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Abstract: This study investigates the influence of self-assembled monolayer treatment of gate
insulators on the electrical characteristics of bottom-gate/bottom-contact organic field-effect transistors
(OFETs) with short channel lengths of 5 µm to 30 nm. The treatment of 3-chloropropyltrichlorosilane
(CPTS) with large dipoles produces a high built-in electric field perpendicular to the SiO2

gate insulator surface, which results in a threshold voltage shift and enhanced hole injection
compared to the treatment of phenethyltrichlorosilane (PETS) with small dipoles. Pronounced
parabolic drain current-voltage (ID-VD) characteristics due to a space-charge limited current are
observed in short-channel OFETs based on poly(3-hexylthiophene) with CPTS-treated gate insulators.
CPTS treatment on short-channel OFETs based on poly(9,9-dioctylfluorene-co-bithiophene) (F8T2)
suppresses the nonlinear ID increase in the low VD region caused by the voltage drop at the Au/F8T2
contact. The influence of the increase in the net source-drain electric field associated with the reduced
voltage drops on the channel-length dependence of the field-effect mobility of short-channel F8T2
FETs is also discussed.

Keywords: organic field-effect transistor; short-channel effect; self-assembled monolayer;
dipole electric field

1. Introduction

There has been considerable interest in the development of organic field-effect transistors (OFETs)
with high electrical performance because of their potential use in various organic devices, such as
flexible displays, low-cost radio frequency identification tags, and large-area sensors [1–3]. Shrinking
the channel length (L) of OFETs, which is typically several tens of micrometers, is a crucial issue for
enhancing the performances of electronic circuits based on OFET devices because the operational
speed and output current of FET devices are, respectively, proportional to µ/L2 and µ/L, where µ is
the field-effect mobility. However, reducing L to the sub-micrometer regime generally suffers from
the high space-charge limited current (SCLC) associated with the application of a high source-drain
electric field to the organic semiconductor; this results in parabolic drain current-drain voltage (ID–VD)
characteristics without current saturation and an increase in the off current [4–8]. Such short-channel
effects in OFETs have been reported to be suppressed by using ultrathin gate insulators (several
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nanometers in thickness) [9] to ensure a gradual-channel approximation (the gate electric field in the
channel is much larger than the source-drain electric field) [4,10].

We have previously studied the influence of the source electrode/organic semiconductor contact
on the current–voltage characteristics of short-channel OFETs based on p-type organic semiconductors
and reported that the parabolic ID–VD characteristics and high off current are suppressed by
using organic semiconductors with high ionization potentials [11]. This behavior originates in the
formation of Schottky barriers for hole injection at the source electrode/organic semiconductor contact,
which reduces the SCLC and increases the effectiveness of the gate electric field in the channel because
of the decrease in the net source-drain electric field. However, the formation of charge injection barriers
also causes an increase in the threshold voltage of the short-channel OFETs and nonlinear ID increase
in the low VD region. It has been reported that the threshold voltage of OFETs can be reduced by
increasing the capacitance of gate insulators [12,13] and modifying the surfaces of gate insulators
(next to the organic semiconductor channels) with self-assembled monolayers (SAMs) having polar
end groups [14–20]. In particular, the latter approach uses a built-in electric field produced by the
permanent dipoles of SAMs, which can provide an effective route to reduce the threshold voltage of
short-channel OFETs without thinning the gate insulator to several nanometers.

In this study, we investigate the influence of the surface treatment of gate insulators with dipole
SAMs on the electrical characteristics of short-channel OFETs with L of 5 µm to 30 nm fabricated using
p-type polymer semiconductors with different ionization potentials.

2. Experimental

Figure 1a shows a schematic cross-section of the short-channel OFETs fabricated in this study.
We used a heavily doped n-type Si wafer with a thermally-grown SiO2 insulating layer (200 or 50 nm
thick), which served as the gate electrode and gate insulator, respectively. Ti/Au (1–2 nm/30 nm)
source-drain electrodes with different values of L (5 µm to 30 nm) were fabricated on the Si/SiO2

substrates by using electron-beam lithography and a lift-off process. The bottom Ti layer was employed
to promote the adhesion of the Au electrodes to the SiO2 surface. To ensure that carriers can be injected
from the Au source electrode into the organic semiconductor layer [21], the thin Ti adhesion layer was
used in our devices. The channel width (W) was scaled to maintain W/L = 10 to adjust the dimension
of the output current in devices with different L.

Figure 1b shows the chemical structures of organosilanes used to form dipole SAMs on
the SiO2 surfaces. We used phenethyltrichlorosilane (PETS) and 3-chloropropyltrichlorosilane
(CPTS), which have different polarities of dipole moments and form SAMs with similar levels of
hydrophobicity [15,16]. CPTS has a large dipole moment pointing from chlorine toward trichlorosilane;
this forms strong electron-withdrawing surfaces and leads to the accumulation of holes [15,16,18,22].
PETS has a relatively small dipole moment pointing toward the phenyl end group [16,23,24], which can
form weak electron-donating surfaces. After the Si/SiO2 substrates with Ti/Au source-drain electrodes
were cleaned with acetone and isopropanol in an ultrasonic bath and with an UV/O3 cleaner,
the substrates were immersed in ~10 mM toluene solutions of the organosilanes in capped bottles
for ~14 h to form SAMs on the SiO2 surfaces. After SAMs were formed, the substrates were
washed ultrasonically with fresh toluene, acetone, and isopropanol to remove any excessive layers
and then baked at 150 ◦C for 1 h in a vacuum to enhance the cross-linking of the organosilane
molecules. The water contact angles of the Si/SiO2 substrates treated with PETS and CPTS SAMs were
92◦ and 84◦, respectively.

For the organic semiconductors, we used p-type polymer semiconductors with different ionization
potentials (IPs), as shown in Figure 1c: regioregular poly(3-hexylthiophene) (P3HT) (IP = 4.9 eV) and
poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) (IP = 5.5 eV) [25]. The organic semiconductor films
were deposited on the SAM-treated Si/SiO2 substrates by spin-coating from 0.5–1 wt % toluene
solutions. The obtained films were followed by thermal annealing in a vacuum to remove residual
solvent and dopants such as oxygen and water from the semiconductor films [26]. The annealing
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temperature of 100 ◦C was used to avoid the degradation of field-effect mobility in P3HT FETs caused
by high-temperature annealing [27].
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Figure 1. (a) Schematic cross-section of short-channel organic field-effect transistors (OFETs)
fabricated in this study. Chemical structures of (b) organosilanes and (c) polymer semiconductors;
PETS: phenethyltrichlorosilane; CPTS: 3-chloropropyltrichlorosilane; P3HT: poly(3-hexylthiophene);
F8T2: poly(9,9-dioctylfluorene-co-bithiophene).

The electrical measurements of the fabricated OFET devices were performed in a vacuum at a
probe station (Lake Shore Cryotronics TTP4 (Westerville, OH, USA)) by using source meters (Keithley
2611 and 2400 (Cleveland, OH, USA)) at room temperature. The field-effect mobility (µ) was calculated
from the transfer characteristics in the saturation region by using the following standard FET equation:

ID =
µCiW

2L
(VG − Vth)

2 (1)

where Ci is the capacitance per unit area for the gate insulator, VG is the gate voltage, and Vth is the
threshold voltage.

3. Results and Discussion

Figure 2a,b show the typical ID–VD (output) characteristics of short-channel P3HT-based FETs
with L of 5 µm, 500 nm, and 30 nm fabricated on 200-nm-thick SiO2 insulators treated with PETS and
CPTS SAMs, respectively. The P3HT FETs with L = 5 µm show typical output characteristics with clear
current saturation. This can be attributed to the high gate electric field relative to the source-drain
electric field, which ensures that the gate electric field determines the charge distribution within the
channel (i.e., the gradual-channel approximation) [4,10]. As the channel length is reduced to the
sub-micrometer regime, the output characteristics become parabolic, and the drain current at VG
= 0 V increases. Such behavior has been explained by the increase in the current flow to the bulk
region of the organic semiconductor due to the SCLC [28]. The P3HT semiconductor allows forming
ohmic contacts with the Au source-drain electrodes because of the small potential difference between
the work function of Au (4.8 eV) and the ionization potential of P3HT (4.9 eV) [29]. Applying the
source-drain voltage to the sub-micrometer channel leads to an extremely high source-drain electric
field, which results in the SCLC significantly contributing to the drain current.

Figure 2c shows the ID–VG (transfer) characteristics of the short-channel P3HT FETs with PETS-
and CPTS-treated SiO2 gate insulators. The transfer characteristics of the devices with CPTS-treated
gate insulators shift toward the positive VG direction compared to that with PETS-treated gate
insulators. Such behavior is consistent with the results reported for pentacene-based OFETs with
L = 30–150 µm on SAM-treated SiO2 insulators [15,16] and has been explained by the change in surface
potential of the gate insulator by the permanent dipole of SAMs [14–20]. As shown in Figure 3,
the electric field pointing toward the surface of the gate insulator produced by the dipole moment of
CPTS causes the bending of molecular orbital levels of organic semiconductors toward high energy.
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The upward bending of energy levels accumulates additional holes in the channel, which leads to the
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Figure 2. Output characteristics of P3HT FETs with L of 5 µm, 500 nm, and 30 nm on 200-nm-thick
SiO2 insulators treated with (a) PETS and (b) CPTS; and (c) their transfer characteristics.
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Figure 3. Schematic energy band diagram for bottom-gate OFETs with SiO2 gate insulators treated
with the CPTS SAM; LUMO: lowest unoccupied molecular orbital; HOMO: highest occupied molecular
orbital; SAM: self-assembled monolayer.
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The field-effect mobility of the P3HT FET devices with L = 5 µm on the CPTS-treated gate
insulators was 6.8 ± 0.81 × 10−4 cm2 V−1 s−1, which was slightly lower than that of the devices on the
PETS-treated gate insulators (1.4 ± 0.13 × 10−3 cm2 V−1 s−1). Such a decrease in the mobility of P3HT
FETs might be attributed to the smaller water contact angle of CPTS-treated gate insulators, since the
ordering of organic semiconducting molecules in bottom-gate OFETs depends largely on the surface
energy of gate insulators and a more hydrophobic surface gives a higher mobility [30,31]. It can be seen
in the figures that the off current of the devices with CPTS-treated gate insulators remarkably increases
as the channel length is reduced to 30 nm. Additionally, the devices with CPTS-treated gate insulators
show a smaller increase in the drain current for the variation of the gate voltage, compared to the
devices with PETS-treated gate insulators. These results clearly indicate that short-channel effects are
more pronounced in the short-channel P3HT FETs fabricated on CPTS-treated gate insulators. This can
be attributed to the improved injection of holes associated with the enhanced hole accumulation by
CPTS SAMs, which increases the SCLC and reduces the modulation of the drain current by the gate
voltage [8,9].

Figure 4 shows the output and transfer characteristics of short-channel F8T2-based FETs with
L = 5 µm, 500 nm, and 30 nm that were fabricated on 200-nm-thick SiO2 gate insulators treated with
PETS and CPTS SAMs. In contrast to the P3HT FETs, the short-channel F8T2 FETs exhibit no parabolic
output characteristics when the channel length is reduced, and the saturation of drain current is
clearly observed in F8T2 FETs with L = 30 nm despite the use of thick SiO2 gate insulators (200 nm).
These results are attributed to the formation of Schottky barriers for hole injection because of the large
potential difference between the work function of the source Au electrodes (4.8 eV) and ionization
potential of the F8T2 semiconductors (5.5 eV) [29], which leads to contact-limited charge transport and,
hence, suppresses the SCLC. The formation of Schottky barriers also causes the voltage drop at the
source electrode/organic semiconductor contact, which reduces the net source-drain electric field at
the channel region. The resulting increased effectiveness of the gate electric field at the channel region
has been shown to enhance the current modulation in OFETs with nanometer channels [8,9,11].

It can be seen in Figure 4a,b that the large voltage drop at the Au/F8T2 contact causes a nonlinear
increase in ID in the low VD region in the F8T2 FETs with PETS-treated gate insulators, whereas the
nonlinearity of the ID–VD characteristics is decreased for short-channel F8T2 FETs with CPTS-treated
gate insulators. These results are consistent with those observed for the short-channel P3HT FETs of
Figure 2, which clearly indicates that a shift in the threshold voltage of transfer characteristics by CPTS
SAMs involves the hole injection barriers at the source electrode/organic semiconductor interface
being lowered. Such effects can manifest as the smaller modulation of the drain current by the gate
voltage in F8T2 FETs with CPTS-treated gate insulators. This is because a lower hole injection barrier
leads to a higher source-drain electric field and prevents the effective application of the gate electric
field to the channel.

To clarify the difference in effects of the built-in electric field produced by the dipole SAM and
increased gate electric field with thinner gate insulators, we investigated the electrical characteristics
of short-channel P3HT and F8T2 FETs fabricated on thinner SiO2 insulators (50 nm thick) treated with
the PETS SAMs (Figure 5). As shown in Figure 5a, P3HT FETs with L = 5 µm fabricated on 50-nm-thick
gate insulators exhibit clearer current saturation behavior compared to devices on 200-nm-thick gate
insulators (Figure 2a). Further, linear ID–VD characteristics in the low VD region are obtained even
for the device with L = 500 nm because of the increased gate electric field. Since OFETs require thin
gate insulators (the thickness of a gate insulator is typically <L/10) to suppress the short-channel
effects [4], P3HT FETs with L = 30 nm exhibit parabolic ID–VD characteristics even when 50-nm-thick
SiO2 insulators are used. For the F8T2 FETs shown in Figure 5b, good transistor characteristics with
saturation of the drain current are observed in devices with L = 30 nm. This results from the formation
of voltage drops at electrode contacts, as mentioned above. In contrast to the F8T2 FETs on 200-nm-thick
gate insulators treated with CPTS SAMs (Figure 4b), the short-channel F8T2 FETs on 50-nm-thick
gate insulators treated with PETS SAMs still exhibit a nonlinear increase in the drain current in the
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low-VD region. The strength of the built-in electric field produced by the dipole SAMs has been
reported to be on the order of 1–10 MV cm−1 [14–17,32,33], which is comparable to the gate electric
field induced by applying gate voltages of 20–200 V for the 200-nm-thick SiO2 gate insulator and
5–50 V for the 50-nm-thick SiO2 gate insulators. Therefore, a similar degree of improvement in charge
injection is expected in devices with thinner gate insulators. These results clearly show that using gate
insulators modified with dipole SAMs is effective not only for increasing the threshold voltage, but also
for reducing the charge injection barriers at the source electrode/organic semiconductor contacts of
short-channel OFETs.
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Figure 4. Output characteristics of F8T2 FETs with L of 5 µm, 500 nm, and 30 nm on 200-nm-thick SiO2

insulators treated with (a) PETS and (b) CPTS; and (c) their transfer characteristics.

Figure 6 shows the channel-length dependence of the field-effect mobilities of F8T2 FETs fabricated
on PETS- and CPTS-treated SiO2 gate insulators with different thicknesses (dox). In all devices,
the field-effect mobility decreases with the channel length. Similar dependences have typically been
observed in OFETs and explained by the increased influence of the contact resistance on the channel
resistance [34]. This apparently reduces the field-effect mobility calculated with Equation (1). Therefore,
the improved charge injection of F8T2 FETs by the CPTS treatment of gate insulators is expected to
increase the field-effect mobility of short-channel F8T2 FETs. In fact, the devices with L = 5 µm formed
on CPTS-treated gate insulators exhibited higher mobility (3.9 ± 0.77 × 10−3 cm2 V−1 s−1) than those
formed on PETS-treated gate insulators (1.5 ± 0.30 × 10−3 cm2 V−1 s−1), as observed in Figure 6.
The influence of the CPTS treatment on the mobility of F8T2 FETs is different from that of P3HT FETs
shown in Figure 2, which can result from the larger influence of contact resistances on the field-effect
mobility of F8T2 FETs [29]. However, the field-effect mobility of the devices with CPTS-treated gate
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insulators shows a larger decrease as the channel length is reduced to the nanometer scale, as compared
to those with PETS-treated gate insulators. Such behavior can be related to the smaller modulation of
the drain current by the gate voltage observed in the F8T2 FETs with L = 30 nm by the CPTS treatment
(Figure 4b). The results strongly suggest that the increased net source-drain electric field caused by the
decreased voltage drop at the Au/F8T2 contact by the CPTS treatment reduces the effectiveness of the
gate electric field in the channel, and it also leads to the apparent decrease in the field-effect mobility of
OFETs with nanometer channels. Optimizing the dipole moments of SAM materials and using high-k
gate dielectrics can further improve the field-effect mobility of nanochannel OFETs.
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Figure 5. Output and transfer characteristics of (a) P3HT FETs and (b) F8T2 FETs with L of 5 µm,
500 nm, and 30 nm on 50-nm-thick SiO2 insulators treated with PETS.
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4. Conclusions

We have investigated the electrical characteristics of short-channel OFETs based on polymer
semiconductors with different ionization potentials formed on SiO2 gate insulators treated with
dipole SAMs. The built-in electric field produced by CPTS SAMs shifts the threshold voltage and
reduces hole injection barriers at the source electrode/organic semiconductor contacts, which gives
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the SCLC a larger influence on the current–voltage characteristics of P3HT FETs with nanometer
channels compared with that of devices treated with PETS SAMs. The nonlinear increase in drain
current in the low-voltage region of short-channel F8T2 FETs is improved by the CPTS treatment,
which reduces the voltage drops at the Au/F8T2 contacts. The field-effect mobility of F8T2 FETs with
CPTS-treated insulators exhibits a large apparent decrease as the channel length is reduced to the
nanometer scale. Such behavior can be understood by the increase in the net source-drain electric field
caused by the decrease in voltage drop at the Au/F8T2 contact by the CPTS treatment, which prevents
the large modulation of drain current by the gate electric field and, hence, decreases the effective
field-effect mobility.
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