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Abstract: Acoustic emission is a part of structural health monitoring (SHM) and prognostic health
management (PHM). This approach is mainly based on the activity rate and acoustic emission (AE)
features, which are sensitive to the severity of the damage mechanism. A major issue in the use
of AE technique is to associate each AE signal with a specific damage mechanism. This approach
often uses classification algorithms to gather signals into classes as a function of parameters values
measured on the signals. Each class is then linked to a specific damage mechanism. Nevertheless,
each recorded signal depends on the source mechanism features but the stress waves resulting from
the microstructural changes depend on the propagation and acquisition (attenuation, damping,
surface interactions, sensor characteristics and coupling). There is no universal classification between
several damage mechanisms. The aim of this study is the assessment of the influence of the type of
sensors and of the propagation distance on the waveforms parameters and on signals clustering.
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1. Introduction

Acoustic Emission (AE) is the transient elastic sound waves when a material undergoes stress.
It is used as a Non-Destructive Testing technique to monitor damage in composites materials and
structures [1–4]. Usually, piezoelectric sensors applied directly on the samples surface capture these
elastic waves. The analysis of the collected data can be used to discriminate the sources of damage
(matrix cracks, fibre breaks, fibre/matrix decohesion, delamination) and to determine the kinetics of
the various degradation mechanisms during the lifetime. Indeed, the shape and the characteristics
of the AE signals are directly dependent on the local damage mechanisms such as delamination,
matrix cracking, fibre matrix debonding, fibre break and fibre pull-out. Therefore, it is realistic to
consider that this signal contains some features representative of the source in such a manner that
direct correlation exists between the damage mechanisms and the AE parameters. In this type of
studies, a main assumption is done: signals are affected by propagation but they remain images of
sources. Therefore, acoustic emission events can be classified using multivariable statistical analysis
techniques and then attributed to a damage mechanism in the material [5–12]. The main assumption is:
the acoustic signatures are unchanged during propagation and damage evolution. AE signals that have
similar characteristics are grouped using a clustering method, based on similarity measures, in order
to reveal the natural structure of data. This procedure is based on the representation of AE signals
by relevant descriptors. The descriptors selection is an important step [13–15]. For the unsupervised
pattern recognition, the descriptors should be relevant and limited in number. The possibility to identify
AE signatures of damage mechanisms is an established field [5–12]. In most studies, the attribution of
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each class to a specific damage mechanism is based mainly on empirical approach and the validation
of this labelling remains difficult and is still a challenge. In most works, the assignment of a signal to
a damage mechanism is very difficult, if not impossible, to validate without any modelling [16–19].
Sause [16] models AE sources in a specimen for different damage mechanisms, as well as the signal
propagation and the different elements of the acquisition chain by a finite element method. For each
cluster and for each mechanism, he compares the experimental values of the signal descriptors with
the theoretical values generated by the damage mechanism, which is affiliated to it. It can thus judge
the relevance of its labelling.

Moreover, several authors use acoustic emission in the aim of prognostics, in order to make
remaining useful lifetime previsions [8,20–26]. An estimate of the composite materials remaining
lifetime can be considered based on a real-time tracking of the damage recorded by EA. In the context
of the failure of the prediction of composite, Arumugan [23] predicted residual tensile strength
of impacted carbon/epoxy laminates using an artificial neural network with AE data collected
up to 50% of failure loads. The chosen descriptors are the cumulative counts and the amplitude.
Several authors [24] used AE peak amplitude and energy parameter into neural network for predicting
the tensile strength of carbon epoxy composites. For the specific study of CMCs (ceramic matrix
composites) in fatigue, Momon et al. [25] introduced an indicator, denoted RAE, the coefficient of
emission, which is shown to go through a minimum value of around 50–60% of the total test duration.
Therefore, beyond 50% of the total test duration, a power law can model the criticality in order to
evaluate time to failure. Study of the damage indices based on acoustic energy or parameters enlightens
the damage evolution, enabling predictions of the remaining life [8,25,26].

In these studies, the wave from the source is altered during propagation and this aspect is very
rarely taken into account. Indeed, the signal is modified during propagation (mode conversion,
reflections, dispersion) and then by the acquisition system [27–36]. Aggelis et al. [30,31] show that
the separation distance between the sensors is of paramount importance and it should be taken into
account when crack mode estimation is attempted by experimental data. Hamstad et al. [32] carried out
impact tests on 260 mm outer diameter pressure vessels made of a fibreglass/epoxy matrix composite.
Their study focused on the effect of source/sensor distance. They are able to show that the characteristic
parameters of waveforms such as amplitude, rise time, as well as the spectral content of the signals for
identical sources are largely influenced by the sensor source distance. For small distances (less than
60 mm), the physical significance of an acoustic event can be evaluated only by taking into account the
propagation. Thus, the same author [33] showed that the representations obtained by the continuous
wavelet transform vary according to the type of AE source and the propagation distance between
these sources and the sensors in aluminium plates. The analysed parameters are highly dependent on
the material properties, the structure geometries, the sensor and the detection and analysis system.
In addition, the state of damage of the material can affect AE signals [34,35]. All these evolutions
make the interpretation of the signals very difficult. The specific values of the AE parameters are very
sensitive to the experimental set up and conditions like geometries. Comparisons should be careful
and only for exactly the same experimental conditions. In this context, the acoustic signature of a
damage mechanism is not generalizable. The geometry of the sample is also an important parameter.
Consequently, identification of the source and comparison with results from other tests performed
under different conditions are difficult.

The influence of the mentioned experimental conditions should be investigated and taken into
account to increase reliability. The objective of the paper is twofold (1) use artificial sources with
acousto-ultrasonic (AU) technique to generate AE sources with specific characteristics in order to
analyse the sensor response and (2) study the influence of the sensor, propagation and damage on AE
features and clustering results.

Therefore, the first part of this paper is devoted to the study of the response of the sensor for
artificial sources generated using an ultrasonic card. The AU technique consists in the excitation of
the sample by a particular wave packet emitted from a sensor and the signal is recorded using an AE
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system. Artificial sources with different characteristics are created in undamaged state and during a
mechanical test. Maillet et al. [37] develop a testing protocol that combines acousto-ultrasonic and
acoustic emission monitoring, thus providing both global and local definite information on damage
modes of SiCf/SiC minicomposites. Wave velocity measurements using acousto-ultrasonic allowed
accurate location of AE sources by taking into account the damage dependence of wave velocity.
In this study, the evolution of the waveforms as a function of the input characteristics and damage are
investigated in order to guide pattern recognition techniques or the lifetime prediction based on the
recorded energy.

The second part is dedicated to the influence of the type of sensor and the source-sensor distance
in order to highlight the limitations of the identification of the acoustic emission signature of several
damage mechanisms. The present study uses various sensors to investigate the effect of the sensor and
the propagation distance. Four sensors monitor the same tensile test on several kinds of composite in
order to point out the influence of the sensor and its position. AE signals received at the same position
by two kinds of sensors are treated separately to examine the effect of the sensor on the AE features
and on the results of classification. AE signals received at increasing distances (with and without
waveguide) by the same type of sensors are analysed independently to examine the effects of travelling
distance on the classification results. This study investigates from an experimental point of view the
influence of sensor, propagation and damage on the AE features. In this paper, we are going to focus
mainly on the evolution of amplitude, energy and frequency.

2. Materials and Experimental Procedure

2.1. Material and Mechanical Tests

Tensile tests are conducted at room temperature on several kinds of fibre composites,
ceramic matrix composites (CMC) and organic matrix composites (OMC). All strain data are measured
by clip on extensometer.

Tests are conducted on CMC, a multi-layered [Si-B-C] matrix reinforced with Hi-Nicalon fibres
and a carbon interphase layer (SAFRAN CERAMICS Bordeaux, France). The composite contains a
volumic fraction of fibres equal to 35%. In this study, all the specimens have a dog-bone shape with a
thickness of 3.5 mm (200 mm × 24 mm) and a gauge section of 60 mm × 16 mm. On CMC composite,
tensile tests are conducted at room temperature and static fatigue tests are performed at 450 ◦C under
air. This temperature is chosen because it is critical for the material since SiC can be oxidized without
self-healing protection. Static fatigue tests are conducted by applying a constant load σ calculated as a
percentage of the ultimate tensile strength denoted σR, obtained from quasi-static tensile tests.

For the OMC, a first material is a polyamide 6.6 reinforced with an equilibrated glass fibre twill,
woven in 0◦ and 90◦ directions, warp fibre direction as 0◦ and weft fibre direction at 90◦. The fibre
matrix weight ratio is 75/25. Tests are conducted on dry specimens, prior testing, samples are
dried under vacuum at 70 ◦C. The dimensions of the samples are 230 mm×25 mm × 1.5 mm.
The second composite is a glass fibre/vinylester matrix composite. The Sheet Moulding Compound is
a thermosetting material with vinylester matrix, particulate filler (CaCO3, 20%) and other additives
reinforced by random in plane orientation glass fibres (30 mm length and 50% in weight). Specimens are
250 mm long by 25 mm wide with a 3 mm nominal thickness. Tensile tests are conducted at a speed of
1 mm/min and at room temperature.

2.2. Acoustic Emission Recording

The AE monitoring is conducted by means of multiple sensors. Acoustic Emission is recorded
using two or four sensors (µ80 or PicoHF). Each sensor is connected to a preamplifier (gain 40 dB,
type 20 H) and AE signals are recorded by a PCI-2 acquisition system (Physical Acoustics Corporation,
Princeton, USA). Each AE signal waveform is digitized and recorded. The acquisition threshold is set
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to 35 dB or 45 dB and the acquisition parameters are equal to 25 µs, 50 µs and 1000 µs for the peak
definition time (PDT), the hit definition time (HDT)and the hit lockout time (HLT).

Depending on the type of test to be performed and the configuration of the test bench, it is not
always possible to position the sensors in the same place. Instrumented tensile tests using four similar
sensors are conducted on ceramic matrix composites, at room temperature. For the CMC composites,
four sensors µ80 are applied on the same side (Figure 1a) in order to examine the influence of the
sensor position on AE signals. A first pair of sensors noted µ80 P1-P2 is positioned inside the grips,
separated by a distance of 190 mm (Figure 1a). A second pair of sensors noted µ80 P3-P4, separated by
a distance of 80 mm, is placed at the edge of the useful zone. For the static fatigue tests, two resonant
µ80 sensors are fixed on the specimen inside the grips, directly on the specimens 190 mm apart (µ80
P1-P2). Another type of setup can be used in specific configurations for testing at higher temperatures
or in hostile environments. It consists of using waveguides between the specimen and the sensors.
In the same way as before, an instrumented test with 4 sensors makes it possible to compare the results.
The 2 sensors, µ80 P3-P4, positioned near the useful area are placed directly on the sample surface,
the other two sensors noted µ80 P1-P2 are fixed on waveguides (Figure 1b).
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Figure 1. Schematic diagram of an instrumented specimen with four sensors, (a) on ceramic matrix
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In order to investigate the effects of the sensors, tensile tests are conducted on organic composites
(OMC) with two kinds of sensors (µ80 sensors and PicoHF sensors) located at the same position on
each face of the specimen 200 mm apart, denoted µ80 P3-P4 and picoHF P3-P4. These two sensors
display a good sensitivity in different frequency range, 200 to 900 kHz for µ80 sensor and 500–1850 kHz
for Pico HF sensor (Physical Acoustics data, Princeton, USA). Thus, using them both for tensile testing
is interesting for investigating the effect of the sensor on AE descriptors. In all cases, medium viscosity
vacuum grease is used as coupling agent.

The AE wave velocities are measured before the tests by calculating the difference in time of
arrival on each sensor of several pencil lead breaks, generated at well-known positions. The velocity is
found equal to 10,000 m/s for the CMC composite (threshold is equal to 45 dB). The average wave
speed is evaluated to 4020 m/s in PA6.6 composite (threshold = 35 dB) and to 3500 m/s in Vinylester
composite (threshold is equal to 45 dB).

2.3. Sensor Calibration

The quantitative analysis of the AE data requires knowledge of the sensors response in reception.
The calibration of the sensors is based on the reciprocity method [38]. The determination of the
sensitivity requires three transducers alternatively working as transmitters and receivers. The reception
wave sensitivity is measured on a steel block [39–41] for Rayleigh waves. The results presented in
this paper are obtained with a set of µ80 sensors. When working as a transmitter, the transducers are
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driven with a short pulse excitation that has a specific frequency in the range of 100 kHz to 1.2 MHz.
Sensitivities of the sensors are calculated for each excitation following the procedure described by Dia
et al. [39]. Figure 2 shows the Rayleigh wave reception sensitivity of a µ80 sensor obtained with the
reciprocity method. The results are plotted between 100 kHz and 1 MHz. The main sensitivity of the
sensor is located in the range of 150 kHz–350 KHz for the sensor µ80.
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2.4. Acousto-Ultrasonic Card

Signals are generated with an acousto-ultrasonic-card. This card can be used to reproduce an
AE source using a transmitting transducer. Some parameters have to be taken into account such
as the type of transducer used as transmitter, the strength of the emitted signal and the coupling.
Acousto-ultrasonic (AU) measurements are performed before the tensile test on CMC composites and
at several times during the tensile tests on composites in order to investigate the effect of damage
on AE descriptors. The AU method consists of piezoelectric sensors attached on the specimens.
One of the transducers is excited and the other is used as a typical AE sensor. The transducer used as
transmitter is a µ80 type sensor. Before the test, the actuator is located at the middle of the sample.
During the test, the AE sensor attached to the lower tab is used as actuator. Acoustic waveforms with
specific characteristics (rise time, amplitude and frequency) are generated (ultrasonic generator ARB
1410-150, Physical Acoustics Corporation, Princeton, NJ, USA). Before the test, burst-type signals are
generated (amplitude 5 V, frequency range from 100 to 950 kHz, rise time 20 µs). During the test,
an AE sensor is used as transducer and the other as receiver. The acquisition parameters are those set
for AE monitoring. The displacement is kept constant during AU measurements, which thus are not
disrupted by acoustic emission caused by further damage.

2.5. AE Analysis: From the Descriptor to the Classification

The descriptor-based approach is based on the assumption that the AE signal is completely
described by a set of descriptors. The signals recorded by the acquisition system constitute images of
the physical phenomena (fibre rupture, matrix cracking, delamination, etc.). In the case of discrete
type acoustic emission, the main parameters, called descriptors, are calculated in real time by the
system or in post-processing from the digitized waveforms. Table 1 summarized the main descriptors
analysed in this study. The pattern recognition approaches described in a previous paper [42] are
used to distinguish several classes. So, AE data are initially described by 25 features or descriptors
(Table 1). Descriptors values are then normalized in the range [−1, 1] in order to process data of all
the descriptors with comparable scales. The correlation matrix of the 25 descriptors is calculated and



Appl. Sci. 2018, 8, 1267 6 of 17

subjected to a complete link hierarchical clustering. The resulting dendrogram enabled the elimination
of some redundant descriptors if they are highly correlated with others. To keep significant information
about each signal, a maximum correlation of 0.75 is chosen, which corresponds to 1−R = 0.25 (R being
the Pearson coefficient). Then a Principal Component Analysis (PCA) is performed in order to define
new uncorrelated descriptors as linear combinations of the selected descriptors and to reduce the data
set size. Unsupervised clustering with the k-means method optimized by a genetic algorithm [13]
follows this procedure. The procedure is carried out 10 times for a number of clusters ranging from
2 to 10. The optimum solution is selected based on reproducibility and the values of two validation
criteria (Davies-Bouldin index and Silhouette).

Table 1. Descriptors set of acoustic emission (AE) signals.

Descriptor Symbol Unit

Rise time RT µs
Counts C -

Duration D µs
Amplitude A dB

Average Frequency AF kHz
Counts to peak CP -

Decay frequency DF kHz
Rise frequency RF kHz

Absolute energy E attoJ
Frequency central FC kHz
Peak Frequency FP kHz

Rise time/duration RT/D -
Duration/Amplitude D/A µs/dB

Decay time D-RT µs
Rise angle RA = A/RT dB/µs

Decay angle A/(D-RT) dB/µs
Rise time/Decay time RT/(D-RT) -

Relative energy E/A attoJ/dB
Counts to peak/Counts CP/C -
Amplitude/Frequency A/AF dB/kHz
Weighted Frequency WF kHz

Partial Power 1 [100–200 kHz] PP1 %
Partial Power 2 [200–400 kHz] PP2 %
Partial Power 3 [400–600 kHz] PP3 %
Partial Power 4 [600–1000 kHz] PP4 %

2.6. Sensor Coupling

In order to compare the sensor coupling, Maillet et al. [43] has developed a protocol for ceramic
matrix composite tests. This protocol is based on the comparison of recorded acoustic energy. A spatial
interval of ±5 mm around the centre of the gauge length is considered. The propagation distance at
each sensor is equivalent and the comparison thus eliminates attenuation effects related to the distance.
In order to not integrate attenuation effects related to the damage, the interval studied is reduced at
the beginning of the initial loading (strain less than 0.1%). Damage is limited and evenly distributed
along the gauge length during this phase associated to the matrix cracking. The energy distribution
function, for the signals corresponding to the sources located at the beginning of loading in the ±5 mm
interval around the centre of the useful zone, makes it possible to evaluate the sensor coupling. For an
equivalent coupling, the distribution functions are superimposed. When a discrepancy is observed,
this difference is attributed mainly to a difference in coupling between the sensors and the surface of
the material. This procedure is applied for the CMC composite in order to check that the coupling
of the sensors is equivalent. Moreover, several authors have shown the effect of the coupling of the
sensors on its response [44,45].
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3. Results and Discussion

3.1. Response of the Sensor with AU Method

With the AU method, signals are generated in the middle of the gauge length for the undamaged
CMC composite. The generated burst signals with a specific frequency are of the same energy but of
different frequency content between 100 kHz to 1000 kHz. The evolution of the descriptors calculated
on the AE signals are analysed in order to establish a link with the characteristics of the input signal
mainly the frequency. Figure 3a shows the evolution of the amplitude and the several frequencies for
several input frequencies. The results of Figure 3a illustrate the effect of the sensor on the detected
signal. If the frequency correctly follows the change in the frequency of the input signal, the amplitude
is strongly affected by the sensor response. This result is in good agreement with the calibration curve
(Figure 2). The average frequency, which corresponds to the ratio between the number of counts and
the duration, seems well adapted for the input frequency lower than 350 KHz. At higher frequencies,
the average frequency underestimates the input frequency. The peak frequency seems more suitable
than the central frequency. The latter overestimates the frequency in low frequencies. Figure 3b
represents the evolution of the partial power PPi. We can observe a good agreement between the
values of the several PPi (defined in Table 1) and the input frequency.
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Figure 3. (a) Amplitude and frequency recorded by a µ80 sensor for signals of different frequencies
and same energy generated by an acousto-ultrasonic card. (× Weighted Frequency, * Peak Frequency,
+ Central Frequency and ♦ Average Frequency) (b) PPi versus input frequency. (The input signal is
generated with a specific frequency equal to 150 kHz up to 950 kHz, amplitude 5 volts and rise time
20 µs. (Propagation distance of 100 mm, composite material propagation medium with undamaged
SiCf/SiC, actuator µ80 sensor).
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Figure 4 shows the evolution of the recorded energy, the damage index (1 − D) and the frequency
centroid as a function of strain during a tensile test of CMC. To describe stiffness loss, the variable D is
used, defined through the well-known relation:

D = 1 − E(t)
E0

(1)

where E(t) is the secant elastic modulus at the time t and for the strain ε and E0 is the initial elastic
modulus. Around 0.1% a significant decrease in elastic modulus is observed due to matrix multi
cracking. Damage in matrix results from cracks located in the interplay matrix, in the transverse
tows and in the longitudinal tows. Above 0.6%, the elastic modulus stabilizes due to saturation of
matrix cracking. The waveform is a signal with a sweeping in frequency. The signal for the actuator
is the same along the test and contains various frequency components from 100 KHz to 950 KHz.
The Figure 4 indicates an evolution of the recorded energy with damage, a significant decrease is
observed just after matrix cracking. It is shown that waveforms are distorted with damage evolution.
The recorded energy is strongly affected. The frequency centroid seems not to be affected by the
evolution of damage. The same result is obtained with the average frequency and the peak frequency.
This result is very important for the lifetime estimation based on the recorded energy and it shows that
it would be necessary to correct the energy or the amplitude accordingly with the damage evolution.
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Figure 4. Evolution of the recorded acoustic energy, the frequency centroid and the relative
modulus versus strain for a tensile test on CMC at room temperature. (The input signal is generated
with a frequency in the range of 150 kHz and 950 kHz, amplitude 5 volts and rise time 20 µs,
actuator µ80 sensor).

3.2. Influence of the Choice of Sensor

The cumulative AE energy recorded by both sensors, µ80 and PicoHF during tensile tests, is shown
in Figure 5 for the vinylester composite. The global behaviour is equivalent in terms of the energy
recorded. Nevertheless, we can notice that the µ80 sensors have better signal detection than PicoHF
sensors, especially during the first part of the test. In addition to a different sensitivity, the choice
of sensor plays an important role in the characteristics of the recorded signals. Figure 6a,b show the
whole data population recorded at both sensors in the plane amplitude/frequency barycentre for
the signals recorded during a tensile test on glass fibres/PA6.6 polyamide composites and for the
glass fibre/vinylester composites. It is clear that the sensor noticeably distorts the AE signals. Table 2
summarizes the mean value and the lower and upper limits for several AE descriptors. In order to
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check the possibility to structure these data, an unsupervised classification is conducted. The majorities
of the descriptors have an exponential distribution, which often makes them incomparable with other
descriptors such as amplitude or mean frequency, which have Gaussian distributions. It may be
useful to apply a natural logarithm to these “exponential” descriptors, so that their distributions can
be approximated using a Gaussian law. The dendrogram allows the choice of the same descriptors
(ln(Rise time), Duration, amplitude, ln(energy), FP (frequency peak) and FC (frequency centroid)).
According to the DB (Davies and Bouldin) and SI (Silhouette) indices [2,13], the classification lead
to a solution with four classes. Figure 7a,b shows the representation of the classes in the plane
frequency centroid/amplitude. Figure 8 represents the radar chart for the normalized median values
of several classes. The same colour is attributed to the equivalent classes obtained with the two kinds
of sensors. The differences in the segmentation is visible. The sensor bandwidth and its sensitivity
have a significant influence on the degree of class separation and class characteristics. Moreover, it is
difficult to establish a link between the characteristics of the class identified with the two kinds of
sensors. The aim of compensating the effect of sensor seems to be difficult. The majority class (Red
class) recorded by the sensor µ80 is reduced by 90% with the sensor picoHF. The class with the highest
rise time (blue class), second majority class with the sensor µ80 is also drastically reduced with the
PicoHF sensor (reduced by 80%). For the most energetic classes (black and green classes), the same
number of signals are recorded but the repartition is different. The Black class is the majority energetic
class with the µ80 sensor instead of the green class for the picoHF. Even if it is possible to identify an
equivalent structuration of data, the correlation with the mechanisms of damage is more complicate
with the use of different sensors.
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Figure 5. Stress-strain curve and the cumulated recorded energy during a tensile test on glass
fibres/vinylester matrix monitored with two types of sensors (µ80 and pico HF) located at the same
place on the gauge length on each face.

3.3. Influence of the Sensor Position

The results presented herein are based on the AE signals located along the gauge length by
the two couples of sensors denoted µ80 P1-P2 and µ80 P3-P4 on CMC composites. For the whole
number of signals, the median values of the descriptors are calculated. Table 2 shows the median
value for the sensor located at P1 and for the sensor at P3. For the configuration comprising the
sensors placed directly on the specimen on the 25 calculated descriptors, 17 descriptors display a
relative difference greater than 25% between the two acquisition configurations. Overall, the values
of descriptors related to time (rise time, duration) are higher for the sensor located in the grips while
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those descriptors such as energy are lower. A decreasing trend is seen again both for the frequency
(Figure 9a). The mean value of the central frequency decreases about 25% and the mean value of the
peak frequency decreases about 50%. Peak frequency, which seems to be more relevant with the AU
measure, is not suitable to describe the source and could affect the ability to identify damage modes.
It is understandable that if a separation distance of 40 mm is responsible for a change in the frequency
content more than 25%, one should be very careful in application of any laboratory characterization
scheme in a real structure. The effect of the location of the sensor is clearly highlighted here even in the
laboratory scale. It can be explained by the nature of the considered acoustic waves, mainly surface
waves, probably modified during propagation in the part of the specimen that is affixed to the clamps.
This observation emphasizes a little more the importance of understanding the link between the signal
received and the source.Appl. Sci. 2018, 8, x 10 of 18 
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Figure 8. Radar chart for the four classes obtained with the two kinds of sensors for the data recorded
during tensile tests of glass fibre/Vinylester composites (a) µ80 sensor and (b) picoHF sensor (class
blue: highest rise time, Black class: Highest energy, green class: second class in energy term, red class:
the last one class) (E energy, RT rise time, D duration, A amplitude, RA rise angle, AF average frequency
and FC frequency centroid).
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Table 2. Median values, the upper and the lower quartiles for several descriptors recorded during
tensile test on composite glass fibres and vinylester matrix with two types of sensors located at the
same place (micro80 and picoHF) and during tensile test on CMC composite with µ80 sensors located
at P1 and P3 on the surface of the specimen.

Descriptor
Tensile Test on Composite Glass Fibres
and Vinylester Matrix with Two Kind of

Sensors (micro80 and picoHF)

Tensile Test on CMC Composite with µ80
Sensors Located at P1 and P3 on the Surface

of the Specimen

Rise Time (µs)

Sensor Micro80 PicoHF Sensor Micro80 P1 Micro80 P3
Q1 7 6 Q1 21 6

Median value 12 11 Median value 33 15
Q2 18 15 Q2 50 35

Amplitude (dB)

Sensor Micro80 PicoHF Sensor Micro80 P1 Micro80 P3
Q1 70 70 Q1 50 57

Median value 77 78 Median value 57 63
Q2 83 82 Q2 63 72

Energy (Attojoule)

Sensor Micro80 PicoHF Sensor Micro80 P1 Micro80 P3
Q1 8352 6629 Q1 150 550

Median value 25,482 18,293 Median value 591 2857
Q2 77,260 40,380 Q2 3424 13,962

Amplitude/average
Frequency

Sensor Micro80 PicoHF Sensor Micro80 P1 Micro80 P3
Q1 0.44 0.32 Q1 0.24 0.27

Median value 0.56 0.39 Median value 0.27 0.30
Q2 0.68 0.47 Q2 0.30 0.33

Rise angle (dB/µs)

Sensor Micro80 PicoHF Sensor Micro80 P1 Micro80 P3
Q1 4.26 5.18 Q1 0.96 1.9

Median value 6.82 7.22 Median value 1.48 4.22
Q2 11 12 Q2 2.20 7.78

FC (kHz)

Sensor Micro80 PicoHF Sensor Micro80 P1 Micro80 P3
Q1 279 401 Q1 230 316

Median value 306 464 Median value 243 324
Q2 334 487 Q2 254 358

PF (kHz)

Sensor Micro80 PicoHF Sensor Micro80 P1 Micro80 P3
Q1 232 541 Q1 150 318

Median value 244 578 Median value 156 324
Q2 326 593 Q2 205 336

Weighted
frequency (kHz)

Sensor Micro80 PicoHF Sensor Micro80 P1 Micro80 P3
Q1 232 541 Q1 190 318

Median value 286 516 Median value 201 323
Q2 313 536 Q2 249 328
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Figure 9. (a) Frequency centroid versus amplitude for the data collected during a tensile test on CMC
composite with four similar sensors applied on the surface of the specimen (b) Peak Frequency versus
amplitude for the signals located along the gauge length during a tensile test on CMC composite,
data recorded with and without waveguides.

In order to compare the descriptors recorded directly on the specimen and at the extremities of
the waveguide, a comparison of the data recorded by sensor located at P1 at the end of the waveguide
and by sensor P3 at the surface is done. It has shown that 17 descriptors out of 25 have a relative
difference greater than 25%. We also note that the rise time, the energy and the frequency mainly the
peak frequency are greatly affected by propagation distance. These results show that is difficult to
assign a damage mechanism to an AE signal only with the value of the frequency.

3.4. Influence of the Descriptors Selection

The last part of this section is devoted to the study of the sensitivity of classification algorithms and
to the influence of the choice of descriptors on the data segmentation with artificial data sets. This data
set is artificially generated from actual acoustic emission data [13]. The data set contains 4 clusters
(2000 signals each) that are representative of actual experimental data (Figure 10). This data set,
being very similar to real data, will illustrate the notion of relevant descriptor. This data set is initially
described by 18 descriptors then by 3 relevant descriptors (amplitude, ln [counts to peak], ln [energy]).
The user according to the known structure of the data has defined the relevant parameters. When the
18 descriptors are considered, the best-obtained segmentation is still a 3-cluster solution. Only one
cluster is correctly identified with 1985 signals. The average Silhouette for this group is greater than
0.6, while for the other two groups, the average Silhouette is less than 0.5. Considering only the three
relevant descriptors (amplitude, ln [counts to peak], ln [energy]), the 4-cluster solution corresponding
to the actual data structure is obtained. The four clusters have an average silhouette greater than 0.6
and there are only 120 misclassified signals. In the unsupervised classification, it is impossible for the
user to visually determine the relevant parameters from an experimental point of view. The use of the
correlation matrix of the 18 descriptors only allows the selection of uncorrelated descriptors and does
not give any indication of their relevance.

3.5. Influence of the Sensors Coupling

This protocol developed by Maillet [43] is applied on a test conducted at intermediate temperature
and the sensors are located in the grips at the position P1 and P2. The energy distribution function
is drawn for the two sensors P1 and P2, for the signals corresponding to the sources located at
the beginning of loading in the ±5 mm interval around the centre of the useful zone. This figure
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shows a significant difference between the two sensors (Figure 11), the distribution functions are not
superimposed. If the recorded energy is affected, it goes without saying that several descriptors are
affected by this different coupling. This difference is attributed mainly to a difference in coupling
between the sensors and the surface of the material due to the applied pressure. In these tests, it is not
possible to control the applied pressure on the sensor. This result shows the necessity to control the
coupling of the sensors with the material surface.Appl. Sci. 2018, 8, x 15 of 18 
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4. Conclusions

The effect of the sensor, its coupling and the propagation leads to important changes in the AE
features used in data classification. Since the waveforms parameters change with sensors or with
propagation, the classification boundaries between classes should also be adjusted. It is obvious that
the boundaries between several classes depend on the type of sensors and on the distance between the
source and the sensor.

The results show that it is necessary to take into account the effect of sensor, of propagation
and of damage. This approach based on the clustering is very popular but suffers from a lack of
robustness since the identification of the acoustic signature of the several damage modes does not take
into account possible variations due to changes in acquisition set-up. The results show that the change
in the waveform and in AE features is quite strong in terms of frequency and energy and should not
be neglected. The interpretation of an AE signal appears in this particularly difficult context. It is
important to differentiate what is characteristic of the source from what comes from transformations
related to propagation and acquisition. In order to achieve this objective, the modelling of the entire
AE chain from the source to the analysed signal seems indispensable. This quantitative approach to
AE relies on the use of modelling techniques in order to evaluate the impact of each transformation
step on the signal. This fundamental aspect is essential for the good use of AE data, choice of sensors
and needs to be developed in order to make this technique more reliable.
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