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Featured Application: The filter with membership function can be applied in such devices where
signals from the sensors contain strong disruptive (stochastic) parts. These components make
it difficult to signal an acquisition process, complicate the monitoring and evaluation of the
measured values, and often prevent the process control based on such a signal. Such a filter was
successfully implemented in heating process control systems and it was proved that, for example,
in biomass combustion control it was very effective at reducing random signal interferences
caused by the use of the frequency converters for fan speed control.

Abstract: The paper deals with the special filtration method using a filter with membership function.
The paper presents a model of a filter, its specific characteristics and some parameters that have an
impact on quality of filtration. A filter with different membership functions (Gauss, Bell, Power and
Triangle) was designed and tested for specific demands, which followed from the experience with the
realization of a biomass combustion control system. Data obtained from the combustion process were
extremely noisy (influenced by various transfer errors, disturbances and external interferences) and,
therefore, had to be properly filtered. The paper also describes some results of filter simulation in
the Matlab Simulink environment and its implementation into an on-line monitored process control
system of biomass combustion. It was proven by implementation that such a filter can be useful for
the signal filtering of oxygen concentration and carbon monoxide emission sensing and it can be very
useful in reducing signal interferences arising in biomass combustion.

Keywords: biomass combustion; process control; filtering; membership function

1. Introduction

Biomass and especially woodchips is fuel with very unstable composition (varying moisture
content in wood, type and quality of wood) in comparison with fossil fuels (natural gas, oil),
and considering its heterogeneous characteristics it is necessary to control the amount of combustion
air during fuel supply into the boiler furnace and also during the combustion phase [1,2]. If the
amount of air is less than optimal, incomplete combustion occurs and the flue gas contains combustible
components. On the other hand, in the case of supplying a large amount of combustion air, an energy
loss (called flue loss) occurs. There is also a necessity to divide the supplied combustion air into
primary air and secondary air [2,3]. Besides that, it is necessary to provide a high enough combustion
temperature and time to complete the biomass combustion process. So there is a need to achieve
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simultaneously controlled values of the required boiler heat output and optimal conditions for the
combustion process from both the efficiency and emissions point of view [4–6]. Therefore, the operation
of biomass-fired boilers has to be properly controlled using a classical cascade [7] and also advanced
control algorithms and methods [8,9] with the possibility of on-line system monitoring [10].

In medium-scale biomass-fired boilers, the amount of combustion air is in standard circumstances
controlled by means of a Lambda probe that measures oxygen (O2) concentration in a flue gas. In order
to increase combustion efficiency and simultaneously to increase the amount of heat produced and to
decrease harmful emissions, new control algorithms were designed based on information not only
about O2 concentration in the flue gas but also about the trend of carbon monoxide (CO) emissions.
These algorithms were implemented into the control systems of the biomass-fired boiler with the
aim of reaching complete combustion with minimum excess of combustion air. It was proven that
a low-cost wide band Lambda probe and simple CO sensor can be used for cost-effective biomass
combustion control in medium-scale and, after some simplification, also in small-scale biomass-fired
boilers [11–13]. However, due to strong interference in one type of boiler, the task of how to define a
trend function of measured variables (especially CO emissions and O2 concentration in flue gas) had to
be solved. Another problem that arose was how to correctly use the noisy measured data for biomass
combustion control because it was difficult to apply in a process control system [14]. The measured
values were influenced by various transfer errors, disturbances and external interferences and for that
reason the measured data had to be appropriately smoothed and filtered.

There are many types of digital filters that can be used for signal filtration [15,16]. One of
the interesting examples of digital filters is the infinite impulse response (IIR) filter. This filter
consists of feedforward and feedback and it is also called the auto regressive moving average
(ARMA) filter. A special group of digital filters is a group of finite impulse response (FIR)
filters, also called moving average (MA) filters [17–19]. A filter that exhibits the properties of
superposition, homogeneity, and shift invariance is called a linear time invariant (LTI) filter [20].
Its advantage is that one-dimensional LTI systems can be described by linear differential equations
with constant coefficients.

Some of filters mentioned above are not convenient for biomass combustion signal filtering,
because stochastic elements have an influence on the output of the filter (recursive IIR filters).
For example, MA filters with exponential forgetting are not useful due to the algorithm of
weight-counting [21]. The others are useful only with a mathematical model of the system (e.g., Kalman
filter) [22].

2. Membership Function Filter

2.1. Demands on the Filter

Firstly, it must be emphasized that the supposed values of measured variables are predetermined
(they are in known intervals) and it is necessary to appropriately eliminate extremely different values
which arise from random interference during signal transmission. In the case of a long-lasting trend of
measured values out of a supposed interval (for example, considerable increasing or decreasing of a
measured variable) values are not eliminated. So the basic demand on the filter is that random changes
would not have an effect on the filter output and, therefore, on controlled variables. Long-lasting
changes out of the supposed interval must have an influence on the filter output and must be signified
on the trend of measured variables.

Further reasons for the design of the specific filter are:

(1) Considering a filter application in digital controllers with limited computing capacity, the algorithm
of the proposed filter has to be simple mathematically and relatively easily programmable.

(2) Using classical approximation methods by linear or non-linear trend functions is problematic,
considering the huge number of random values in measured function behaviors as a result of
strong interferences.
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(3) Using typical known filters (for example the Kalman filter) is questionable, considering that
mathematical description of the measured variables behavior is unknown.

For these reasons, a filtering method using a weighted moving average was chosen with weight
calculation on the basis of different membership functions.

2.2. Description of the Filtering Method

The membership function filter, as it was named, is similar to the weight moving average filter,
which is counted from k measured values, but weights are calculated based on the membership
function for belonging to a set of k measured values. This is the most important difference from a
weighted moving average filter, because if a set of measured values has changed, weights also change
due to their dependence on an average set of values. Mathematically, such a filter can be expressed
as follows.

The sample of the non-filtered signal u(ti) includes deterministic ud(ti) and stochastic us(ti)

elements:
u(ti) = ud(ti) + us(ti) (1)

The stochastic part of the signal can be suppressed by the substitution for the counted moving
weight average from the last k samples of the non-filtered signal:

u(ti) =

k
∑

j=1
u
(
tj
)
· wj

k
∑

j=1
wj

(2)

where j = 1, . . . , k and k is the chosen number of samples, u
(
tj
)

are last k signal samples which contain
the deterministic and stochastic element, and wj are counted weights from interval (0–1〉 for k last
obtained signal samples.

The principle diagram of such a membership function filter for k samples of the non-filtered
signal is in Figure 1. It consists of block 1 for sampling of the non-filtered signal, block 2 for sampling
of the filtered signal, blocks 3 for weight assignment of non-filtered samples according to selected
membership function by block 7, and blocks 4 (multiplication), 5 (summation) and 6 (division) for
calculation of the filter output according to Equation (2). The input to the filter is the current sample
of the non-filtered signal containing deterministic and stochastic parts. For this sample and also for
previous k − 1 stored samples, weights are calculated according to selected membership function
and multiplied by used samples. In the next step, the sum of products and the sum of weights are
calculated in order to be divided, and the new filtered sample is obtained from the filter output. Finally,
the output of the filter is saved for weight counting in time ti+1. Due to division in the output block of the
filter, there is a condition for filter implementation that the sum of weights can be never equal to zero.
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2.3. Membership Function and Its Weights Calculus

The membership function of several different distribution functions can be chosen as shown
in Figure 2. For a normal distribution function (Gauss function), the Equation is:

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3)

After some simplifications this can be derived for weight calculation:

w(x) = e−
(x−µ)2

s (4)

where s is defined as sensitivity and µ is last weighted average.
Similarly, for the Triangle function:

w(x) = 1−
∣∣∣∣ x− µ

s

∣∣∣∣ (5)

Power function:

w(x) = 1−
∣∣∣∣1− x

µ

∣∣∣∣s (6)

and Bell function:
w(x) =

1

1 +
∣∣∣ x−µ

s

∣∣∣2 (7)
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2.4. Filter Parameters

Operation of the membership function filter depends mainly on two parameters: sensitivity s of
the membership function and the number of samples k stored in the filter. In Figures 3–6, a comparison
of various sensitivity s is shown for different membership functions with weight calculations according
to Equations (4)–(7).

In Figure 3, there are weights calculated according to Gauss function. Referring to Figure 3,
by filtering using Equation (4), samples which are closer to average µ have an assignment of higher
weights and only samples further away from the average µ have an assignment of very low weight.
If the sensitivity coefficient s is lower, the interval of higher weights will be narrower, i.e. only samples
which are very near to average µ have an assignment of high weights. The Triangle function in
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Equation (5) is also suitable for using as a membership function, because as can be seen in Figure 4 it
has a similar results of weights assignment as the Gauss or Bell functions, but does not have a concave
shape near average µ. The Power function in Equation (6) is not entirely appropriate for filtering
because the function has the shape of a tip so the higher weights are assigned at a very narrow interval
(Figure 5). The Bell membership function with weights in Equation (7) has a similar behavior (Figure 6)
to the Gauss function. The main difference is the smaller width of the interval with higher weights,
which seems to be useful for filtering slowly changing waveforms.
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2.5. Testing of the Membership Function Filter

The model of the designed filter with the membership function was created in C programming
language (Microsoft Visual C++ Express 2008 for Matlab R2007A, Microsoft Corporation, Redmond,
WA, USA, 2010) and it was implemented into the Matlab Simulink (Matlab R2010a, The MathWorks Inc.,
Natick, MA, USA, 2010) environment as an individual block. Firstly, the model time responses to unit
step were simulated for k = 20 samples using different membership functions (Figure 7).
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Next, the model was simulated for filtration of the sine function with random noise (Figure 8) again
for k = 20 samples using different membership functions with the following sensitivity parameters: for
the Gauss function in Equation (4) s = 1, for the Triangle function in Equation (5) s = 0.02, for the Power
function in Equation (6) s = 0.05, and for the Bell function in Equation (7) s = 1.

The influence of sensitivity s and the number of samples k were tested on a filter with the Gauss
membership function. Filter time responses to unit step for different number of samples k are in
Figure 9. The change of parameter k can be seen in Figure 10 as the time delay of filtration of the noisy
measured temperature. The change of the membership function sensitivity s as influenced on the filter
output can be seen in Figure 11.
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3. Results

The designed filter with the Gauss membership function was implemented into a free
programmable industrial process control system of biomass combustion which was monitored on-line
by a Supervisory Control and Data Acquisition (SCADA) system [11]. On-line monitoring allows
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visualization of the technological process (graphical schemes, diagrams, trends and reports), to evaluate
the quality of combustion process and to change the control parameters with access via the internet [1].
The designed control and monitoring system was installed for the control of two medium-scale
biomass-fired boilers for woodchip combustion (with different powers and different manufactures).
Grate furnace combustion technology was used in both boilers, and the sketch of one type of boiler is
in Figure 12. The reversible shifting grate is situated in the firebox, the primary combustion air is fed
by means of a fan under the grate, the secondary one above the grate. The amount of primary and
secondary air is controlled by means of corresponding fan rpm [3].
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In Figure 13 there is an example of the process variables’ remote monitoring. As can be seen,
some of them are interfered with strongly. In particular the quality of O2 concentration sensing (yellow
course in Figure 13) was unable to be used for effective control of the combustion process. The correct
values of O2 concentration in the flue gas are very important for the combustion process control
because efficiency of the biomass combustion depends on the excess air ratio λ, which can be obtained
from the measured O2 concentration as follows [23]:

λ =
21

21−O2%
(8)

where O2% is oxygen concentration in the flue gas in percentage.
That is why, firstly, the new filter with a membership function was applied for filtering O2

concentration measured data and the result of filtration is shown in Figure 14.
The optimal range of excess air ratio λ for biomass combustion is usually in the interval (1.4–2) and

its optimal value depends on the type of wood, the moisture content in the wood, combustion chamber
construction, and so on. However, the most optimal biomass combustion operating conditions are
when the compromise between maximal combustion efficiency and minimal CO emissions is achieved.
One of the control algorithm’s tasks is to find such a value of excess air ratio λ so that CO emissions
would be minimal, even with the change in fuel parameters. To fulfill this task, it is necessary to
continuously monitor a trend between CO emission and excess air ratio and, consequently, to change
the set point of O2 concentration in the flue gas [11,24]. That is why this filter was also applied for
filtering CO emissions’ measured data, and the result of filtration is shown in Figure 15.
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The quality of filtration has been confirmed by comparison of the membership function filter
with the other types of filters. Figure 16, for example, shows a comparison with a moving average
filter. As such, it can be seen that the moving average filter does not exclude values that are extremely
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different. On the other hand, the membership function filter monitors the trend of data, but there is
a significant time delay. However, this time delay does not have an important impact on O2 or CO
sensing in the biomass combustion process because the trend of their concentration is important not
their current values.
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4. Conclusions

Behavior of the membership function filter can be influenced mainly by two parameters:

(1) Sensitivity s of the membership function—this determines how strongly the samples near the
average value are preferred, respectively, and how strongly the samples away from the average
value are suppressed.

(2) The number of samples k used for counting of moving weighted average-higher value of
parameter k causes a longer time delay of the filter, but on the other hand if k is very low
the filtered data copy more real data with noise.

The filter with a normal distribution membership function was chosen for filtering important
variables in the biomass combustion process. This function with appropriately selected parameters s
and k ensures that the remote values from the average have lower weights (in opposite to Bell and
Power function) and values which are close to the average have concave shape of weights (in opposite
to Triangle function).

This was proven by implementation of the designed special filter into a control system of biomass
combustion process that it is useful for signal filtering of O2 concentration measured by a low-cost wide
band Lambda probe and CO emissions measured by a simple CO sensor. The implemented filter based
on the Gauss membership function with parameters set to values k = 60, s = 4 had a significant effect
on reducing signal interferences arising in the biomass. The implemented control algorithms based on
using information about the filtered tendency of nascent carbon monoxide successfully stabilized the
combustion process in medium-scale biomass-based boilers, especially during the start of combustion
or its interruption due to some disturbance. These advanced algorithms can also compensate for
varying woodchip parameters (moisture content in wood, type and quality of wood), which is an
object of intensive research at the authors’ workplace [25].

5. Patents

Inventors: Boržíková, J., Mižák, J., Pitel’, J., Židek, K. Membership Function Filter. Patent
number: SK201200021-A3.

Inventors: Balara, M., Mižák, J., Mižáková, J., Pitel’, J. Discrete Signal Weighting Average Computing
Device. Patent number: SK201350050-A3.
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