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Abstract: Technological advances in lipid vesicles facilitate optimization of their properties to achieve
therapeutic goals and promote alternative drug administration routes. Sildenafil citrate (SC) is orally
administered for the treatment of pulmonary hypertension, but local release would be advantageous
in terms of efficacy and safety. In the present study, liposomes from egg phosphatidylcholine and
cholesterol loaded with SC, with and without D-α-tocopheryl polyethylene glycol 1000 succinate
(Vit E TPGS), were prepared by sonication of the components. A transmembrane pH gradient was
applied for active loading of liposomes, and the size, zeta potential, and entrapment efficiency (EE%)
were determined. The liposomes were lyophilized and then nebulized. The nebulized samples were
collected and the EE% was determined. The transmembrane pH gradient produced a significant
increase in the EE% (from 17.68 ± 4.25% to 89.77 ± 7.64%) and, after lyophilization, the EE% remained
the same as that of the originals, but the size and zeta potential were modified. EE% of liposomes
decreased upon nebulization, particularly for those with Vit E TPGS. Thus, the additives used for
lyoprotection reduced the impact of nebulization. Additional studies are essential, but according to
these results, SC-loaded liposomes can be considered as suitable and safe carriers for the local release
of sildenafil in the pulmonary system.

Keywords: liposomes; pulmonary delivery; sildenafil; local drug release; transmembrane pH
gradient; solvent-free pharmaceutical procedures

1. Introduction

Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by a progressive
increase in pulmonary vascular resistance, leading to right heart failure and premature death [1].

Therapies for PAH target the prostacyclin, endothelin, or nitric oxide pathways, and are believed to
be effective by reversing or diminishing vasoconstriction, vascular endothelial cell proliferation, smooth
muscle cell proliferation, and endothelial dysfunction [2]. Approved drugs currently used in the
treatment of PAH include the orally administered 5-phosphodiesterase (PDE-5) inhibitors—sildenafil
and tadalafil. Sildenafil was first approved in 1998 for erectile dysfunction, but additional uses
for the drug have since been found [3]. In 2005, its use was approved for PAH in adults, and,
in 2011, sildenafil received approval for the treatment of pediatric patients aged 1–17 years [4].
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Intravenous injection of sildenafil is also approved for patients who are unable to take sildenafil
orally [5]. Sildenafil increases the level of cyclic guanosine monophosphate (cGMP) in the body, where
the accumulation of cGMP leads to a series of cellular changes that cause decreased intracellular
calcium levels and the relaxation of smooth muscles [6,7]. PDE-5 inhibitors have been associated
with ocular side effects [8], but other unwanted effects, such as systemic hypotension, are expected,
since PDE-5 is found in the corpus cavernosum, retina, platelets, smooth muscles of the vascular
system, and pulmonary circulation [7]. In 2012, the FDA issued a warning against the use of sildenafil
in pediatric patients, based on the results of a clinical trial showing a higher risk of mortality after
2 years of treatment among children randomized to high-dose treatment, versus those receiving low
doses [9]. Pulmonary drug delivery is an efficient method for passive drug targeting, with relevant
advantages compared to oral or intravenous administration. Direct access to the respiratory system
and the avoidance of extensive systemic exposure are some of the most interesting features of this
route for PDE-5 inhibitors used in PAH treatment. Antibiotics are among the drugs considered
for pulmonary administration [10,11], and nanocarrier-mediated drug delivery to the lungs proved
beneficial over conventional inhalation in handling various pulmonary diseases [12]. Studies with
isolated rat lung proved that vancomycin nebulization produced much higher drug levels in respiratory
tissue and bronchoalveolar fluids than those achieved in systemic fluid [13]. Also, nebulization of
liposomes facilitated the drug uptake in the lungs, compared to the drug solution [14]. Among colloidal
carriers, liposomes have been shown to be safe for pulmonary administration in animals and humans.
Inhalation of hydrogenated soy phosphatidylcholine liposomes did not cause pathological effects
on alveolar macrophages or physiological abnormalities in the lungs of sheep, even after prolonged
administration. Also, liposomal insulin formulations delivered to the lungs by nebulization have
been reported to be safe in animal models [15]. Moreover, some studies have established that the
inhalation of liposomes is safe for humans, and that inhaled liposome-entrapped beclometasone is well
tolerated by humans when administered in therapeutic doses [16]. Arikace®, an anti-pseudomonal
liposome formulation, has been shown to be safe and suitable for inhalation by humans suffering
from cystic fibrosis [17]. Liposomes are known for their sustained drug release capability, as shown by
Li et al. [18]. These authors found that an aerosolized liposomal formulation of terbutaline produced a
prolonged anti-asthmatic effect, in comparison to the solution aerosol. Sustained drug release avoids
the high peaks associated with side effects and reduces the dose frequency required for maintaining
therapeutic levels. Accordingly, the inhalation of drugs entrapped in liposomes is likely to produce
safer and more efficacious kinetic profiles than the inhalation of free drugs. Sildenafil formulations
based on solid lipid nanoparticles [19,20] and polymeric biodegradable nanoparticles [21–25] have
been recently developed and are currently being assessed as potential pulmonary delivery systems.
However, liposomal formulations of sildenafil have only been proposed for vaginal delivery [26].
The results of an in vitro study on the stability of nebulized sildenafil citrate loaded liposomes [27] are
the only reported data related to the use of liposomes for the pulmonary administration of sildenafil.

Among the commercially available inhaler systems, ultrasonic nebulizers are frequently used
for liquid formulations. The shearing provided during nebulization to convert the aqueous liposome
dispersions into aerosol droplets may exert physical stress, causing drug leakage or changes in liposome
morphology [28]. Lehofer et al. [29] investigated the impact of atomization techniques on the stability
and transport efficiency of liposomes showing different surface characteristics. The authors found that
conventional liposomes were the most stable, while polymer-coated and positively charged liposomes
were more prone to aggregation and drug leakage.

Regardless of therapeutic aims, in most cases the methods used to prepare liposomes involve the
use of organic solvents to obtain a lipid solution. From the original method of Banghan [30] to those
based on simple or multiple emulsification [31–33], as well as modified ethanol injection methods [34],
all require the use and later removal of an organic solvent. Little attention has been paid to solvent-free
procedures, although high-pressure homogenization and supercritical fluid methods have been applied
to prepare liposomes [35–38]. Sonication is used as an additional step to homogenize and reduce the
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size of previously formed liposomes, but recent studies have probed that the sonication of components,
as a single step, is a procedure suitable for the preparation of liposomes [39].

The aim of present study was to optimize sildenafil citrate-loaded liposomes for pulmonary drug
delivery, and to evaluate their stability after lyophilization and ultrasonic nebulization. The liposomes
were prepared by a solvent-free procedure based on direct sonication of components. A pH
transmembrane gradient was applied to increase entrapment efficiency and drug loading. Sucrose and
trehalose were used as lyoprotective agents, and the influence of these agents on the characteristics of
liposomes before and after nebulization was evaluated.

2. Materials and Methods

2.1. Reagents

Egg L-α-phosphatidylcholine (EPC), lanolin cholesterol (Ch), D-α-tocopheryl polyethylene glycol
1000 succinate (Vit E TPGS), and formic acid were purchased from Sigma-Aldrich Quimica S.A.
Sildenafil citrate (SC) was obtained from Fagron Ibérica SAU and sucrose and trehalose from Guinama.
Acetonitrile HPLC reagent was purchased from Fisher Chemical. Ultrapure water was obtained using
a Milli-Q A10 system (Merk, Darmstadt, Germany).

2.2. Preparation of Liposomes

SC-loaded liposomes with bilayers composed of EPC and Ch, with and without Vit E TPGS, were
prepared by direct sonication of the components according to a previously described method [39].
Briefly, EPC and Ch were gently mixed with a 1 mg/mL SC solution in water or citrate buffer (pH = 3.2),
with or without Vit E TPGS (0.1% w/w). The mixtures were sonicated for 30 min in a Fisher Scientific
FB 15061 ultrasonic bath (50 Hz) at 50 ± 2 ◦C. The sonicated samples were kept at room temperature
for 60 min for liposome stabilization and then stored at 4 ◦C until active loading by transmembrane
pH gradient.

For active loading, the liposome suspensions prepared with citrate buffer were adjusted to
pH = 7.0 with NaOH 0.1 N. The resulting suspensions were maintained for 20 h at 25 ± 2 ◦C under
mechanical agitation to facilitate the diffusion of the drug across the lipid bilayer and its accumulation
in the liposome core (pH = 3.2), according to the pH-dependent solubility profile of sildenafil [40].
The marked influence of pH on sildenafil solubility facilitates the accumulation of the drug in the
liposomal acidic core. The adjustment of the external medium to pH = 7.0 maximizes the unionized
fraction of the drug, which shows high lipophilicity and permeability. Unionized molecules are able
to cross the lipid bilayer to reach the acidic aqueous core, where they are trapped as ionized species.
Figure 1 illustrates the mechanism of SC active loading in liposomes by transmembrane pH gradient.
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2.3. Lyophilization

Four percent sucrose, 4% trehalose, or 4% mixture of sucrose and trehalose (1 w/w ratio) was
added to the liposome suspensions as the lyoprotective agent. The mixtures were frozen at −80 ◦C
(Nuaire −86 ◦C Ultralow Freezer) and then lyophilized (Ehrisa Beta Freeze-Drying and Varian DS
102 vacuum pump).

2.4. Nebulization

The liposomes were nebulized using an ultrasonic aerosol generator (700700-UV system TSE,
HF-Frequency: 1.70 MHz) connected to an artificial ventilator (7025 Rodent Ventilator) set at
60 respirations per min and 2 mL of tidal volume. The liposome suspension (10 g) was placed into the
nebulizer container at room temperature. After 5, 10 and 15 min of nebulization, the temperature and
the amount of solution remaining in the container were determined, and samples were collected for
determination of entrapment efficiency (EE%) of liposomes. Discharged samples were also collected,
and the volume and concentration of SC were quantified to determine the discharge rate (DR) and the
nebulization efficiency (NE), according to the following expressions:

DR (mL/min) = V/t

where V is the volume of discharged sample and t the duration of the nebulization.

NE% = (Cd/Cn) × 100

where Cd and Cn are the SC concentrations measured in the discharged sample and the nebulized
liposome suspension, respectively.

2.5. Characterization of Liposomes

The liposomes were characterized in terms of size (hydrodynamic diameter = Dh), polydispersity
index (PDI), zeta potential, drug entrapment efficiency (EE%), and drug loading (mg of SC/g lipid).
The Dh, PDI, and zeta potential were determined by dynamic light scattering (DLS) in a Zetasizer
Nano ZS (Malvern Instruments, CO., UK). The analysis was performed at 25 ◦C and with a scattering
angle of 173◦ after the appropriate dilution (×100 or ×1000) with Milli-Q water or buffer solution
(pH = 3.2) to avoid the phenomenon of multiple scattering. Liposome morphology was characterized
through transmission electron microscopy (TEM) using a Hitachi HT7700, Japan. The samples were
diluted in Milli-Q water (1:100) and then were placed on a formvar-coated copper grid and allowed to
dry at room temperature overnight. The images were captured using an accelerating voltage of 80 kV
at the magnification of ×10,000 to ×20,000.

To determine the EE%, the liposome suspensions were centrifuged at 14.000 rpm for 45 min at 6 ◦C
to separate the unentrapped drug in the supernatant from the drug loaded into liposomes. The amount
of drug in the supernatant was determined by high pressure liquid chromatography (HPLC), using a
Purosphere STAR rpE18, with a 3 µm column of 50 cm × 4.0 mm. A mixture of 0.1% formic acid in
water and acetonitrile (70/30 v/v) adjusted to pH 4.2 with triethanolamine was used as the mobile
phase at a flow rate of 1.5 mL/min. The UV detector was set at 292 nm (HPLC system with Waters
Alliance 2695 separation module, 2998 photodiode array detector, and empower processor system),
and the calibration range was 25−500 µg/mL. EE (%) was estimated from the following equation:

EE (%) = [(Qt − Qs)/Qt] × 100,

where Qt is the total drug amount in the liposome suspension and Qs is the drug amount quantified in
the supernatant.
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Drug loading (DL) was estimated from the Qsc/Qlip ratio, where Qsc and Qlip represent the
amount of SC (mg) and the amount of lipids (g) in the liposomes, respectively.

The Dh, PDI, zeta potential, and EE% were determined for the liposomes obtained without and
with applying the transmembrane pH gradient. In the latter case, these characteristics were determined
for fresh, lyophilized, and nebulized liposomes.

The density (ρ) and kinematic viscosity (η) of the liposome suspensions at 25 ◦C were measured
before and after adding the lyoprotective agent. A capillary viscometer was used, and η (mm2/s) was
estimated by measuring the time (second) it took for the sample to flow through the capillary under
the influence of gravity. The instrument was calibrated with Milli-Q water (ρ = 1 g/mL; η = 1 mm2/s)
and the viscometer constant (K, mm2/s2) was estimated. Then, the viscosity of liposome suspensions
was calculated as follows:

η = K × t,

where t is the time it took for the liposome suspension to flow from the lower to upper mark.
The following scheme summarizes the above-described methodology (Figure 2).
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2.6. Statistical Analysis

Data were presented as the mean and standard deviation (m ± sd). The difference between groups
was regarded to be statistically significant when the p value was lower than 0.05, using Student’s t-tests
or analysis of variance (ANOVA) to compare two or more groups, respectively.

3. Results

As reported in previous studies [39,41,42], the direct sonication of the components produced
drug-loaded liposomes without the use of organic solvents, which results in an environmentally
friendly approach. The characteristics of the SC-loaded liposomes obtained in this study are
summarized in Table 1.
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Table 1. Characteristics of the liposomes prepared using Milli-Q water (pH = 6.7), citrate buffer
(pH = 3.2), or the transmembrane gradient (pH gradient). Abbreviations: Vit E TPGS: D-α-tocopheryl
polyethylene glycol 1000 succinate; EE: entrapment efficiency; Dh: hydrodynamic diameter; PDI:
polydispersity index; DL: drug loading.

Influence of the Transmembrane pH Gradient on the Characteristics of the Liposomes

Liposomes Dh (nm) PDI Zeta Potential (mV) EE (%) DL (mg/g lipid)

Without
Vit

E TPGS

pH = 6.7 - - - <18% <11
pH = 3.2 304.3 0.413 −2.10 49.47 ± 9.78 29.71 ± 5.87

pH gradient 209.7 0.537 −20.90 89.77 ± 7.64 53.92 ± 4.59
With
Vit

E TPGS

pH = 6.7 - - - <15% <9
pH = 3.2 303.2 0.452 −2.05 22.67 ± 11.32 13.62 ± 11.00

pH gradient 219.8 0.534 −21.30 80.30 ± 11.03 48.23 ± 6.62

EE% values under 18% were obtained when Milli-Q water was used as the hydration medium,
and this value was moderately increased when citrate buffer (pH = 3.2) was used instead. However,
the most relevant increase in the EE% was observed after applying the transmembrane pH gradient,
irrespective of whether the liposomes contained Vit E TPGS or not (EE = 89.77 ± 7.64% and
80.30 ± 11.03%, respectively). The difference between these two values was not statistically significant
(p = 0.1495). However, when these values were compared to those obtained prior to the application of
the pH gradient, the differences were statistically significant for both types of liposomes (p = 0.0039).

The particle size and charge were determined using the Zetasizer Nano ZS device, as described in
the Material and Methods Section. The results showed the effects of pH on liposome size and zeta
potential. At pH = 3.2, the Dh values were 304.3 nm (PDI = 0.413) and 303.2 nm (PDI = 0.452) for
liposomes without and with Vit E TPGS, respectively. Smaller liposomes were obtained when the pH
was adjusted to 7.0 for the transmembrane gradient (209.7 nm; PDI = 0.537 or 219.8 nm; PDI = 0.534 for
liposomes without or Vit E TPGS, respectively). Changes were also observed for the zeta potential,
which showed values of −2.10 mV or −2.05 mV at the acidic pH and −20.90 mV or −21.30 mV at
pH = 7.0.

The liposomes prepared by active loading were lyophilized with sucrose, trehalose, or sucrose
and trehalose, and homogeneous cakes were obtained in all cases. After the cakes were hydrated,
the aspect and characteristics of the fresh suspensions were immediately restored, and the EE% values
determined for rehydrated liposomes did not show statistical differences when compared to fresh
liposomes (p = 0.1390). By contrast, the lyophilized liposomes exhibited a greater diameter and more
negative charge as compared to the fresh liposomes (see data in Table 2), irrespective of whether
sucrose, trehalose, or sucrose and trehalose was used as the lyoprotective agent.
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Table 2. Characteristics of the liposomes before (fresh liposomes; red curves) and after lyophilization
with sucrose (S; green curves), trehalose (T; black curves), or sucrose and trehalose (S + T; blue curves).

Influence of Lyophilization on the Characteristics of the Liposomes

Liposomes Dh (nm) PDI Zeta Potential (mV) EE% DL (mg/g Lipid)

Without
Vit E
TPGS

Fresh 209.7 0.537 −20.90 89.77 ± 7.64 53.32 ± 4.59
S 408.4 0.572 −21.0 89.65 ± 1.02 53.84 ± 0.61
T 433.1 0.577 −46.6 89.95 ± 2.15 54.02 ± 1.29

S + T 471.7 0.701 −38.9 88.95 ± 0.30 53.42 ± 0.18
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The effect of ultrasonic nebulization on the liposomes was evaluated, and the change of the EE%
throughout the period of nebulization was measured for fresh and lyophilized liposomes. Table 3
shows the results of this assay. A progressive decrease in the EE% was observed as the nebulization
period increased for both types of fresh liposomes. After 15 min of nebulization, the EE% decreased
from 89.77 ± 7.64% to 77.78 ± 0.89% and from 80.30 ± 11.03% to 59.24 ± 1.61% for liposomes without
and with Vit E TPGS, respectively. The differences in the EE% values before and after nebulization were
significant in both cases (p = 0.0389 and p = 0.0201, respectively). In the case of the liposomes without Vit
E TPGS, the lyophilized and fresh samples behaved similarly during the nebulization, and the presence
of the lyoprotective agents did not affect the results obtained for the EE%. In contrast, the lyophilized
samples with liposomes containing Vit E TPGS remained more stable than the fresh ones during
nebulization, and only slight differences in the EE% were observed. As shown in Table 3, the EE%
values were greater than 80% after 15 min of nebulization for this type of liposomes, irrespective of
whether the suspension contained sucrose, trehalose, or sucrose and trehalose (EE = 82.2 ± 1.13%,
81.12 ± 1.43%, and 81.82 ± 0.89%, respectively). The comparison of these values to the mean value
obtained for fresh liposomes (59.24 ± 1.61%) revealed statistically significant differences (p = 0.0126).

Table 3. EE% of nebulized liposomes before lyophilization (Fresh), and after lyophilization with
sucrose (S), with trehalose (T), or with the mixture (S + T).

Influence of Nebulization on the Liposomes Stability (EE%)

Liposomes 0 min 5 min 10 min 15 min

Without Vit E TPGS

Fresh 89.77 ± 7.64 85.10 ± 0.64 83.56 ± 3.04 77.78 ± 0.89
S 89.65 ± 1.02 87.35 ± 0.88 82.73 ± 1.28 79.47 ± 1.02
T 89.95 ± 2.15 86.90 ± 0.50 81.23 ± 4.29 78.15 ± 1.91

S + T 88.95 ± 0.30 87.06 ± 0.39 83.04 ± 0.88 79.89 ± 1.79

With Vit E TPGS

Fresh 80.30 ± 11.03 76.76 ± 0.52 69.34 ± 1.16 59.24 ± 1.61
S 88.77 ± 0.22 85.84 ± 0.92 84.06 ± 0.97 82.20 ± 1.13
T 88.57 ± 0.59 85.94 ± 0.43 82.86 ± 0.53 81.12 ± 1.43

S + T 88.39 ± 0.25 86.05 ± 1.05 84.15 ± 1.04 81.82 ± 0.89

Finally, the influence of the density and viscosity of the samples on the performance of the
nebulizer was analyzed and the results are shown in Table 4. It was found that the addition of the
lyoprotective agent did not modify the density of the liposome suspensions, but it did increase viscosity
in all cases. The viscosity values after the addition of 4% sucrose, trehalose, or sucrose and trehalose
were higher (η = 1.24 ± 0.01 mm2/s) than those observed for the samples without the additives
(η = 1.15 ± 0.05 mm2/s), the differences being statistically significant (p = 0.0052).
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Table 4. Performance of the ultrasonic nebulizer based on the discharge rate (DR) and the nebulization
efficiency (NE) for liposomes before (Fresh) and after lyophilization with sucrose (S), trehalose (T), or
the mixture (S + T).

Nebulizer Performance

Liposomes DR (mL/min) NE (%) η (mm2/s) ρ (g/mL)

Without Vit E TPGS

Fresh 0.21 ± 0.01 50.51 ± 2.47 1.13 ± 0.04 1.01 ± 0.01
S 0.17 ± 0.01 65.19 ± 2.98 1.27 ± 0.03 1.02 ± 0.01
T 0.19 ± 0.02 75.22 ± 6.08 1.24 ± 0.01 1.01 ± 0.01

S + T 0.19 ± 0.02 68.00 ± 2.48 1.27 ± 0.01 1.02 ± 0.01

With Vit E TPGS

Fresh 0.20 ± 0.01 50.87 ± 1.90 1.18 ± 0.06 1.01 ± 0.01
S 0.16 ± 0.02 76.99 ± 2.69 1.30 ± 0.04 1.02 ± 0.01
T 0.18 ± 0.01 78.41 ± 0.22 1.28 ± 0.03 1.00 ± 0.00

S + T 0.16 ± 0.01 81.24 ± 2.12 1.26 ± 0.04 1.02 ± 0.01

The viscosity of the samples did affect nebulizer performance. A higher DR coupled with a
lower NE was observed for samples with a lower viscosity (fresh liposomes without additives) as
compared to those with a higher viscosity (lyophilized liposomes with sucrose, trehalose, or sucrose
and trehalose). Statistical differences among samples were only found for NE (p = 0.0126).

4. Discussion

SC-loaded liposomes composed of natural phospholipids (EPC and Ch), with or without Vit E
TPGS, were prepared using a procedure that guarantees the absence of unwanted residues and the
avoidance of organic solvents. In contrast, most reported methods use organic solvents to obtain
liposomes, which are then sonicated to reduce and homogenize their size. We have found that the
first step, consisting of dissolving the lipids in an organic solvent and its subsequent evaporation,
is not necessary for obtaining liposomes with a high PDI. Direct sonication of the components allowed
us to obtain liposomes loaded with different drugs showing different Dh and PDI [39,41,42]. In the
present study, liposomes with high PDI were obtained, and extrusion is recommended to reduce size
polydispersity. Since optimization of the liposome drug loading was the main objective of this work,
extrusion was not carried out. The EE% of the liposomes was significantly increased by applying
a transmembrane pH gradient (see Table 1 in Results). The marked influence of pH on sildenafil
solubility facilitates the accumulation of the drug in the liposomal acidic core, leading to optimum
EE% values.

The separation of the liposomes by centrifugation allowed us to determine that approximately 8%
of the drug solution volume was retained in the liposome core. Therefore, only about 8% of the drug
is trapped inside the water core, as long as an active loading is not achieved. Since SC solubility at
pH = 3 has been reported to be 6.96 mg/mL [40], and a 1 mg/mL dissolution was used in the present
study, approximately 56% (0.08 × 6.96 = 0.56) of the drug is expected to be trapped inside the aqueous
core using pH gradient active loading. The EE% values obtained here (>80%) support this hypothesis
and confirm that SC is also trapped in the lipid bilayer due to the favorable partition coefficient of its
unionized species.

Although lyophilization has been proposed as the best approach for ensuring the long-term
stability of liposomes, many factors should be controlled in order to obtain an acceptable level of
encapsulated drug retention after lyophilization [43]. In the present study, sucrose, trehalose, or their
mixture were used as lyoprotective agents, and differences among the samples containing these
agents were not found when rehydrated samples were compared. Excellent results were obtained
regarding SC retention in the liposomes after lyophilization, and EE% values above 88% were found
in all cases, irrespective of the lyoprotectant agent used or if the liposomes contained Vit E TPGS
or not. In contrast, Dh significantly increased after lyophilization, and the liposomes containing
Vit E TPGS and lyophilized with the mixture exhibited the highest Dh and PDI values (688.4 nm,
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PDI = 0.682). The zeta potential was also affected by lyophilization, likely due to the negative charge
of disaccharides.

Ultrasonic nebulizers are frequently used for pulmonary delivery of liquid formulations;
therefore, the impact of this type of nebulization on the stability of SC-loaded liposomes was studied.
Very interesting results were obtained when comparing the behavior of liposomes with or without
Vit E TPGS, and these are illustrated in the next figure. On one hand, in absence of lyoprotectants,
ultrasonic nebulization slightly affected the EE% of the liposomes without Vit E TPGS (Figure 4A)
but did produce a relevant effect on the liposomes with Vit E TPGS (Figure 4B), with 12.39% versus
26.23% reduction observed, respectively. The surfactant properties of Vit E TPGS may promote the
lipid bilayer destabilization induced by the ultrasonic vibration involved in aerosol generation. On the
other hand, the additives used as lyoprotectants affect both types of liposomes in different ways.
The presence of sucrose, trehalose, or the mixture did not modify the results of the EE% registered
during nebulization of the liposomes without Vit E TPGS, but it did produce a beneficial effect on
liposomes containing Vit E TPGS (see Figure 4).
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Figure 4. Influence of the lyoprotective agents on the EE% of the nebulized liposomes without Vit E
TPGS (A) and with Vit E TPGS (B).

Reductions of 7.40%, 8.41% and 7.43% in EE were observed when samples of Vit E TPGS
liposomes containing sucrose, trehalose, or the mixture, respectively, were nebulized. The viscous
damping force in samples with additives might counteract the synergic effects of Vit E TPGS and
ultrasonic nebulization, contributing to the maintenance of the integrity of these type of liposomes
during nebulization.

Regarding the influence of viscosity on the nebulizer performance, opposing effects on DR and
NE were observed, as shown in Figures 5 and 6.
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Figure 6. Effect of viscosity on NE for the nebulized liposomes with and without Vit E TPGS.

The influence of sample viscosity on nebulizer performance has been previously reported [44,45],
and the results showing that higher viscosity leads to lower DR were predictable, since ultrasonic
nebulizers have been found to be less efficient for use with viscous solutions [44]. The beneficial
effects of viscosity on NE, however, have not been reported before. Samples containing less SC than
the nebulized suspensions (NE < 100%) were discharged by the ultrasonic nebulizer, irrespective
of whether the suspension contained a lyoprotective agent or not, and irrespective of whether
the liposomes contained Vit E TPGS or not. Nevertheless, lower values of NE were obtained for
suspensions without the additives. Viscous damping force might be considered again to explain the
positive effect of the additives on NE. For liposome suspensions without the lyoprotective agent,
the less viscous external medium facilitates its own nebulization, and the result is higher discharged
volume (higher DR) of samples with lower liposome content (lower NE). When lyoprotectants were
added, the viscosity of the external medium increased and its nebulization became slower, resulting in
lower discharged volume (lower DR) of samples with higher liposome content (higher NE). Despite the
additives being beneficial, the discharged samples contained, in all cases, fewer liposomes and less SC
than original liposome suspensions.
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5. Conclusions

The liposomes studied in this work were prepared without the use of organic solvents, from EPC,
Ch and Vit E TPG. Therefore, they can be considered to be biocompatible and safe for pulmonary
administration. The high EE% obtained by applying the transmembrane pH gradient led to drug
loading values high enough for the liposomes to be used as drug carriers of therapeutic doses of
SC. The lyoprotectants sucrose, trehalose, or the mixture preserved liposome drug loading after
lyophilization but did not maintain the size and zeta potential of the original liposomes. Although a
progressive decrease in the EE% was observed when the liposomes were nebulized, the magnitude of
change was not relevant, and this was counteracted by the lyoprotectants used, which also produced a
beneficial effect on the performance of the nebulizer. Additional studies are still essential, but according
to our results, SC-loaded liposomes can be considered suitable and safe carriers for the local release of
sildenafil in the pulmonary system by ultrasonic nebulization.
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