboratory investigations to establish the correlation 

function [7].  

Considerable research has been recently conducted on state of health (SOH) estimation models, 

which can be split into the following groups: electrochemical models (EMs), equivalent circuit models 

(ECMs), and data-driven or black-box models [8,9]. Electrochemical models are established to 

replicate the growth of a solid electrode interface (SEI) in lithium-ion and describe its influence on 

capacity degradation. Indeed, they are built based on concentrated solution and porous electrode 

theories. This means that the electrochemical models describe and elaborate the basic understanding 

of the electrochemical reaction inside the battery [10]. The EM includes mutually coupled non-linear 
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partial differential equations (PDEs), increasing the numerical complexity and computational efforts, 

which poses difficulties in the real-time implementation phase, or large-scale simulation as a life-time 

prediction [11]. In this regard, desperate attempts to reduce the numerical complexity have been 

recently made through model-order reduction. In the literature [9], a dual SOH and state of charge 

(SOC) estimation technique has been proposed, by applying the sliding mode technique to the 

reduced version of PDE, namely a single partial model. The results showed that the proposed 

technique can track the SOH and SOC accurately. The advantage of the EM approaches is their 

independence from environmental conditions. On the other hand, as mentioned previously, the EM 

approaches require intensive computational efforts for system identification, because of a great 

quantity of parameters [12]. Moreover, the EM approaches are usually created for a particular type 

of battery consisting of specific anode and cathode materials [13].  

The EC models are featured with ease of implementation and parameterization, as well as 

acceptable modeling accuracy [14]. The EC model completely depends on the environmental and 

operating conditions (e.g., SOH and SOC). This dependency on model parameters, derived from the 

operating conditions, can be addressed and captured via a look-up table, needing extensive 

experimental efforts to collect a sufficient dataset to describe a broad range of operating conditioning 

for batteries. The ECM’s parameters can be estimated and updated via open-loop or close-loop 

methods. For the later method, an accurate EC model is required [15], and the battery parameters 

should be updated according to the aging state of the battery, which is a challenging task. Many 

techniques have been developed and some combined algorithms have been used to estimate SOC 

(directly or indirectly through the estimation of the open circuit voltage [OCV]), consequently 

estimating the SOH, such as the extended Kalman filter (EKF) and unscented Kalman filter (UKF). 

The EKF and UKF are effective techniques for SOH estimation. For instance, in the literature [16], a 

novel joint SOC and capacity estimator based on EKF has been introduced. The results showed that 

the proposed technique can capture the variation of the parameters in varying operating conditions 

and battery aging. Similarly, the authors of [17] proposed a new technique for SOH and SOC 

estimation, employed Coulomb counting method (CCM) to estimate SOC, taking the benefits of EKF 

to reduce accumulative errors of CCM, due to the current sensor noises. Moreover, the SOH was 

estimated based on the relationship between the dis/charge current and estimated SOC. The results 

demonstrated a reasonable estimation of SOH and SOC. These techniques are called joint estimation, 

and can estimate the SOH of the battery as accurately as the battery is modeled. This means that the 

accuracy is highly dependent on how the battery is modeled. Moreover, large matrix operation and 

inversions are required, leading to a high complexity. Furthermore, the joint estimation method may 

have poor numerical conditioning and suffer from instability [7]. Nonetheless, for this method, a dual 

estimation technique has been implemented, meaning that instead of one estimation algorithm, two 

adaptive filters are used. One of the filters estimates SOC and the other one is employed for the 

estimation of the model parameters. Sometimes, instead of the second filter used for model 

parameters identification, evolutionary algorithms are used [18]; a battery model was established and 

then a genetic algorithm was used to identify the model parameters and then estimate the SOH. In 

the literature [19], a multi-scale framework EKF was introduced to effectively estimate the state and 

parameters of the ECM, applied to a Li-ion battery for the capacity and SOC estimation. The results 

indicated that the proposed technique has a less than 3% error for the SOC estimation. In contrast to 

the joint estimation, the dual-technique consists of two adaptive filters. This technique demands a 

lower computational effort and the dimensions of the respective model matrices are lower than the 

joint estimation technique. In the literature [20], an effective joint SOH and SOC estimation technique 

was introduced. In this work, KF and UKF were combined to predict the state of the battery. The 

result regarding the SOC estimation is promising; nevertheless, the error of the SOH indicator is 

around 20%. In the literature [15], an adaptive sliding mode observer was employed to estimate the 

SOH and SOC of the Li-ion battery. The ECM consisted of two resistor and capacitor networks; 

furthermore, the results showed a high performance and robustness on the SOH and SOC 

estimations. However, similar to the joint technique, an accurate battery model is essential for the 

SOC and SOH estimations. Indeed, observer techniques, known as a close-loop method, whose 
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adaptability and effectiveness are utterly dependent on the credibility of the EC models and the 

robustness of the technique [10]. 

As stated previously, the techniques employed in ECM, suffer from inaccuracy owing to the lack 

of thorough understanding of the electrochemical dynamics and physics of the battery [21]. This 

drawback could be lessened via data-driven models, utilizing the information of the measurement 

ensemble. Consequently, prior knowledge of electro-chemistry is not required as a result of their 

capability to work with imprecise data and their self-learning ability [22]. Machine learning is 

categorized under data-driven method, which are widely employed for battery SOH estimation. In 

the literature [23], a recurrent neural network was used to monitor the SOH of a high-power lithium-

ion battery. Lu et al. [24] proposed a group method of data handling, recognized as a polynomial 

neural network, in order to estimate the SOH of Li-ion batteries, and the results show a 5% error vs. 

the experimental data. The authors have concluded that the technique is universally valid for other 

types of battery chemistries. More recently, Chaoui et al. [5] employed an artificial neural network 

technique to estimate SOC and SOH directly and simultaneously. The technique used in the article is 

a useful tool for analyzing the system dynamics that are subjected to uncertainties [25]. In the 

literature [26], a naive Bayes model was introduced to predict the remaining useful life of a battery 

under different operating conditions. The comparative results showed the superiority of the 

proposed technique over the support vector machine. To reduce and avoid the need for computing 

power and a complex battery model, as well as considering the random driving cycle, researchers 

have been compelled to investigate the capacity degradation phenomena corresponding to SOH 

during charging or discharging processes, which could be more predictable than those methods 

mentioned previously [27]. Eddahech et al. [28] proposed a constant-voltage (CV) step as an indicator 

of capacity degradation. Then, four battery technologies were compared to show that the 

implemented method is very accurate by comparison with the classic discharged capacity 

measurements. 

Motivation, Objective, and Innovation Contribution 

Considering the limitations of the measurement devices in the present BMS, many external 

features of the battery are hard or even impossible to obtain in actual operation. Moreover, the 

applications of the above-mentioned methods are also limited by the computational capability of a 

real BMS. To address the above drawbacks of the methods described in the literature, this article 

proposes two states of health estimation techniques for Li-ion batteries, and then, another technique 

has been developed and compared to show the robustness of the proposed technique in this field. In 

this article, the proposed method requires only two external states (voltage and current), making the 

method suitable for EV applications. The key contributions of this article are summarized as follows: 

 Employing an input time-delayed strategy to handle dynamic information of system. 

 The Adaptive Neruo-fuzzy Inference System (ANFIS) and group method of data handling 

(GMDH) techniques are employed to analyze the relational grade between the SOH and selected 

features. 

 Developing two data-driven frameworks to estimate the SOH. This article utilizes the fuzzy C-

means clustering algorithm to tune and adjust the ANFIS parameter in advance, to create the 

initial rules.  

 Accurate and effective validation of the framework in comparison to recently published articles 

and other methods.  

The paper is organized as follows: in Section 2, a brief introduction is done regarding the group 

method of data handling and adaptive neuro-fuzzy inference system; in Section 3, both the discussion 

and comparisons between the proposed techniques are provided. The outcome of the article is 

summarized and concluded in Section 4. 

2. Proposed Techniques 
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Based on the literature, modeling the relation between external and internal states is required 

for battery state estimation. Consequently, a battery model is needed for accurate estimation. 

Moreover, batteries are complicated electrochemical devices with non-linear behavior, affected by 

various internal and external states. This behavior can be described by a model whose formulation 

comprised of both uncertain and unknown parameters, but structurally known. In addition, 

describing the relationship between the battery terminal voltage property and battery SOH is an 

arduous task. As known from the literature, the charging process of an EV battery system includes 

two sub-processes, constant-voltage (CV) charge and constant-current (CC) charge. Charging or 

discharging of a certain amount of capacity (Ah) leads to a lower voltage change in fresh battery cells, 

while the same amount of Ah creates a higher voltage change in an aged cell for the same type of 

battery. This principle, the determination of the differential voltage responses to the ampere-hours 

discharged or charged from the battery before and after discharging or charging, is almost employed 

as the capacity estimation method. So, in this method, after a certain amount of energy throughput, 

the variation of voltage response is calculated and compared to the experimental data. This method 

is a practical solution for battery capacity monitoring [29–31]. The advantage of this method could 

reside in low inputs. 

As can be seen in Figure 1, the terminal voltage curves are plotted at three different SOH levels 

while the batteries were charged using constant-current charging profile. The terminal voltage curves 

considerably vary from cycle to cycle. For instance, the terminal voltage curve of the battery at the 

beginning of life (BOL) has a lower slope than the voltage curves at 71% SOH. In addition, the initial, 

mean, and final voltages are not equal in the voltage property curves at different SOH levels. Hence, 

it can be concluded that the SOH can be reflected by the terminal voltage curve in a specific 

charging/discharging process. In other words, the battery’s terminal voltage generally decreases and 

increases when being discharged and charged, respectively. The charging and discharging processes 

of a fixed number of ampere-hours lead to a lower voltage change for a battery with a higher SOH 

(fresh battery). On the other hand, a higher voltage change takes place when the battery’s SOH is 

lower (aged battery). Figure 1 shows the battery charging profile based Lithium-ion battery (LIB) at 

different SOH from 97% to 71%, aged at 25 °C. For instance, the blue line represents 97% SOH, has a 

lower slope than the red line, and corresponded to 95% of the nominal capacity. In addition, the line 

with 71% SOH has a bigger slope than the line with 95% SOH.  

 

Figure 1. Terminal battery voltage at constant-current charging protocol (25 °C). SOH—state of 

health. 

2.1. Group Method of Data Handling 
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The group method of data handling (GMDH) neural networks is a self-organized algorithm, 

meaning that the connections of the network (connections between neurons) are selected throughout 

the training phase to optimize the network [32]. In this approach, the neurons are completely not 

connected with the function nodes. Moreover, the number of layers, neurons in hidden layers, and 

active neurons are automatically configured, because of their self-organized capability. Furthermore, 

the network structure is modified until the best structure is accomplished, and thereafter, the 

optimized network defenses the dependency of the output values on the most notable input 

variables. It should be mentioned that GMDH can be employed in a wide range of fields, such as 

complex system modeling, forecasting, data mining, and knowledge discovery. The relation between 

inputs and outputs can be described as follows: 

0
1 1 1 1 1 1

...
M M M M M M

i i ij i j ijk i j k
i i j i j k

y a a x a x x a x x x
     

      
 

(1) 

where 1 2 1 2( , ,..., ),( , ,..., )M Mx x x a a a  and M  are the input variables, the coefficient, and the 

number of input variables, respectively. By applying input data as a matrix, N point of observations 

of M variables are included. In the learning step, the network is tuned and estimates the coefficients 

of the polynomial, as described by Equation (2), and the remaining data samples are utilized to choose 

the optimal structure of the model, which can be realized by minimizing the error between the 

expected output (real value) and the estimated value. In this regard, Equation (3), known as a mean 

square error, is defined as a cost function of the algorithm.  

2 2
0 1 2 3 4 5i j i j i jy a a x a x a x x a x a x       (2) 

2

1

1
ˆ( )

N

n n
n

y y
N 

  (3) 

where ˆ
ny  and ny  are the estimated and expected values, respectively, and N is the length of the 

training dataset. The input variables are considered as pairs of ( ,i jx x ), as can be seen by Equation 

(2). The regression polynomial is created and then iterations continue from two to three steps, until 

the mean square error of the test data converge to a constant value. The configuration of the group 

method of data handling is depicted in Figure 2.  

 

Figure 2. Group method of data handling (GMDH) structure. 
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Figure 2 illustrates the optimized structure, configured automatically by minimizing the cost 

function, as defined previously. Furthermore, some node functions were not connected to the 

network, as can be distinguished in Figure 2. 

2.2. Adaptive Neuro-Fuzzy Inference system  

Fuzzy logic (FL) is a robust system that transforms variables to mathematical language, which 

is consistent with the ability of human knowledge modeling. While, fuzzy logic tries to model either 

linear or non-linear systems, it is not possible to be trained by itself in a stochastic condition. 

Therefore, fuzzy logic systems are dependent on their operation rules, which should be defined by 

the experts who conclude, using their intuition, the parameters associated with membership 

functions. To overcome this problem, FL can be combined with artificial neural networks (ANNs), 

which have a remarkable ability to learn from imprecise data. Hence, combination of ANNs and FL 

procedures lead a better parameterization, which presents the fuzzy logic inference, known as the 

adaptive neuro-fuzzy inference system (ANFIS). Indeed, fuzzy logic and ANNs have both substantial 

benefits and drawbacks, which should be taken into consideration in terms of system modeling. In 

fuzzy logic language, called ‘fuzzily’, if–else statements are used to model the system by human 

knowledge. Although FLs are not capable of capturing measurement values, and use them to either 

adjust or modify the parameters like the Gaussian membership function variables, ANNs have the 

capability to be tuned and learnt by experimental data, leading a mathematical model not to be 

included in the system modeling, which can be possible by input–output mapping. Moreover, it has 

been demonstrated that the ANFIS is one of the techniques that can be utilized to any type of battery 

with various operating conditions (e.g., partial discharging, constant charge, and discharge 

processes) [33].  

Two common fuzzy style inferences are Mamdani-style and Sugeno-style, which have been 

presented by Lotfi Zadeh and Takagi-Sugeno-kang, respectively [3]. To provide a better 

understanding, an ANFIS structure with two-input one-output is illustrated in Figure 3. The rule base 

considers two fuzzy ‘if–then’ rules of Takagi and Sugeno’s type, which are as follows: 

1 1 1 1 1 1 1: ,    rule If x A and y B then Z p x q y r   

2 2 2 2 2 2 2 :  ,    rule If x A and y B then Z p x q y r   

A1 

X

Y

A2

B1

B2

F1(x,y)

F2(x,y)





N

N

X Y

X Y

 z

W1 
1nW

2nWW2 
2 2nW F

1 1nW F

Layer 1

Layer 2 Layer 3

Layer 4

Layer 5

 

Figure 3. A general adaptive neural-fuzzy inference system [2]. 

The basic structure of ANFIS, considering as a fuzzy inference system, is a five-layered 

feedforward type, ANN, including different purpose-built types of nodes (e.g., non-weighted, 

adaptive, and non-adaptive connection links). The different layers can be classified into five-layers, 

which are as follows: 
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Layer 1: This layer is known as fuzzy-fication layer, which fuzzifies the input variables; every i node 

consists of a node function, which is 1, ( )i AiO x , symbolized by 1, ,i iA x O , where iA  

is the linguistic label according to the node function, x  is the input to the node, and 1,iO  

is the membership function of that, specifying the level for the assumed x. Hence, the 

membership function ascertains the membership level from the given input values. For a 

bell-shaped function, three parameters for each node should be defined, for which the 

maximum and minimum possible value are 1 and 0, respectively; where its generalized 

function can be mathematically described as follows:  

2

1
( )

1 [(( ) / ( )) ]i i
A b

i i

x
x c a

 
 

 (4) 

where  , ,i i ia b c  are the set parameters, called as premise parameters,   is commonly 

chosen as bell-shaped or gauss-shaped, x  is the first input variable, and the membership 

function variables are adjusted by changing the aforementioned parameters whenever the 

first input variable is fed to the ANFIS.  

Layer 2: Is called ‘fuzzy and’, because in this layer, only ‘AND’ operators are allowed. This layer is 

utilized to compute the firing robustness of every rule. It means product operation (see 

Equation [5]) referred to the weighting factor of the corresponding rule, is used. 

2, 1 2( ) ( ) 1,2
i ii i A BO w x x for i      (5) 

Layer 3: Is known as ‘normalization’ term. The firing strength of each rule is normalized via 

computing the ration of each rule’s firing strength to the total of each rules. In Equation (6), 

iw  is defined as the firing strength of each rule, as illustrated below:  

3,

1 2

i i
i i i

i

w w
O w f

w w w
  


, 1,2for i   (6) 

Layer 4: Is recognized as ‘defuzzification’. This layer tries to compute the output of the previous 

layer, based on its node function; each node function is adaptive in accordance with the 

node function, as given by Equation (7).  

4, ( )i i i i i i i i iO w f w p x q x r    
, 

1,2for i 
 (7) 

where iw  is the output of the third layer and the parameters ( , , )i i ip q r  are set 

parameters, which are being assumed by the conditions of the determined parameter. The 

parameters in the fuzzy inference layer are considered as consequent parameters. 

Layer 5: Is called ‘aggregation’. This layer is utilized to compute the total of the outputs of all of the 

rules to produce the overall ANFIS output, whose equation is represented as follows: 

5,

i i
i

i i i out
i i

i

w f

O w f f
w

  





 (8) 

The aforementioned architecture is employed to adjust ANFIS model for SOH estimation, as 

discussed in the next section.  

3. Result and Discussion 

Many methods have been proposed in the literature to estimate SOH, whereby accurate battery 

parameters are needed to build the empirical model, which could be inefficient and expensive. 
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Nevertheless, the above developed techniques are capable of dealing with the complexity of the 

system modeling, insufficient data, and can still describe the system behavior. 

3.1. Experimental Data 

In this work, the experimental data from Prognostics Center of Excellence at National 

Aeronautics and Space Administration (NASA) Ames is employed to train and validate the proposed 

approaches [34]. This approach leads the comparison of the proposed techniques with that of recently 

published papers using the same dataset to be easier. The dataset consists of four batteries, aged 

through three different operational profiles conducting alternately in the dataset, namely impedance, 

charge, and discharge profiles. The impedance measurement process was performed by employing 

the electrochemical impedance spectroscopy (EIS) technique. Moreover, in the regular charge and 

discharge cycle, the batteries were charged and discharged at CC of 1.5 A and 2 A, respectively. In 

the charge step, 1.5 A is imposed to the batteries to reach the maximum voltage of 4.2 V, followed by 

the CV process, until the current decreased from 1.5 A to 20 mA. Nevertheless, in the discharge 

profile, the CC discharge step was conducted by reaching the voltage of 2.7 V, 2.5 V, 2.2 V, and 2.5 V 

for batteries, No. 05, 06, 07, and 18, respectively. As a consequence of reoccurring the above 

procedure, the capacity of the batteries reached 70% of the nominal capacity. 

3.2. Short-Term State of Health Estimation 

In this subsection, the performance of the short-term SOH estimation is presented by employing 

the proposed techniques. Both the GMDH and ANFIS are trained by the collected dataset. The inputs 

and the outputs of the system in the training phase are the battery terminal voltage and the SOH, 

respectively. The beginning-of-life (BoL), corresponding to a fresh battery, is defined as a 100% SOH, 

and the 167th cycle, when the capacity has reached the 1.4 Ah, is considered as the end-of-life. 

Moreover, the algorithm uses the unit-time-delays to consider the battery voltage at past time frames. 

The voltage is normalized, which is a standard procedure when such intelligent techniques are used. 

Thereafter, the normalized dataset after the computing and estimating procedures will be de-

normalized. Owing to the capability of improvement in the read performance of the database, this 

technique is used. Indeed, each sample is divided by the maximum possible measurement. For 

instance, a measurement of 4.2 V constitutes as number 1, while 0 V is represented as number 0, and 

every other value is between 1 and 0. Furthermore, it should be noted that EVs are not always charged 

at a certain state of charge, which means that the technique should be able to estimate the SOH at 

different SOC levels, corresponding to different initial voltages. The proposed techniques, GMDH 

and ANFIS, were trained by the experimental results of battery No. 05. As mentioned previously, 

during the training phase, the structure and weights of GMDH and weights of ANFIS could be 

optimized and adjusted in terms of minimizing the error between the estimated SOH from the 

network, and the training targets from the experimental data. Then, the techniques are validated by 

employing the experimental data from battery No. 06. For the GMDH whose parameters are the 

maximum number of neurons in a layer, the maximum number of layers and selection pressure are 

set to 10, 5, and 0.6, respectively. It should be pointed out that the dataset for the training phase 

includes all of the voltage samples corresponding to 0% SOC to 100% SOC. 

The GMDH parameters, maximum number of neurons in a layer, maximum number of layers, 

and selection pressure are set to 250, 10, and 0.6, respectively. For validation, battery No. 06 was used, 

whose experimental results were used to test the estimation accuracy of the GMDH technique. The 

actual and estimated SOH are depicted in Figure 4. The blue line shows the actual SOH and the red 

line indicates the estimated SOH at first and second cycles with 0.052 mean square error, and 0.23 

root mean square error. It is observed that the relationship between the battery voltage and estimated 

SOH closely matches the actual test dataset. Moreover, the RMSE and MSE show that the GMDH has 

successfully discovered the effects of aging of the battery voltage behavior.  
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Figure 4. Experimental and estimated results of state of health (SOH) vs. battery voltage by employing 

GMDH (No. 06) for two cycles. 

With regard to the second technique, as mentioned earlier, the combination of fuzzy logic and 

NNs leads to the ANFIS structure, which is classified under adaptive networks. Consequently, 

ANFIS has the ability to reach a conclusion from unclear and complex data, because of the fuzzy 

logic, with the capability to work from imprecise data [35]. In this regard, this technique is utilized to 

estimate the SOH from a set of curves whose shapes depend on the state of the system. Furthermore, 

the ANFIS cannot work without a training phase. Therefore, the battery terminal voltage during 

constant current charge profile at different SOH is prepared. Then, the membership functions should 

be adapted to the battery charge curves, which are diverse at different SOH levels. It should be 

pointed out that the constant-voltage sub-process is not included in the input dataset. The number of 

initial ANFIS rules for the first input was set to 15, these rules were generated using the fuzzy C-

means (FCM) clustering method, and then the ANFIS was trained and tuned by the experimental 

results of battery No. 05. Moreover, the method used for optimization of the parameter of ANFIS, is 

a combination of back-propagation and least-square estimation. Note that the trained dataset consists 

of all of the voltage intervals, starting from 0% to 100% SOC. The dataset, related to the battery No. 

06, is utilized to test the developed algorithm.  

The errors between the experimental data (actual SOH) against the estimated SOH at different 

voltage levels are illustrated in Figure 5. The mean squared error (MSE) and root mean squared error 

(RMSE) are 0.009 and 0.094, respectively. As can be inferred from the results, the ANFIS has better 

performance compared with the GMDH. The results, shown in Figure 4, have a maximum error 

below 0.3. Moreover, the overestimation and underestimation is lower than that of the previous 

technique, which demonstrated the adaptive capability of the ANFIS technique. 
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Figure 5. Experimental and estimated results of SOH vs. battery voltage by employing ANFIS (No.06) 

for two cycles. 

3.3. Long-Term State of Health Estimation 

In this subsection, the proposed techniques for the long-term battery state of health estimation 

are also evaluated. Note that in this procedure, all of the short-term SOH and voltage cycles are 

integrated to build one macro time scale concept. The charge data for 87 cycles of battery, No. 06, are 

employed to evaluate the proposed techniques for long-term estimation capability.  

Figure 6 shows the long-term SOH estimation of battery No. 06. The obtained MSE and RMSE 

for the SOH estimation are 0.714, and 0.845, respectively. It can be seen that the GMDH, trained and 

tuned by battery No. 05, can be used to estimate the SOH for other batteries. Nevertheless, it is 

observed that, despite the better performance of GMDH for short-term estimation, in long-term SOH 

estimation, the fluctuation of GMDH is the most noticeable. According to Figure 6, the GMDH could 

not estimate the 1st, 21st, 54th, and 74th accurately. It can be concluded that the GMDH technique for 

long-term SOH estimation is instable.  

 

Figure 6. Long-term SOH estimation via GMDH for the 87 discharge cycles of battery No. 06. 
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The results of SOH estimation for battery No. 06 based on ANFIS, are plotted in Figure 7. As it 

is noted in the figure, the MSE and RMSE are 0.041 and 0.203, respectively, which shows a better 

stability from the GMDH for the long-term SOH estimation. It can be observed that the ANFIS has 

successfully learned the effect of capacity degradation on the battery terminal voltage. Therefore, 

overcharging and deep-discharging can be avoided, and also, the proposed techniques can be used 

for smart battery charging management, as ANFIS and GMDH have the capability to respond to an 

optimization algorithm as soon as they receive the inputs of the system. 

 

Figure 7. Long-term SOH estimation via ANFIS for the 87 discharge cycles of battery No. 06. 

Table 1 presents the performance of the evaluation, comparing the proposed techniques with 

the recent published articles. As shown in the table, the ANFIS model obtains a much better 

performance over the GMDH model. For instance, the RMSE and MSE on battery No. 06 based on 

GMDH is 0.845 and 0.714, while the RMSE and MSE based on ANFIS is 0.203 and 0.041, respectively. 

Moreover, in terms of comparison, the present results and the resent published articles used same 

dataset from NASA, the performance of the models introduced in the literature [16,24,36] are 

compared in Table 1. As can be observed, the RMSE and MSE based on the ANFIS model are much 

better than the introduced models. Nevertheless, the following limitations need to be addressed in 

future studies: 

1. While machine learning demonstrated an acceptable self-adaptation and high non-linearity 

modeling capability, a large amount of experimental data is required to obtain a high accuracy.  

2. Although the introduced SOH method is more predictable and accurate under charging and 

discharging processes, it is not a usable method for plug-in hybrid electric vehicles 

(PHEVs)/PEVs when they are connected to smart charging infrastructure. 

Table 1. Root mean square error (RMSE) results of long-term capacity estimations of adaptive neruo-

fuzzy inference system (ANFIS), group method of data handling (GMDH), and a recent published 

article. MSE—mean square error; QGPER—quadratic polynomial mean function; DGA—geometry 

based approach. 

Error 
Ref. [36] 

QGPFR 

Ref. [16] 

GPR-SE 

Ref. [24] 

GMDH-DGA 

Present Study 

ANFIS 

Present Study 

GMDH 

RMSE (battery 

No. 06) 
5.12 1.7064 - 0.203 0.845 
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MSE (battery 

No. 06) 
- - 0.360 0.041 0.714 

4. Conclusions 

In this article, two data-driven techniques are developed for the state of health estimation. The 

developed techniques utilize an adaptive neuro-fuzzy inference system and group method of data 

handling to train the relation of the battery terminal voltage and state of health, enjoying the 

advantage over existing methods, as mentioned previously (e.g., lower inputs, described system 

behavior), with no need for computing power and a complex battery model. The comparative merit 

of the method and techniques implemented in this paper, compared to the existing ones in the 

literature, can be concluded in two main points. Firstly, the techniques are not dependent on any 

specific battery model, due to the fact that they are data-driven techniques, as can be inferred. The 

employed techniques can be applied to a great variety of battery technologies. Secondly, the battery 

operating dataset is applied to these techniques to analyze the internal structure, which is 

inaccessible. The comparison between the experimental and estimated results showed a robustness 

of the developed techniques, fast convergence performance, and outstanding accuracy for the battery 

health estimation. 
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Abbreviations 

ANN artificial neural network 

ANFIS adaptive neruo-fuzzy inference system 

BMS battery management system 

CC constant current 

CV constant voltage 

DG distributed generation 

DGA geometry based approach 

ESS energy storage system 

EV electric vehicle 

EKF extended Kalman filter 

G2V grid-to-vehicle 

GHG greenhouse gas 

GMDH group method of data handling 

GP Gaussian process 

HRES hybrid renewable energy system 

ITDNN input time-delayed neural network 

KF Kalman filter 

LS least squares 

NN neural network 

NEDC new European driving cycle 

MSE mean squared error 

PS power system 

PF particle filter 

QGPFR quadratic polynomial mean function (GP) 

RMSE root mean square error 

RBC remaining battery capacity 

SG smart grid 

SOC state of charge 

SOH state of health 
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V2G vehicle-to-grid 

NPF nonlinear predictive filter 

MSE mean square error 

OCV open circuit voltage 

PHEV plug-in hybrid electric vehicle 

Nomenclature 

ˆ
ny

 estimated values 

ny  expected values 

M  number of input variables 

,i jx x  pairs of input variables 

1 , iO  membership function 

iA  linguistic label 

1( , )Mx x  Input variables 

1( , )Ma a  model coefficient 
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