
  

Appl. Sci. 2018, 8, 1182; doi:10.3390/app8071182  www.mdpi.com/journal/applsci 

Article 

Experimental Investigation of the Shear Strength of 

RC Beams Extracted from an Old Structure and 

Strengthened by Carbon FRP U-Strips 

Davide Lavorato *, Camillo Nuti and Silvia Santini  

Department of Architecture, Roma Tre University, Largo G. B. Marzi 10, 00153 Rome, Italy; 

camillo.nuti@uniroma3.it (C.N.); silvia.santini@uniroma3.it (S.S.) 

* Correspondence: davide.lavorato@uniroma3.it; Tel.: +39-065-733-2906 

Received: 16 June 2018; Accepted: 16 July 2018; Published: 19 July 2018 

Featured Application: This study presents the experimental results of the shear strength of 

reinforced concrete (RC) “real” beams extracted from an old RC building in Rome, built in 1929. 

The concrete strength is very small as in the case of many existing old RC structures. These results 

about “real” beams are innovative in the literature because the beams are usually built purposely 

to be retrofitted and tested. The data presented in this paper improve the literature database 

giving original data about the measured concrete strength variation along the beams, the 

stiffness, the deflections, and the strengths of the beams before and after retrofitting, and the 

Carbon FRP U-Strips strains. The shear strengths of these “real” beams, together with the ones 

obtained in other experimental studies, are in good agreement with the predicted strengths by 

design code equations. 

Abstract: In recent years, old reinforced concrete (RC) buildings have increasingly been protected 

as historic symbols in Italy. The conversion of these buildings can resolve the increasing need for 

new structures, reducing much social, economic, and environmental impact. Retrofitting solutions 

by carbon fiber reinforced polymer (CFRP) reinforcements are very common nowadays. Code 

predictions present uncertainties due to the brittle behavior and the debonding of CFRP strips 

resulting from concrete cracking. Therefore, especially in the case of old beams, experimental 

validation is necessary. This paper deals the experimental evaluation of the shear strength of two 

beams extracted from an old RC building in Rome built in 1929 with modest-quality concrete. 

Preliminary tests were carried out to evaluate the beam elastic response and the material 

characteristics. These beams were tested until failure (three-point load shear/bending tests) after 

strengthening for shear by CFRP U-jacketing and for bending by new steel rebars. The results 

obtained, together with the extensive data taken from the literature, were compared with the 

predictions by design code equations. The influence of construction details on beam shear strength 

and the experimental maximum CFRP strain were also analyzed. Code predictions can be effective 

to estimate the shear strength of the retrofitted beams. 

Keywords: existing building; RC beams; concrete strength; shear strengthening; FRP retrofitting; 

experimental test; FRP U-jacketing; design code equations; FRP strain 

 

1. Introduction 

In seismic countries as Italy, many reinforced concrete (RC) buildings were built from the 

beginning of the 20th century. The existing buildings designed by old design codes can be very 

vulnerable to the medium-high seismic hazard of Italy [1–4]. Furthermore, Italy has extremely high 
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exposure due to population density and its artistic, historical, and monumental heritage. During 

recent years, old artistic, industrial or civil RC buildings have increasingly been protected as historic 

symbols through carefully planned interventions [5,6]. The conversion of these buildings, their 

rehabilitation, and their reuse for modern activities may assure their protection and represent a 

solution for the increasing need for new structures, assuring modest social, economic, and 

environmental impacts. For that reason, the attention of the construction industry increasingly moves 

from new constructions to maintenance, repair and/or retrofitting and rehabilitation of existing 

structures [7–28]. 

In this context, this paper focuses on the study of retrofitting solutions to improve the load-

carrying capacity of existing old RC beams by Externally Bonded Fiber-Reinforced Polymer (EB-FRP) 

reinforcement much used in construction. In particular, many researchers have extensively studied 

and tested the shear strengthening of RC beams by EB-FRP reinforcement [29–43] but the behavior 

of these beams is still much discussed in the literature [29,31,44–46]. The main discussion issues are 

regarding: the shear interaction between the different contributions for the shear strength [47–49], the 

influence of the beam size [50] and of the shear span-to-depth ratio [30] and the contribution of the 

shear FRP reinforcement to the beam resistance in proportion to the FRP thickness [51]. 

Regarding the first issue, the experimental results have shown that not all steel stirrups crossed 

by shear cracks yield [32,38–40,45–47,52–55], and so the steel shear reinforcement contribution may 

not be fully mobilized [48] especially in the case of FRP reinforcement debonding. For that reason, 

the shear strength value predicted by well-known models may be not safe [44,48,49]. 

Furthermore, many research efforts are still necessary for resolving some critical issues about 

FRP reinforcement such as: the brittle failure mode of retrofitted RC members due to sudden failure 

or debonding of the FRP reinforcement [56]; the effects of wet-dry cycles and freeze-thaw conditions 

on the FRP fabric that produce deterioration of the FRP mechanical properties; the reduction of the 

strength of the FRP reinforcement due to improper installation procedures, the lack of proper bond 

strength models and the need for efficient anchorage systems when it is not possible to provide a 

correct anchorage length or in the case of inevitable strip debonding [57]. 

These research studies were usually performed on beams purposely built in the lab to be 

retrofitted and tested, that did not present material deterioration phenomena (corrosion of rebar, 

concrete carbonatation or surface peeling) [58,59], poor concrete quality, improper reinforcement 

detail and uncertainties about steel and concrete mechanical characteristics and rebar configuration 

typical of “real” old RC structures [60,61]. For that reason, the experimental tests are necessary to 

evaluate the shear strength, the failure mode, and the strain of the FRP reinforcement for “real” 

beams. 

The present paper investigates the shear strength of two “real” retrofitted beams extracted by 

an old RC structure built with poor-quality concrete in Rome in 1929. 

The two beams were removed during retrofitting of the building (Figure 1) and brought to ‘the 

Proof testing and Research in Structures and Materials Laboratory (PRiSMa)’ of the Roma Tre 

University (Rome, Italy) (§2). The results of the survey on the beams geometries and steel 

reinforcement configuration are given in §2.1. The variation of the compressive strength of concrete 

was investigated by numerous non-destructive tests (sonic and rebound tests) along each beam in 

§2.2. These evaluations were corrected by means of the results of destructive tests on some material 

specimens: compression tests on concrete cores and tension tests on steel rebar parts extracted after 

the failure tests on the retrofitted beams. The description of the retrofitting intervention to improve 

the beam shear strength by EB-CFRP reinforcement (U-jacketing) and the beam flexural strength at 

midspan by new bottom longitudinal steel rebars, is given in §3. 

Three-point load shear/bending tests were carried out on the beam before the retrofitting and 

after retrofitting (§4). The preliminary elastic tests on the extracted beams were performed to evaluate 

the stiffness of each beam before retrofitting (§4.2). The failure tests on the retrofitted beams (§4.3) 

were carried out to evaluate the shear strength, the failure mode and deflections of the beams (§4.3.1), 

the beam damage (§4.3.2), the CFRP U-strips strains (§4.3.3) and the contribution of the steel 

reinforcement, the CFRP reinforcement and the concrete to the beam shear resistance (§4.3.4). The 
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code design equations used to predict the shear strength for the beam before and after retrofitting are 

given in §5. The results obtained for the tested beams, together with the experimental data available 

from the literature for many beams retrofitted by EB-CFRP reinforcement, were compared to the one 

predicted by codes in §6. The comparisons between predicted and measured values were performed 

for: 1. the beam shear strength before retrofitting assuming different inclination angle for the shear 

cracks (§6.1); 2. The beam shear strength after retrofitting considering or not the concrete contribution 

(§6.2); 3. The shear strength contribution of the CFRP reinforcement (§6.3). 

A discussion about the research conclusions and the possible future research development 

starting from the given experimental data analysis is given in §7. The code equation results are able 

to estimate the shear strength of the “real” retrofitted beams but the uncertainties due to the brittle 

behavior of CFRP and to the premature debonding of strips resulting from concrete cracking should 

be closely considered by the designer. Both beams failed in shear because of improper design of the 

construction details (insufficient new longitudinal rebar anchorage) resulting in a complete 

debonding of the CFRP strips that reduced the beam strength. Finally, experimental measures 

showed a significant variation of the concrete compressive strength in adjacent beams as well as in 

different portion of each beam. This uncertainty about the compressive strength should be closely 

considered by a designer to define properly the beam capacity [60,61]. 

2. Extracted Beams 

Two “real” RC beams were extracted from an old RC building in Rome to insert new RC walls 

during building retrofitting. The structure was built in 1929 with concrete that had small compressive 

strength (<15 MPa) as in the case of many old RC buildings. The structural system is a space frame 

with four floors (75 × 36 m2 plan dimension) and many columns and beams (Figure 1a–c). The two 

extracted secondary beams were located very close to each other on the basement floor (Figure 1c) 

and were probably built by the same concrete cast. The beams were labeled as DB1 and DB2, were 

cut by means of a diamond wire at two sections very close to the ends and were brought to the Proof 

testing and Research in Structures and Materials Laboratory (PRiSMa) of the Roma Tre University 

(Rome, Italy). 

After the survey of the beam concrete geometries and steel reinforcement configuration, tests on 

the beam materials were performed to evaluate the variation of the concrete compressive strength 

along each beam and the steel rebar strength. 

   

(a) (b) (c) 

Figure 1. Beams DB1 (a) and DB2 (b) in the RC building at the basement floor (c). 

2.1. Concrete Geometries and Steel Reinforcement Configuration 

The extracted RC beams DB1 and DB2 had concrete geometries and the steel reinforcement 

configurations given in Figure 2a,b. The cross-section of the beams was rectangular, and the steel 

reinforcement was realized by smooth rebars protected by a thin concrete cover (5–30 mm) with some 

rebars partially exposed at some points. The location of the rebars embedded in the concrete was 

determined by means of a pachometer device. This non-destructive test (NDT) permitted 

identification of the direction, the length, the number and the spacing of longitudinal and transverse 

steel rebars for each beam (Figure 2a,b). The steel stirrups were realized by ϕ 6 mm rebars with 

irregular spacing. The pachometer survey showed that the stirrup spacing was more irregular along 
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each beam. This is frequent in existing RC beams when the stirrups are not well fixed before the 

concrete cast and so they move during concrete casting. There were not regions with a constant value 

of spacing: the spacing ranged randomly from 150 mm to 300 mm in the case of the beam DB1 and 

from 150 mm to 320 mm in the case of the beam DB2. 

 
 

(a) (b) 

Figure 2. Beams DB1 (a) and DB2 (b); concrete geometries and steel reinforcement configuration for 

the sections at the beam ends (S1, S2) and at the beam midspan (SM); rebar diameter [mm]; concrete 

geometries [cm]. 

2.2. Mechanical Characteristics of the Beam Materials 

2.2.1. Compressive Strength of Concrete 

NDTs were carried out on the two beams DB1 and DB2 to evaluate the variation of the 

compressive strength of concrete along the beams. Measurements of ultrasonic pulse velocities and 

rebound index values were conducted on the beam surface at 18 and 25 test stations located along 

the beams DB1 and DB2 (U points in Figure 3a). A rebound hammer was used to measure the rebound 

index as indicated in UNI EN 12504-2:2001 [62] after surface preparation to remove the more external 

deteriorated concrete parts. A digital portable detector (50 kHz probes; Low frequency) was used to 

carry out transparent velocity measurement as indicated in UNI EN 12504-4:2005 [63]. The NDT 

results were combined and correlated with the cubic compressive strength of concrete (R) by the 

combined method SonReb to compensate for the limits and the uncertainties of the two NDTs. The 

cubic compressive strength (R) was obtained by means of Equation (1) in RILEM guideline [64]: 

R = 7.695 ∙ 10−11 ∙ N1.4 ∙ V2.6 (1) 

in which N is the rebound index and V the ultrasonic velocity measured by the NDTs. 

This strength is usually different with respect to the one obtained by destructive tests (DT) on 

concrete cores extracted by a beam especially in the case of old concretes. The uncertainties in the 

evaluation of concrete strength by NDT depend on different factors: concrete composition and ages, 

effect of admixture, water/cement ratio, non-homogeneous concrete structure, and surface 

deterioration. 

The compressive strength values obtained by DT on concrete cores extracted from beams are 

less uncertain than the ones by NDTs. For that reason, DTs were conducted on 8 and 7 concrete cores 

(diameter 94 mm, height/diameter ratio equal to 2) extracted from the beam DB1 and DB2 at the ST 

points in Figure 3b after the failure tests (§4.3) on the retrofitted beam (§3). 

The cores were extracted predominantly at some NDT stations to compare the DT and the NDT 

results. The choice of the stations, where to perform the core extractions, was determined by the local 

conditions of the beams after the beam collapse (regions in tension or in compression during the tests 

without evident damage), selecting the points that represented better the distribution of the 

compressive strength of concrete measured by means of the NDTs. A diamond core drill (water 

cooled) was used for the core drilling made with constant and modest velocity to avoid excessive 

stresses on the concrete core. 
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The cylindrical compressive strength (fc) values obtained by the DTs on the concrete cores were 

converted in the cubic compressive strength values (R) in Figure 3b and Table 1 by means of Equation 

(2). This conversion permits comparison of the DT compressive strength values directly with the ones 

obtained by NDTs using Equation (1) which gives the cubic compressive strength values. 

R = fc/0.83 (2) 

The mean cubic compressive strength values (Rm) are 14.7 MPa and 10.9 MPa for the beam DB1 

and DB2 whereas the coefficient of variation (CoV) values are 0.28 and 0.12 for the beam DB1 and 

DB2. The concretes show a wide scatter of the compressive strength values especially along the beam 

DB1. 

 

 

(a) (b) 

Figure 3. Beams DB1 and DB2: cubic concrete compressive strength values (R) along the beams 

obtained by (a) the corrected non-destructive tests at U test stations or (b) by destructive tests on 

concrete cores (ST). 

Table 1. Cubic concrete compressive strength (R) by compressive tests on cores (ST) and steel yield 

stress (f0.2%) by tensile tests on steel rebar pieces (RT); [MPa]. 

DB1 DB2 

Concrete core R Steel rebar f0.2% Concrete core R Steel rebar f0.2% 

ST7 16.25 RT1-1 (ϕ6) 384.55  ST2 10.72 RT2-1 (ϕ6) 344.36 

ST8 9.77 RT1-2 (ϕ6) 393.54  ST3 10.73 RT2-2 (ϕ6) 636.51 

ST10 16.51 RT1-3 (ϕ6) 439.33  ST8 10.08 RT2-3 (ϕ6) 322.77 

ST11 20.53 RT1-4 (ϕ10) 537.25 ST10 12.27 RT2-4 (ϕ6) 304.93 

ST11inf-1 13.94 RT1-5 (ϕ10) 374.91 ST11 10.65 RT2-5 (ϕ6) 313.44 

ST11inf-2 7.68 RT1-6 (ϕ10) 435.53 ST13 8.86 RT2-6 (ϕ10) 418.32 

ST14 16.02  ST22 12.91 RT2-7 (ϕ10) 415.38 

ST16 16.93    RT2-8 (ϕ10) 367.71 

Note: ST11inf-1 and ST11inf-2 are two specimens obtained by the same core ST11inf (Figure 3b). 

The comparison between the values of the cubic compressive strength obtained by NDT and DT 

tests at the same points permitted estimation of the strength correction factor to correct the 

compressive strength evaluated by NDTs only at each U-test station. The corrected cubic compressive 

strength values are given in Figure 3a. The concrete of the beam DB1 was on average of better quality 

with respect to the one of the beam DB2 even if the two beams were very close in the structure (Figure 

1c) but the concrete of the beam DB1 had a wider scatter of strength values. Furthermore, the 

compressive strength at the top part of each beam was greater than the one at the bottom part. This 

is probably due to two main aspects: 1. Concrete segregation after the concrete cast that is typical of 

old concretes; 2. The adopted load scheme produces compression at the beam extrados and tension 

at the beam intrados; Even if the concrete cores were extracted where damage was modest, inevitable 

concrete cracking may affect the concrete mechanical characteristics. 
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Similar compressive strength values were observed for the cores extracted at the beam end and 

at the beam midspan extrados (ST7, ST10, ST14 for the beam DB1; ST2, ST8 and ST10 for the beam 

DB2). 

It seems that eventual preexisting cracking at the beam regions in tension, when the beam was 

in the structure (extrados at the beam ends and intrados at the beam midspan), did not affect the 

mechanical properties of concrete. 

These experimental results should be investigated better by further experimental research on 

“real” existing beams and closely considered to assess the beam strength and deformation capacity 

[60,61]. 

2.2.2. Test on Steel Rebar 

The mechanical properties of the beam reinforcement were evaluated by DT performed on rebar 

pieces extracted by the retrofitted beams after the failure tests (§4.3). These rebars had smooth 

surfaces and mechanical properties comparable to the ones of Italian Steel grade rebar with yield 

stress of 430 MPa. 14 rebar specimens (RT) were taken from the two-beam reinforcement to be tested 

in tension (Table 1): 8 rebar specimens with diameter ϕ 6 mm (3 from stirrups of DB1 and 5 from 

stirrups of DB2) and 6 rebar specimens with diameter ϕ 10 mm (3 from longitudinal reinforcement 

of DB1 and 3 from longitudinal reinforcement of DB2). The yield stresses values (f0.2%) obtained by 

these tests are shown in Table 1. The existing rebar extracted by the beams were carefully chosen to 

be without any sign of yielding, after the beam failure tests. This was confirmed by tensile tests during 

which no plastic deformation seemed to preexist. 

The mechanical properties of the steel rebars used to improve the flexural strength of the 

extracted beams at the midspan (§3), were also tested. 4 rebar pieces with diameter ϕ 20 mm, Italian 

Steel grade with yield stress of 430 MPa and ribbed surface were tested under monotonic tensile load 

until failure. In Table 2, the mean value (mean) and the CoV of yield (f0.2%) and maximum stresses 

(fsu) are given considering groups of rebars with the same diameter. The results obtained for the 

ribbed rebars used for retrofitting, showed very small values for the CoV whereas the results of the 

smooth rebars were wide scattered, especially in the case of the ϕ6 mm rebars. 

Table 2. Beams DB1 and DB2: existing and new strengthening bars diameter (ϕ), yield stress at strain 

of 0.2% (f0.2%); maximum stress (fsu) [mm, MPa]. 

Number of Specimens ϕ 
f0.2% 

(Mean) 

f0.2% 

(CoV) 

fsu 

(Mean) 

fsu 

(CoV) 

8 6 392.43 0.28 627.25 0.32 

6 10 424.85 0.14 675.93 0.05 

4 20 496.67 0.02 607.22 0.00 

Note: mean value (Mean); Coefficient of Variation (CoV). 

3. Beams Retrofitting 

The beams DB1 and DB2 were strengthened in bending by the addition of new bottom 

longitudinal ribbed rebars and in shear by EB-CFRP reinforcement (U-jacketing) and were labeled as 

DB1-R and DB2-R beams. The retrofitting interventions consist of (Figure 4a–d): 1. The mechanical 

removal of the concrete cover from each beam side; 2. The cleaning of the original rebars surface and 

the application of anticorrosive protection; 3. The addition of 3 bottom longitudinal steel rebars with 

diameter ϕ20 mm (§2.2.2); 4. The concrete cover restoration by a thixotropic hydraulic anti-shrinkage 

mortar with synthetic fibers (mean cubic compressive strength Rm = 35 MPa); 5. The construction of 

a concrete groove with transverse section 20 mm × 20 mm along the entire beam length to anchor the 

CFRP strips; and 6. The application of epoxy mortar on beam surface to fix the CFRP strips. 
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(a) (b) 

 
 

(c) (d) 

Figure 4. Beam retrofitting: (a) rebars cleaning and protection, addition of new bottom rebars for beam 

flexural strengthening; (b) concrete cover restoration; (c) CFRP U-jacketing application for beam shear 

strengthening; (d) Details of U-jacketing anchorage by pultruded composite bar. 

The application of the EB-CFRP reinforcement was performed on the two beam sides and on the 

intrados of the beam (U-jacketing). The CFRP shear reinforcement was realized by 3 U-strips for each 

beam end (Figure 4c). Each U-strip was built by two strips of CFRP fabric, one for beam side at 45° 

orientation, with spacing of 200 mm that crossed on the beam intrados (Figure 4d). In addition, 3 U-

strips built by one single strip of CFRP fabric were applied at midspan vertically oriented, with 

spacing of 200 mm to restrain the new bottom longitudinal rebar (Figure 4c). The strips were realized 

by unidirectional CFRP fabric with weight equal to 300 g/m2, tensile modulus of 240 GPa, tensile 

strength of 3500 MPa, thickness of 0.167 mm and width of 100 mm. Each U-strip end was anchored 

to the beam surface by an improved anchorage system. This anchorage system was realized for the 

following steps: 1. Bending the CFRP fabric in the groove realized the beam web; 2. Inserting a 150 

mm long composite bar in the groove on the bended fabric; and 3. Fixing the bar in the groove by an 

epoxy mortar that fills the groove (Figure 4d). 

4. Test on Beams 

In general, experimental results available from the literature on RC beams retrofitted by means 

of EB-CFRP are based on simply supported beam specimens under point loads. Then, the obtained 

results are analytically and/or numerically elaborated to take into consideration more realistic static 

behavior given in the case of framed structures. 

In the present research, a three-point loading scheme (simply supported beam) was selected to 

test the extracted beams before and after retrofitting. In this way, it is possible to compare the results 

of the “real” beams with the ones given in the literature. 

The existing steel reinforcement in the extracted beams was designed considering a 

frames/continuous beam configuration (the beam in the structure) with negative moments at beam 

ends and positive moments at beam midspan. This steel reinforcement configuration is different with 

respect to the one obtained considering a simply supported beam. However, elastic three-point 
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loading tests were performed on the extracted beams before retrofitting to compare the deflection 

and stiffness of two beams with very similar rebar configurations and the same design materials. This 

is interesting because: 

1. The material mechanical characteristics showed variability along the beams (§2); 

2. The preexisting concrete cracking may be different for the two beams. 

Finally, failure of three-point loading tests were carried out after the addition of new 

longitudinal rebars along the beam intrados, which increased the flexural strength at midspan and 

assured the beam failure due to shear at the beam ends. In fact, the moment values increase at the 

beam intrados when the beam is tested considering a simply supported beam with respect to the ones 

of the beam in the structure. 

4.1. Test Apparatus 

Three-point loading tests were performed on the beams DB1 and DB2 before retrofitting and on 

the beams DB1-R and DB2-R after retrofitting. Each beam was simply supported by a steel hinge 

support H and by a steel roller support R (Figure 5a,b). The span length (L) measured between the 

supports was 280 cm and 310 cm for the beam DB1 and DB2. 

The three-point loading test was carried out applying a vertical load (F) at the beam midspan by 

means of a 1000 kN hydraulic actuator supported by a vertical steel frame. This force produced two 

vertical reactions at the two beam supports. Vertical steel plates were added at the supports to avoid 

the beam torsion and lead plates regularized the contact surface between the beam intrados and the 

steel supports (Figure 5a). The apparatus setup is shown in Figure 5b and measured: the applied 

vertical load of a 1000 kN load cell placed between the actuator and a thick steel plate on the beam 

extrados at the midspan; the vertical deformations of each beam support by two vertical 

potentiometers (one for each beam side); the vertical beam deflections by 4 potentiometers at 0.25 L, 

0.5 L (2 at the beam midspan) and 0.75 L for each beam side; 3 diagonal displacements along the 

potential shear cracks by 3 potentiometers for each beam side at each beam end (Figure 5b); the local 

axial strains of the CFRP fabric at bottom, middle and top position along each U-strip side at each 

beam end. The beam deflections measured along each beam were corrected considering the vertical 

deformations at the supports. 

  

(a) (b) 

Figure 5. Three-points loading test apparatus: (a) photo and (b) scheme of the system to apply the 

loads and to measure deformation of the beam and strain of the CFRP U-strips (frontal view). 

4.2. Elastic Tests on the Extracted Beams 

Before retrofitting, elastic tests (three-point loading tests) were performed on the extracted 

beams DB1 and DB2 to measure their deformation shapes and stiffness values. The maximum load 

applied during the elastic tests should guarantee the elastic behavior of the beam during the tests. 
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This load was calculated for each beam considering about half of the load value that produces a 

moment at section SM in Figure 1 equal to the section resisting moment. The section resisting 

moments were calculated considering the steel reinforcement and the beam geometries given in §2.1 

and the steel yield stress indicated in §2.2 for each beam. The resulting maximum loads were 156 kN 

and 172 kN for the beams DB1 and DB2. The applied elastic loads on the beams were 92 kN and 72 

kN for the beam DB1 and DB2. The load/deflection curves at different points along each beam (at 

0.25L, at two points near 0.5L and at 0.75L, Figure 5b) are shown in Figure 6a. The beam stiffness 

(load/deflection) values were essentially constant at each measurement point during the test on each 

beam: this confirms that the beam behavior was elastic. 

The beam deformation shapes corresponding to the maximum applied load are given in Figure 

6b where the maximum beam deflections at midspan are −0.74 mm and −1.04 mm for the beam DB1 

and DB2. The beam stiffness values calculated by the beam load-deflection curve at midspan (Figure 

6a), were 124.3 kN/mm and 69.2 kN/mm for the beam DB1 and DB2: the stiffness of DB1 was 80% 

greater than the one of DB2. 

Stiffness of beams depends on the Young’s modulus of concrete and steel, the beam length, and 

the area moment of inertia of section. Cracking is expected in section of RC members subjected to 

load with reduction of the area moment of inertia with respect to the one of the gross sections before 

cracking. The values of Young’s modulus of concrete can be estimated by Equation (3) in [65]: 

Ec = 22000 ∙ (fcm/10)0.3 (3) 

where fcm is the mean compressive cylindrical strength of concrete. The values of fcm can be obtained 

by means of the mean compressive cubic strength given in §2.2.1 for each beam. The Young’s 

modulus values are 23.3 GPa and 21.3 GPa for the beam DB1 and DB2. The elastic beam deflections 

at midspan for a given applied load can be calculated by the elastic curve equation considering the 

concrete gross section (pre-cracking stage) properties, the beam length, and the calculated Young’s 

moduli of concrete. Based on these results, the beam stiffness values before cracking at midspan are 

500.0 kN/mm and 349.7 kN/mm for the beams DB1 and DB2. From the beginning of the elastic tests, 

the experimental stiffness values are smaller than the ones calculated considering the gross section 

and therefore the beam sections were already cracked before these tests. This is expected because the 

beams were extracted from a building subjected to loads. 

The experimental flexural rigidity (EcIexp) can be evaluated by Equation (4) based on the elastic 

curve equation. 

Ec ∙ Iexp = Femax ∙ L3/(48 ∙ δemax) (4) 

where Femax and δemax are the maximum load and the corresponding beam deflection at midspan 

during the elastic test. 

The experimental flexural rigidity is included in the range with: 

1. The lower limit equal to the fully cracked flexural rigidity (EcIII) calculated by Equation (5); 

Ec ∙ III = Ec  ∙ (
1

3
∙ b ∙ yc

3 + Es/Ec ∙ As  ∙ (d − yc)2) (5) 

2. The upper limit equal to the uncracked flexural rigidity (EcI0) calculated by Equation (6) 

Ec ∙ I0 = Ec  ∙ (1/12 ∙ b ∙ h3) (6) 

in which I0 is the area moment inertia of the uncracked section, III the area moment of inertia of the 

full cracked section, b is the section width, h is the section height, yc is the compression zone height, 

Es is the steel elastic modulus (200,000 MPa), As is the tension reinforcement area and d is the distance 

between the reinforcement and the top of the cross-section. 

The experimental (EcIexp), uncraked (EcI0), and fully cracked (EcIII) flexural rigidity values are 

given for each beam in   
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Table 3. The effective depth for flexure (d) was about 72 mm for each beam. 
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Table 3. Extracted beams DB1 and DB2: experimental (EcIexp), fully cracked (EcIII) and uncraked (EcI0) 

flexural rigidity [kNm2]. 

 EcIexp EcIII EcI0 EcIexp/EcI0 EcIII/EcI0 

DB1 56,858 31,148 224,240 0.25 0.14 

DB2 42,968 37,302 217,160 0.20 0.17 

In   
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Table 3, the comparison between the ratios EcIexp/EcI0 and EcIII/EcI0 shows that the beams DB1 and 

DB2 presented a significant cracking of the section before the elastic test. 

These results show that the prediction of the deflection for a “real beam” may be more uncertain 

because the variability of the concrete properties may be high (§2.2.1) and the preexisting cracks in 

the section may be significant. 

 
 

(a) (b) 

Figure 6. Extracted beam DB1 and DB2: (a) load-deflection curves and (b) maximum beam deflections 

during the elastic tests (L is the beam length). 

4.3. Failure Tests on the Retrofitted Beams 

After retrofitting, the beams were tested until there was failure to estimate the failure mode, the 

shear strength, the deflections, the CFRP reinforcement strain and the contribution to the shear 

resistance of the transverse steel reinforcement, the concrete, and the CFRP reinforcement. 

4.3.1. Beam Deflections 

Beam deflections (δ) were measured at 0.25 L, 0.75 L and at two points near 0.5 L (Figure 5b) 

during the application of the vertical load (F). The vertical load-deflection curves are given for each 

measurement point in Figure 7a,b. Deflection at each point was calculated as the mean value of 

measurements taken on both sides of beam (§4.1). The deflection d1 and d4 were measured at 0.25 L 

and 0.75 L whereas the deflections d2 and d3 were taken at the point on the left and the one on the 

right of the midspan (0.5 L) (Figure 7a). The maximum vertical load values at failure were 427.5 kN 

and 425.5 kN for the beams DB1-R and DB2-R and the corresponding midspan deflection values were 

6.48 mm and 7.25 mm. 

 

  

(a) (b) 

Figure 7. Retrofitted beams: load-deflection responses along the beams DB1-R (a) and DB2-R (b). 
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4.3.2. Retrofitted Beam Failure Mechanism and Damage 

Each beam showed brittle failure with diagonal shear cracks and CFRP reinforcement 

debonding probably due to insufficient anchorages of the new bottom longitudinal rebars close to 

the beam supports H and R (Figure 8a,b). The anchorages of the new bottom rebars used to improve 

the beam flexural strength at the midspan, were interrupted close to the beam supports in the case of 

the beam DB1-R and at the supports for the beam DB2-R. This interruption is not correct because 

Mörsch’s truss physical model requires the contribution of continuous bottom rebars along the beam 

length with efficient anchorages at beam ends. The beam failure mechanism was triggered by 

concrete cracks at beam intrados close to the support H (Figure 8a,b). These cracks were due probably 

to the slip of the new bottom rebars at anchorages or to detachment of the new bottom concrete parts 

(the RC slab built to insert the new bottom rebars) not connected properly to the beam by means of 

connectors (Figure 4a). The extension of these cracks caused the detachment of the new concrete cover 

and the CFRP reinforcement debonding from the beam sides. 

  

(a) (b) 

Figure 8. Damage on the beam DB1-R (a) and DB2-R (b) at support H after failure tests (back view). 

Both strengthened beams collapsed for shear in correspondence to a large diagonal crack and 

the failure occurred with a complete debonding of the U-strips (Figure 8a,b) at about the same load 

(F ≈ 425.5 ~ 427.5 kN). 

Since the beam spans and the bottom reinforcement area at the midspan are different in both 

beams (Figure 2), different capacities are expected if a flexure failure happens. However, the shear 

failure was observed at the end of the experimental tests and therefore the beam span and 

longitudinal reinforcement did not affect the peak force. 

The failure of the beam DB1-R started from the hinge support H (Figure 8a) where a wide 

diagonal crack crossed the closer U-strip. The experimental behavior of this beam can be described 

along the load-deflection curve showed in Figure 7a. Along the initial branch of the curve (until point 

1, Figure 7a), the DB1-R presented about 12% greater stiffness than the DB1 beam before retrofitting 

based on the measured midspan deflection: the mean deflection values for F = 92 kN were 0.66 mm 

and 0.74 mm for the beam DB1-R and DB1. Around the vertical load value of 370 kN (point 2, Figure 

7a), the U-strips on the left of the midspan close to the support H started to debond locally. When the 

vertical load increased from 400 kN to 425 kN, the strips debonding became more evident proceeding 

until failure (point 3, Figure 7a). Deflection at the midspan increased and diagonal shear cracks, 

already wide at 400 kN, continued to grow becoming very large. A noticeable difference between the 

diagonal displacement along the U-strips near the hinge support (H, Figure 5b) and the ones near the 

roller support (R, Figure 5b) was evident with the displacement values close to the support H 4–5 

times greater than those near the support R. When the beam was loaded up to failure, the beam shear 

collapse mechanism concentrated near the hinge support H. After the maximum vertical load, the 

beam behavior was characterized by decreasing of the load-carrying capacity due to the subsequent 

debonding of the remaining U-strips (point 4–7, Figure 7a) starting from the ones closer to the H 
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support. The loss of the beam carry capacity was sudden along the load-deflection curves at each U-

strips debonding from the maximum load 425 kN to the ultimate load 310 kN (point 7, Figure 7a). 

The rupture sequence involved four strips within a couple of seconds: each sudden fall of force along 

the curve (Figure 7a) represents the detachment of a strip. When the load is about 310 kN, all the U-

strips broke, and the diagonal shear cracks became larger and larger until the beam failure occurred 

(point 7, Figure 7a). 

The beam DB2-R behaved similarly to DB1-R (Figure 7a,b): shear failure started near the H hinge 

support with a first wide diagonal crack at about a quarter of the beam span and a second diagonal 

crack near the H support (Figure 8b). The shear failure of DB2-R occurred at about the same load 

value measured for the beam DB1-R, but the failure mode was different because the anchorages of 

the new bottom longitudinal rebars were extended over the supports of the beam DB2-R. This longer 

rebar anchorage anchored better the new rebars with respect to the one in the beam DB1-R. The new 

bottom reinforcement gave a better contribution to resist the force due to the shear at support and 

therefore the shear cracks moved toward the beam midspan (the crack located at about a quarter of 

the beam span from the support H). 

The experimental behavior of this beam can be described along the load versus displacement 

curve shown in Figure 7b. Along the initial branch of the curve, the beam DB2-R presented about 

14% greater stiffness than the DB2 beam before retrofitting based on the midspan deflection: the mean 

deflection values for F = 72 kN were 0.92 mm and 1.04 mm for the beam DB2-R and DB2 (point 1, 

Figure 7b). When the load is 300 kN, the CFRP U-strips started to debond locally (point 2, Figure 7b). 

The same phenomenon was observed also by Carolin et al. 2005 [53,54] during the beam loading at 

two-thirds of the failure load. The beam failure was abrupt without other significant warning signals 

with a main diagonal crack that grew up to failure. When the load is F = 350 kN, diagonal shear cracks 

close to the support H became evident and the new concrete cover started to detach at 400 kN. The 

U-strips debonding became more evident and the strips started to break (point 3, Figure 7b) at 425 

kN. The diagonal displacements close to the support H were still small, about 2 mm, and the ones 

near the support R were smaller than 1 mm. Post-peak behavior was characterized by a subsequent 

detachment of the remaining strips starting from the H support up to the beam midspan until the 

applied load was equal to 270 kN (point 4–7, Figure 7b). The diagonal CFRP strips close to the support 

H and to the midspan together with the adjacent vertical ones gradually came off within 11 seconds. 

The failure of each strip corresponds to a loss of load along the curve in Figure 7b. Finally, the 

increasing of the load produced the rupture of all strips and the beam collapsed (point 8, Figure 7b). 

After the CFRP reinforcement rupture, the shear resistance is guaranteed by the transverse steel 

and the concrete contribution (aggregate interlock, longitudinal rebar dowel effect, etc.). The CFRP 

reinforcement reduced the transverse steel contribution because plastic force distribution was limited 

along the transverse steel and the shear cracks angle was about 45°: the number of the stirrups that 

gave a contribution to the shear resistance was modest. However, the CFRP reinforcement reduced 

the width of the shear cracks improving the aggregate interlock and contrasted the cover spalling 

improving the dowel effect of the longitudinal rebars. 

4.3.3. Experimental Strains of the CFRP Reinforcement 

Strains of the CFRP U-strips were monitored during the beam failure test by means of three 

strain gauges at bottom, middle and top position along each U-strip side (Figure 9a). In Figure 9, the 

strains measured by the strain gauges on the diagonal CFRP strips FRP-U1, FRP-U2 and FRP-U3 

(Figure 9b–d) near the support H of the DB1-R beam are plotted for five different values of the vertical 

load (F). These five load values are smaller than the maximum vertical load (Fmax) applied on the 

beam and are: F = 0.25Fmax (107 kN), the load that produced the beam flexural cracking (F =0.24Fmax, 

on average from the literature); F = 0.50Fmax (212 kN); F = 2/3Fmax (285 kN), that usually corresponds 

to the onset of strips debonding [53,54]; F = 0.85Fmax (360 kN) and F = 0.95Fmax (400 kN). The strains 

measured at Fmax (425 kN) are not included in Figure 9 because the strips detached from the beam 

surface and so the strain gauge measurement is not interesting at complete debonding of strips. The 

strains measured before complete debonding for F = 0.95Fmax were about equal to 0.3% (Figure 9b–d). 
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(a) (b) 

  
(c) (d) 

Figure 9. Retrofitted beam DB1-R: strips locations on the beam side (a); strains distribution along the 

diagonal CFRP U-strips FRP-U1 (b), FRP-U2 (c) and FRP-U3 (d). 

Given the linear elastic behavior of CFRP fabric, CFRP stress can be obtained directly by the 

measured strain and the Young’s modulus of the CFRP fabric (Ef = 240 GPa). The stress value 

corresponding to the maximum strain is 720 MPa. The CFRP effective strength (ffed) that produces 

debonding of the CFRP reinforcement is 695 MPa by Equation (18) in CNR-DT 200 R1/2013 [66]. This 

stress is function of the debonding strength (ffdd) calculated by Equation (23) in CNR-DT 200 R1/2013 

[66] that is equal to 715 MPa assuming the tensile strength of the CFRP fabric equal to 2400 MPa, the 

mean cubic compressive strength of the restored concrete cover equal to 35 MPa and the unit value 

for the partial safety coefficients in [66]. The experimental CFRP stress at the strips debonding is very 

similar to the predicted value by the code equations [66]. 

The behavior of the CFRP strips of the beam DB2-R was similar to the one observed for the beam 

DB1-R. The strains measured before complete debonding for F = 0.95Fmax were about equal to 0.2–

0.3%, except for one U-strip close to the midspan that showed locally strain values of 0.3–0.4%. A 

modest strain of about 0.1% was measured on the CFRP fabric region close to the beam extrados at 

top and middle positions along the U-strips, where strips debonding due to concrete cracking started 

to propagate. The applied load was about 2/3 of Fmax and this behavior was already observed by 

Carolin et al. 2005 [53,54]. 

The CFRP strains values measured at the beam failure due to strip debonding were smaller than 

the maximum values given on the CFRP fabric datasheet or obtained by direct coupon tests on CFRP 

specimen. 

Furthermore, the experimental evidence showed that the maximum CFRP strain at strip 

debonding was smaller than the design one indicated in many design guidelines [66–69]. Design 

guidelines limit the value of the maximum CFRP strain to assure the integrity of concrete and prevent 

aggregate interlock failure. The value of the maximum strain is 0.005 and 0.006 in CNR-DT 200 

R1/2013 [66] and fib Bulletin 14 [67], and is 0.004 in ACI 440.2R-08 [68] and TR 55 [69]. 

However, it is important to underline that the experimental measurement of the maximum FRP 

strain is difficult because strain gauges measurement gives the local value of strain. For that reason, 

the maximum strain can arise in a point along the strip, where strain is not measured during the test. 
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For that reason, the maximum CFRP strain can be a few greater that the measured one. 

4.3.4. Experimental Contributions to the Beam Shear Resistance 

The experimental contributions to the beam shear resistance due to the transverse steel 

reinforcement (VRd,s exp), the CFRP reinforcement (VRd,f exp) and the concrete (VRd,c exp), were estimated 

for the tested beams DB1-R and DB2-R in   
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Table 4 when the maximum experimental shear was recorded. 

The shear crack with an inclination angle ϴ equal to about 45° extended along each beam for 

about 800 mm (Figure 8a,b). 

The experimental transverse steel contribution was evaluated by Equation (7): 

VRd,s exp = nsw ∙ Asw ∙ f0.2%,m (7) 

in which nsw is the number of the stirrups crossing the shear crack, Asw is the cross-section area of the 

stirrups and f0.2%,m is the mean value of the yield stress of the stirrups from the data in Table 1. 

The spacing of the stirrups was irregular along each beam (§2.1) and therefore nsw was calculated 

by the ratio between the length of the beam part crossed by the shear crack (800 mm) and the mean 

spacing of the stirrups. The values of nsw were 3.5 and 3.4 for the beam DB1-R and DB2-R. 

The CFRP reinforcement contribution was estimated by Equation (8): 

VRd,f exp = nf,strips ∙ 2 ∙ tf ∙ bf ∙ Ef ∙ εf exp (8) 

where nf,strips is the number of the CFRP strips crossing the shear crack, tf is the CFRP fabric 

thickness, bf is the CFRP strip width, Ef is the CFRP fabric Young’s modulus and εf expis the strain 

measured on the CFRP U-strips at beam failure (§4.3.3). The CFRP fabric characteristics and the strip 

geometries are given in §3. The evaluation of the number of the U-strips, which gave a contribution 

to the shear resistance, is not simple because debonding of the strips was evident and the brittle 

failure of the CFRP reinforcement did not permitted plastic force distribution. However, nf,strips equal 

to 3 is used to evaluate the CFRP contribution in   
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Table 4 because this is the number of the strips crossing the shear crack in Figure 8a,b for each beam. 

The value of the experimental CFRP strain εf
exp

 was about equal to 0.3% for the beam DB1-R (Figure 

9) and 0.25% for the beam DB2-R. 

The experimental concrete contribution was obtained by the subtraction of the experimental 

shear contribution of the CFRP and the steel reinforcements from the maximum experimental shear 

recorded on the retrofitted beams (Figure 7a,b). 
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Table 4. Experimental contribution to the shear resistance of the transverse steel reinforcement 

(VRd,s exp), the CFRP reinforcement (VRd,f exp) and the concrete (VRd,c exp) [kN]. 

 𝐕𝐑𝐝,𝐬 𝐞𝐱𝐩 𝐕𝐑𝐝,𝐟 𝐞𝐱𝐩  𝐕𝐑𝐝,𝐜 𝐞𝐱𝐩 

DB1-R 81.55 72.14 60.06 

DB2-R 73.96 60.12 78.67 

After the CFRP reinforcement failure, the experimental shear was about 157 kN and 114 kN for 

the beam DB1-R and DB2-R (Figure 7a,b). The beams could sustain these shear forces thanks to the 

transverse steel reinforcement and the concrete contributions. In fact, the sum of the transverse steel 

reinforcement and the concrete contributions in   
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Table 4 is equal to 142 kN and 153 kN for the beam DB1-R and DB2-R: these values are very 

similar to the ones recorded after CFRP reinforcement failure. 

However, the evaluation of the steel contribution is uncertain because: 1. The stirrups spacing 

was irregular; 2. The plastic force distribution was reduced by the CFRP reinforcement and so some 

stirrups could give a smaller contribution; 3. The CFRP reinforcement limited the crack width and 

the stress in the stirrups could be smaller than the yield stress depending on the actual steel strain. 

For the tested beams, the experimental strain measured on the CFRP strips were about 0.3% (§4.3.3) 

and therefore the stirrups more probably yielded because the steel yield strain is 0.2%. 

The evaluation of the CFRP contribution is also uncertain because: 1. The number of the strips, 

that gave a contribution at the same time, is uncertain; 2. the actual strain of the CFRP fabric could be 

greater than the one measured locally where strain gauges were placed (Figure 9). 

The uncertainties about the experimental steel and the CFRP reinforcement contributions make 

uncertain also the evaluation of the concrete contribution in   
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Table 4. This contribution is not considered in the modern code equations that predict the 

retrofitted beam shear strength [66]. 

It is interesting to calculate the concrete contribution by Equation (12) in Eurocode 2 [70] 

considering the mean cubic concrete strengths given in §2.2.1 and the beams geometries and steel 

reinforcement showed in §2.1 for each beam. This contribution is equal to 74.3 kN for the beam DB1-

R and it is equal to 72.8 kN for the beam DB2-R without considering the new bottom longitudinal 

rebars added in each beam. These values are similar to the experimental ones in   
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Table 4. This means that the new bottom rebars, which had insufficient anchorages at the section 

where ρl (the reinforcement ratio for the longitudinal reinforcement) in Equation (12) is evaluated, 

did not give a contribution to the shear resistance. In fact, the concrete contribution calculated for 

each beam considering also the contribution of the new bottom rebar (§3) is 111.7 kN for the beam 

DB1-R and 105.0 kN for the beam DB2-R; values greater than the experimental ones in   
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Table 4. 

5. Design Equations for the Shear Strength of RC Beams 

5.1. Strength of RC Beams before and after Retrofitting 

The shear strength of beam with shear steel reinforcement only (VRd) can be evaluated by the 

two methods proposed in Eurocode 2 [70]: 

1. The Standard Method (Equation (9)) that considers the steel (VRd,s) and the concrete contribution 

(VRd,c); The truss model has the compressive strut inclination angle (ϴ) equal to 45°. 

2 The Variable Inclination Method (Equation (10)) not containing the concrete contribution; The 

truss model has a variable compressive strut inclination angle (ϴ) lower than 45° 

VRd = min{VRd,s + VRd,c;  VRd,max} (9) 

VRd = min{VRd,s;  VRd,max} (10) 

The design value of the shear force, which can be sustained by the yielding shear reinforcement 

(VRd,s), can be calculated by Equation (11). 

VRd,s =
0.9 ∙ d ∙ fywd ∙ Asw

s
∙ cotϴ (11) 

where fywd, Asw and s are the design yield stress, the cross-sectional area and the spacing of the shear 

steel reinforcement. 

The design shear resistance of the member without shear steel reinforcement (VRd,c) can be 

calculated by Equation (12) assuming member axial load equal to zero. 

VRd,c = 0.18/γc ∙ (1 + √
200

d
) ∙ (100 ∙ ρl ∙ fck)

1
3 ∙ d ∙ bw > vmin ∙ d ∙ b (12) 

in which γc is the partial factory, ρl is the reinforcement ratio for the longitudinal reinforcement, bw 

is the smallest width of the cross-section in the tensile area, fck is the characteristic compressive 

cylinder strength of concrete at 28 days and the parameter vmin may be found in Country National 

Annex. 

The term VRd,max is the maximum shear capacity of the section calculated by Equation (13) that 

depends on the compressive strength of the concrete strut (Mörsch’s truss analogy model). 

VRd,max = 0.9 ∙ d ∙ bw ∙ αcw ∙ v1 ∙ fcd ∙ (
cotϴ + cotα

1 + cotϴ2
) (13) 

in which the coefficients αcw and υ1 for use in a Country may be found in its National Annex, fcd is the 

design value of concrete compressive strength and α is the angle between shear reinforcement and 

the beam axis perpendicular to the shear force. 

From a physical point of view, the Standard Method is unsatisfactory because the concrete 

contribution is empirical and includes different resisting mechanisms (compressed concrete zone 

contribution, aggregate interlock, and dowel action of the longitudinal rebars crossing the shear 

cracks) difficult to estimate. Furthermore, the experimental evidence shows a redistribution of the 

forces in the beam web, which results in compressive concrete strut inclination angles smaller than 

45°. The number of stirrups crossed by the shear cracks can be greater and more stirrups can 

contribute to the beam shear strength. This redistribution is considered by the Variable Inclination 

Method that does not contain the uncertain concrete contribution. The recommended limits for the 

variable angle ϴ are given by Equation (14). 

1 ≤ cotϴ ≤ 2.5 (14) 

The shear strength of the retrofitted beam by means of EB-CFRP reinforcement (VRd,r) can be 

predicted by Equation (15) in CNR-DT 200 R1/2013 [66] or by Equation (16) in fib Bulletin 14 [67]. 
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VRd,r = min{VRd,s + VRd,f + VRd,c;  VRd,max} (15) 

VRd,r = min{VRd,s + VRd,f;  VRd,max} (16) 

in which VRd,f is the CFRP U-jacket contribution to shear resistance given in §5.2. 

The main difference between the two code Equations (15) and (16) is that fib Bulletin 14 [67] 

guideline considers also the concrete term VRd,c. The angle ϴ should be assumed equal to 45° in each 

equation to limit the value of the VRd,s (cot ϴ = 1). In fact, the plastic redistribution of the force in the 

transverse steel reinforcement could be limited by the CFRP reinforcement. 

5.2. CFRP U-Jacket Contribution to Shear Resistance 

The guidelines CNR-DT 200 R1/2013 [66] and fib Bulletin 14 [67] assume that the EB-FRP 

reinforcement behaves like the transverse steel reinforcement. The contribution of CFRP shear 

reinforcement (VRd,f) is calculated by Equation (17) in CNR-DT 200 R1/2013 [66] based on the Mörsch’s 

truss analogy model. This is the same equation used to evaluate the steel shear contribution (VRd,s) in 

Eurocode 2 [70] considering the cross-section area (Af = bf∙tf where bf and tf are the width and the 

thickness of CFRP strips), the spacing (pf) and the effective strength of CFRP strips (ffed) instead of the 

steel cross-section area (Asw), the spacing (s) and the yield stress of the steel rebar (fy). 

VRd,f =
1

γRd

∙
0.9d

pf

ffed ∙ 2tf ∙ bf ∙ (cotθ + cotβ) (17) 

ϴ is the inclination of the concrete crack to the beam axis, β is the inclination of CFRP strips to 

the beam axis, d is the distance from the extreme compression fiber to the centroid of tension steel 

reinforcement and ϒRd = 1.2 is the partial factory. 

The effective design strength of the CFRP shear reinforcement (ffed) is usually governed by 

debonding according Equation (18): 

ffed = ffdd ∙ [1 −
1

3
∙

led ∙ sinβ

min{0.9d, hw}
] (18) 

where ffdd is the design debonding strength of FRP, hw the web depth completely impregnated with 

U-wrap and led the design effective bond length. 

The design debonding strength ffdd at failure is evaluated from the maximum transmissible force 

by the anchorage (Pmax) given by Equation (19). 

ffdd =
Pmax

bf ∙ tf

 (19) 

The value of Pmax can be measured by tests or alternatively obtained according to Wu et al. 2002 

[71] using the following interface law (Equation (20)): 

Pmax = bf√2Ef ∙ tf ∙ Γfd (20) 

in which Ef is the Young’s modulus of elasticity of FRP reinforcement and Γfd is the fracture energy 

that characterizes the bond interface between the FRP sheet and concrete calculated by Equation (21) 

considering wet lay-up FRP. 

Γfd =
0.037 ∙ kb√fcm ∙ fctm

FC
 (21) 

where fcm is the mean value of concrete compressive strength, fctm is the mean value of concrete tensile 

strength, FC is the factor of confidence and kb is the scale coefficient defined by Equation (22) 

kb = √
2 − bf/b

1 + bf/b
≥ 1 (22) 

in which b is the width of the beam. Through Equations (21), (22) and (23), it is possible to obtain the 

design debonding strength (ffdd). 
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ffdd =
1

γfd

∙ √
2 ∙ Ef ∙ Γfd

tf

 (23) 

where Υfd is the partial safety factor depending on the application of the FRP sheet. The design 

optimal bond length can be calculated by Equation (24) in fib Bulletin 14 [67]. 

led = √
Ef ∙ tf

2 ∙ fctm

 (24) 

The contribution of the FRP shear reinforcement calculated by Equation (17) is not completely 

correct. Differently from the steel reinforcement, the CFRP reinforcement does not activate any 

Mörsch’s truss resisting mechanism with plastic force redistribution [52]. Therefore, the effective 

design strength of the CFRP shear reinforcement should not be used like the yield stress for the 

transverse steel reinforcement. Furthermore, it is possible that the CFRP reinforcement strain at 

failure is smaller than the yield strain of the transverse steel and so the steel shear contribution should 

be closely considered [52]. 
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6. Shear Strength of the Beams Tested in Lab 

This chapter collects the experimental results regarding the RC beams retrofitted by EB-CFRP 

reinforcement or not retrofitted that were tested in Monti et al. 2007 [38], Pellegrino et al. 2002 [39], 

Carolin et al. 2005 [54], Bousselham et al. 2009 [72], Barros et al. 2006 [73], and Zhang et al. 2005 [74]. 

The experimental shear strength values measured for these beams and the ones measured for the two 

beams DB1-R and DB2-R tested in this study were compared with the predicted values obtained by 

the code design equations described in §5. 

The retrofitted beams collapsed due to the shear failure with debonding of the CFRP 

reinforcement and brittle rupture of CFRP fabric. The beams tested in the literature were purposely 

designed and built with insufficient transverse steel reinforcement to be reinforced by EB-CFRP 

reinforcement. The beams DB1-R and DB2-R are the only ones removed from a “real” existing 

building. The beam geometries, the material mechanical characteristics (steel, concrete and FRP) and 

the configurations of the steel and the FRP reinforcements for each beam are given in Tables A1 and 

A2 (Appendix A). 

6.1. Shear Strength of the Beams before Retrofitting 

The shear strength of the RC beams with steel shear reinforcement before retrofitting selected in 

§6 was predicted by Equation (10) in Eurocode 2 [70] assuming the partial factors are equal to one. 

The material mechanical characteristics, the beam concrete geometries and the reinforcement 

configurations are given in Tables A1 and A2 for each beam. 

Two different values for the inclination angle of the concrete compressive strut (ϴ) were selected: 

1. A fixed value of ϴ equal to 45° 

2. A variable value of ϴ smaller than 45° calculated by the variable inclination angle method in 

§5.1. 

These two values of ϴ permit consideration of the minimum (cotϴ = 1) and the maximum (1 ≤ 

cotϴ ≤ 2.5) transverse steel contribution to the shear resistance (VRd,s) in Equation (10). In fact, if the 

inclination angle of the cracks (ϴ) is smaller than 45°, the number of internal stirrups crossing the 

crack and the resulting shear carried by the stirrups may be higher, up to the maximum value defined 

by cotϴ = 2.5. 

The experimental shear strength (VRd,exp) of the selected beams is given by the authors (§6) that 

tested these beams. 

In Figure 10, each point gives information about the predicted and the experimental shear 

strength values for the beams considering the two angles ϴ. The line “m” indicates the perfect 

correspondence between the predicted and the measured shear strength values. 

The data points are below the straight line “m” when the fixed inclination angle is used (Figure 

10a) and so this prediction underrates the real shear strength of the beam before retrofitting. The data 

points are closer to the straight line “m” when the variable inclination angle is used (Figure 10b) and 

therefore the predictions of the shear strength are more realistic. In Figure 10b, there are some points 

above the line “m” for which the predicted shear strength using the variable angle is a little greater 

than the experimental one but the application of the partial factors may assure safe design. 
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(a) (b) 

Figure 10. Beam before retrofitting: experimental and predicted shear strength values considering (a) 

the fixed or (b) the variable inclination angle of the concrete compressive strut. 

The statistical values of the ratio VRd,exp/VRd for each beam in Figure 10a,b, are given in Table 5. 

Table 5. Statistical values of the predictions: mean, Standard deviation, Coefficient of Variation, max, 

min, 5% and 95% percentile of the ratio VRd,exp/VRd. 

  Mean 
St. 

Deviation 
CoV max min 

5% 

Percentile 

95% 

Percentile 

VRd,exp/VRd 

Fixed 

angle ϴ 
2.12 0.48 0.23 3.04 1.43 1.48 2.91 

Variable 

angle ϴ 
0.88 0.18 0.21 1.22 0.57 0.67 1.19 

The prediction of the beam strength using the fixed value of ϴ equal to 45° gives, on average, 

values equal to 47% of the experimental ones. The inclination angle of the shear cracks in a beam 

before retrofitting is usually smaller than 45° and so the number of internal stirrups crossing the crack 

is greater. The steel reinforcement plastic strains increase the shear cracks width and therefore the 

concrete contribution (aggregate interlock, dowel effect, etc.) can be much reduced. For that reason, 

it may be neglected in Equation (10). 

6.2. Shear Strength of the Beams after Retrofitting by CFRP Reinforcement 

For the beams retrofitted by means of EB-CFRP reinforcement, the transverse steel and the CFRP 

contributions to the shear resistance should be calculated using the angle of the concrete compressive 

strut (ϴ) equal to 45°. In fact, the plastic force redistribution in the shear steel reinforcement is limited 

by the CFRP reinforcement that is characterized by a brittle failure, and the angle ϴ does not reduce 

much with respect to 45°. 

The predicted shear strength values were calculated by Equation (15) or (16) for the retrofitted 

beams indicated in §6 with steel and FRP shear reinforcement, and for the beams DB1-R and DB2-R 

assuming the partial factors are equal to one; the angle ϴ is equal to 45°; the material mechanical 

characteristics, the beam concrete geometries and the reinforcement configurations given in Tables 

A1 and A2. The effective depth for flexure is about 750 mm for the beams DB1-R and DB2-R. 

The experimental shear strength (VRd,r exp) of the selected beams is given by the authors (§6) that 

tested these beams. 

In Figure 11, each point gives information about the predicted and the experimental shear 

strength values for each tested beam. The line “m” indicates the perfect correspondence between the 

predicted and the measured shear strength values. 
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Figure 11a shows a model with large scatter. The shear strength values predicted by Equation 

(15), in which the contribution of the concrete is added to the ones of the CFRP and the transverse 

steel reinforcements, overestimate the experimental shear strength values for many tested beams. 

This happens despite the assumption of the angle ϴ equal to 45° that underrates the transverse 

steel contribution (§6.1). Partial factors should be considered to properly reduce the prediction of the 

Equation (15) to consider the scatter, but this is not investigated in this study. 

Alternatively, Figure 11b shows a large scatter but the predicted values by Equation (16), that 

do not consider the concrete contribution, are safer because many points are below the line “m”. The 

partial factors may improve the safety of the prediction for the a few points above the line “m” in 

Figure 11b. 

 
 

(a) (b) 

Figure 11. Beam after retrofitting: experimental and predicted shear strength values including (a) or 

not including (b) the concrete contribution (VRd,c). 

The statistical values of the ratio VRd,r exp/VRd,r calculated by Equation (15) or Equation (16) for 

each beam, are given in Table 6. 

Table 6. Statistical values of the predictions: mean, Standard deviation, Coefficient of Variation, max, 

min, 5% and 95% percentile of the ratio VRd,r exp/VRd,r. 

 Model Mean 
St. 

Deviation 
CoV max min 

5% 

Percentile 

95% 

Percentile 

VRd,r 

exp/VRd,r 

VRd,s+VRd,f 1.21 0.27 0.23 1.93 0.67 0.97 1.82 

VRd,s+VRd,f+VRd,c 0.78 0.22 0.28 1.25 0.43 0.53 1.21 

The predicted value of the retrofitted beam shear strength is, on average, 82% of the 

experimental one if the contribution of concrete is not considered. For that reason, the concrete 

contribution, which is uncertain, should be not considered in the prediction equation. The application 

of the two models (Equation (15) or (16)) on the “real” beams DB1-R and DB2-R gives result similar 

to the ones obtained for the beam tested in the literature. 

6.3. Experimental FRP Reinforcement Contribution to the Shear Resistance 

The experimental shear contribution of the CFRP reinforcement (VRd,f exp ) can be obtained 

through subtraction of the experimental beam shear strength before retrofitting (VRd,exp) from the 

experimental shear strength measured for the retrofitted beam (VRd,r exp) by Equation (25). 

VRd,f exp = VRd,r exp − VRd,exp (25) 

The experimental VRd,f exp for the beam DB1-R and DB2-R was evaluated in   
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Table 4 based on the experimental data. 

The predicted values of the CFRP reinforcement contribution (VRd,f) were evaluated by Equation 

(17) considering: the partial factors are equal to 1.2, the fixed angle ϴ is equal to 45° and the beam 

concrete geometries and the FRP reinforcement details given in Tables A1 and A2. 

In Figure 12, each point gives information about the predicted and the experimental Vrd,f values 

for the tested beams selected in §6 and for the beams DB1-R and DB2-R. The line “m” indicates the 

perfect correspondence between the predicted and the measured shear strength values. One should 

note that the strength predicted by Equation (17) may be quite unsafe because many points are above 

the line “m”. 

 

Figure 12. Experimental and predicted values for the CFRP reinforcement contribution to the shear 

resistance. 

The statistical values of the ratio VRd,f exp/VRd,f for each beam are given in Table 7. 

Table 7. Statistical values of the predictions: mean, Standard deviation, Coefficient of Variation, max, 

min, 5% and 95% percentile of the ratio VRd,f exp/VRd,f. 

 Mean 
St. 

Deviation 
CoV max min 

5% 

Percentile 

95% 

Percentile 

VRd,f 

exp/VRd,f 
0.68 0.35 0.52 1.21 0.01 0.05 1.14 

The prediction by Equation (17) is, on average, 1.47 times greater than the experimental one. 

However, the experimental FRP contribution result may be smaller than the predicted one 

(Figure 12) because the brittle behavior of FRP does not permit the plastic distribution of the force 

along the FRP reinforcement and so a few FRP strips only can contribute to the FRP reinforcement 

shear resistance at the same time. Furthermore, the maximum stress may be different between the 

strips. This uncertainness should be considered to develop a new predictive model. 

Finally, the experimental CFRP contribution obtained by Equation (25) requires some critical 

considerations. The transverse steel reinforcement and the concrete contributions to the beam shear 

strength are different in a beam before and after retrofitting (§6.1, §6.2). For that reason, Equation (25) 

could not properly evaluate the experimental FRP contribution. The possible variation of these two 



Appl. Sci. 2018, 8, 1182 30 of 36 

 

contributions before and after retrofitting, should be further investigated by experimental tests to 

evaluate properly the experimental FRP contribution. 

7. Conclusions and Discussion 

Two beams (DB1, DB2) extracted from an old RC structure, were strengthened for shear by an 

EB- CFRP reinforcement and for bending by new bottom longitudinal rebars to be tested in the lab 

until failure. The case at hand is the only one with “real” old RC beams built with modest-quality 

concrete and transverse steel rebar distributed randomly along the beam, as in the case of many 

existing beams. Experimental tests on materials showed a wide scatter of the concrete compressive 

strength values and the concrete of the beam DB1 was, on average, of better quality with respect to 

the one of the beam DB2 even if the two beams were located very close in the structure. Furthermore, 

the concrete compressive strength at the beam top part was greater than the one at the bottom part 

along each beam; this is probably due to cracking of the beam region in tension and to concrete 

segregation. The experimental initial beam stiffness was up to 4–5 times smaller than the theoretical 

one calculated considering the uncracked gross section. This is expected because the beams were 

extracted from a building subjected to loads and therefore the beam sections were already cracked. 

Consequently, the “real” beam capacity in terms of strength and deformation should be closely 

considered by designers because the CFRP reinforcement can modestly restore the beam stiffness by 

up to 12–14%. 

From the experimental tests, the brittle failure mechanism of each beam was characterized by 

the propagation of concrete diagonal cracks and by the delamination of CFRP reinforcement as soon 

as the CFRP-concrete bond interface started to crack. The experimental transverse steel 

reinforcement, CFRP reinforcement and concrete contributions to the shear resistance were 

calculated based on the experimental measurements when the maximum shear was recorded on the 

beams. 

After the CFRP reinforcement failure, the sum of the experimental transverse steel reinforcement 

and concrete contributions are similar to the residual shear value recorded on each beam. This means 

that the aggregate interlock, the dowel effects of the longitudinal rebars and the other “concrete” 

resisting mechanisms gave a contribution to the shear resistance of the retrofitted beam. 

However, this concrete contribution is uncertain because it is obtained starting from the 

retrofitted beam maximum shear and from the experimental steel and CFRP reinforcement 

contributions that are uncertain. 

The evaluation of the steel contribution is uncertain because: 

1. The stirrup spacing was irregular; 

2. The plastic force distribution was reduced by the CFRP reinforcement and so some stirrups 

could give a smaller contribution; 

3. The CFRP reinforcement limited the crack width and so the stress in the stirrups could be smaller 

than the yield stress depending on the actual steel strain; 

4. The scatter of the steel yield and of the maximum steel stresses were wide (§2.2). 

For the tested beams, the experimental strain measured on the CFRP strips were about 0.3% 

(§4.3.3) and so the stirrups more probably yielded because the steel yield strain is 0.2%. 

The evaluation of the CFRP contribution is also uncertain because: 

1. The number of the strips, that gave a contribution at the same time, is uncertain; 

2. The actual strain of the CFRP fabric could be greater than the one measured locally where strain 

gauges were placed (Figure 9). 

For that reason, the retrofitted beam shear strength evaluated without considering the concrete 

contribution by the modern design code seems safer. 

Finally, the concrete contribution predicted by Eurocode 2 [70] without considering the new 

bottom longitudinal rebars, is similar to the experimental one for each beam. This means that the new 

bottom rebars, which had insufficient anchorages, did not give a contribution to the beam shear 
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resistance. However, the new bottom rebars avoided flexural failure according the test design target. 

For that reason, retrofitting construction details should be closely considered by designers. 

Finally, the experimental shear strength of these beams, together with the ones provided by 

many authors in the literature, were compared to the predicted values calculated by the code 

equations in Eurocode 2 [70], CNR-DT 200/2013 [66] and fib bulletin 14 [67] that provide two different 

design approaches. The results of these comparisons have showed that: 

1. Before retrofitting, the Variable Angle Method [70] gives values of the shear strength that result 

in good agreement with the experimental results. The shear carried by the stirrups, considering 

the real shear crack angle, may be 2.12 times greater than the one estimated considering an 

inclination angle of 45°. 

2. After CFRP retrofitting, the experimental beam shear strength is, on average, 1.21 times greater 

than the predicted one assuming a crack inclination angle of 45° without considering the 

concrete contribution (CNR-DT 200/2013 [66]). The predictive model capacity should be 

improved considering the uncertainties about each shear strength contribution. 

3. The concrete contribution predicted by code equation [70] is similar to the experimental one for 

the tested beam DB1-R and DB2-R. Further research efforts should be undertaken because the 

steel and CFRP reinforcement contributions are uncertain. 

4. The CFRP reinforcement contribution to the shear resistance could be overestimated by the 

design model [66]. This resisting model seems improper for evaluating the FRP contribution 

because: i. The brittle failure of the CFRP shear reinforcement does not permit plastic force 

redistribution; ii. The number of CFRP strips that contribute efficiently to the shear resistance is 

uncertain; iii. The maximum FRP fabric deformation is still uncertain. 

5. The experimental CFRP strain can be modest and comparable to the yield strain of the steel 

reinforcement. In this case, the transverse steel contribution to the shear resistance can be smaller 

than the one predicted by code equation [70]. 

Further research efforts are needed in order to understand better: 

1. The effect of the material property variability on the capacity of “real” beams 

2. The strength of the “real” beam retrofitted with proper new rebar anchorages 

3. The resisting mechanism of the retrofitted beams based on physical assumptions. 
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Appendix A 

The symbols used in Tables A1 and A2 represent: base, depth and span length of the beam; Asw/s 

is the ratio area steel stirrups/spacing; fc is the compressive strength of concrete; fy is the yield stress 

of stirrups; bf/pf is the FRP ratio width/spacing; thick is the thickness of the FRP fabric; angle is the 

inclination angle of FRP strips; Ef is the Young’s modulus of the FRP. 

Table A1. Geometrical and mechanical properties of the selected RC beams and FRP strengthening; 

the “ref” beams are the ones without FRP retrofitting [38,39,54,72–77]. 

Ref. Specimens 
Base 

(mm) 

Depth 

(mm) 

Span 

(m) 

Geom 

Ratio 
Asw/s 

fc 

Mean 

(MPa) 

fy 

Mean 

(MPa) 

bf/pf 
Thick 

(mm) 
Angle 

Ef 

(GPa) 

 
DB1 285 750 3.47 0.006 0.26 12.2 497 0.25 0.165 45° 240 

DB2 290 750 3.89 0.006 0.22 9.0 497 0.25 0.165 45° 240 

Bouss.2009 

ED1-S1-0L (ref) 152 350 4.52 0.037 0.57 25.0 538     

ED1-S1-1L 152 350 4.52 0.037 0.57 25.0 538 1.00 0.107 90° 231 

ED1-S1-2L 152 350 4.52 0.037 0.57 25.0 538 1.00 0.214 90° 231 

ED1-S2-0L (ref) 152 350 4.52 0.037 1.15 25.0 538     

ED1-S2-1L 152 350 4.52 0.037 1.15 25.0 538 1.00 0.107 90° 231 

ED1-S2-2L 152 350 4.52 0.037 1.15 25.0 538 1.00 0.214 90° 231 

ED2-S1-0L (ref) 95 175 3 0.036 0.39 25.0 538     

ED2-S1-1L 95 175 3 0.036 0.36 25.0 538 1.00 0.066 90° 231 

ED2-S1-2L 95 175 3 0.036 0.36 25.0 538 1.00 0.132 90° 231 

Garcez2008 

CB (ref) 150 300 3 0.005 0.89 41.4 578     

CFB_01 150 300 3 0.005 0.89 41.4 578 0.22 0.165 90° 227 

CFB_02 150 300 3 0.005 0.89 41.4 578 0.22 0.23 90° 227 

Monti2007 

REF (ref) 250 450 2.8 0.011 0.25 11.0 500     

US90 250 450 2.8 0.011 0.25 11.0 500 0.50 0.22 90° 390 

US60 250 450 2.8 0.011 0.25 11.0 500 0.50 0.22 60° 390 

USVA 250 450 2.8 0.011 0.25 11.0 500 0.50 0.22 45° 390 

USVA+ 250 450 2.8 0.011 0.25 11.0 500 0.50 0.22 45° 390 

US45+ 250 450 2.8 0.011 0.25 11.0 500 0.50 0.22 45° 390 

US90(2) 250 450 2.8 0.011 0.25 11.0 500 0.50 0.22 90° 390 

US45++ 250 450 2.8 0.011 0.25 11.0 500 0.50 0.22 45° 390 

US45++D 250 450 2.8 0.011 0.25 11.0 500 0.67 0.22 45° 390 

US45++E 250 450 2.8 0.011 0.25 11.0 500 0.67 0.22 45° 390 

US45++F 250 450 2.8 0.011 0.25 11.0 500 0.67 0.22 45° 390 

Barros2006  

A10_C (ref) 150 300 1.5 0.007  37.6 549     

A10_S (steel) 150 300 1.5 0.007 0.19 37.6 549     

A10_M (cfrp) 150 300 1.5 0.007  37.6 549 0.13 0.334 90° 390 

A12_C (ref) 150 300 1.5 0.010  37.6 549     

A12_S (steel) 150 300 1.5 0.010 0.38 37.6 549     

A12_M (cfrp) 150 300 1.5 0.010  37.6 549 0.26 0.334 90° 390 

B10_C (ref) 150 150 0.9 0.014  49.5 549     

B10_S (steel) 150 150 0.9 0.014 0.38 49.5 549     

B10_M (cfrp) 150 150 0.9 0.014  49.5 549 0.31 0.334 90° 390 

B12_C (ref) 150 150 0.9 0.020  49.5 549     

B12_S (steel) 150 150 0.9 0.020 0.75 49.5 549     

B12_M (cfrp) 150 150 0.9 0.020  49.5 549 0.63 0.334 90° 390 

Table A2. Geometrical and mechanical properties of the selected RC beams and FRP strengthening: 

the “ref” beams are the ones without FRP retrofitting; glass and cfrp the FRP material types 

[38,39,54,72–77]. 

Ref. Specimens 
Base 

(mm) 

Depth 

(mm) 

Span 

(m) 

Geom 

Ratio 
Asw/s 

fc 

Mean 

(MPa) 

fy 

Mean 

(MPa) 

bf/pf 
Thick 

(mm) 
Angle 

Ef 

(GPa) 

Guadagn.2006 

SB40 (ref) 150 250 2.3 0.012 0.00 42.8 500   90°  

SB40R (glass) 150 250 2.3 0.012 0.00 42.8 500 0.25 0.11 90° 65 

SB41 (ref) 150 250 1.8 0.012 0.00 42.8 500   90°  

SB41R (glass) 150 250 1.8 0.012 0.00 42.8 500 0.25 0.11 90° 65 

SB42 (ref) 150 250 1 0.012 0.00 42.8 500   90°  

SB42R (glass) 150 250 1 0.012 0.00 42.8 500 0.50 0.206 90° 65 

Carolin2005 

Type B R (ref) 180 400 3.5 0.033 0.28 45.6 515     

Type B 290 180 400 3.5 0.033 0.28 45.6 515 1.00 0.11 90° 210 

Type B 390 180 400 3.5 0.033 0.28 45.6 515 1.00 0.17 90° 210 

Zhang2005 

ZC4 (ref) 152.4 228.6 1.22 0.012 0.28 43.8 400     

Z4-90 (cfrp) 152.4 228.6 1.22 0.012 0.28 43.8 400 0.39 1 90° 165 

Z4-45 (cfrp) 152.4 228.6 1.22 0.012 0.28 43.8 400 0.39 1 45° 165 

ZC6 (ref) 152.4 228.6 1.83 0.012 0.28 43.8 400     
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ZC6(2) (ref) 152.4 228.6 1.83 0.012 0.28 43.8 400     

Z6-90 (cfrp) 152.4 228.6 1.83 0.012 0.28 43.8 400 0.39 1 90° 165 

Z6-45 (cfrp) 152.4 228.6 1.83 0.012 0.28 43.8 400 0.39 1 45° 165 

Adhikary2004 
B-1 (ref) 150 200 2.6 0.010 0.00 34.0 389     

B-8 150 200 2.6 0.010  34.0 389 1.00 0.167 90° 226 

Pellegr.2002 

TR30D1 (ref) 150 300 2.7 0.010 0.50 31.4 548     

TR30D2 (3- plies) 150 300 2.7 0.010 0.50 31.4 548 1.00 0.495 90° 236 

TR30D3 (1 ply) 150 300 2.7 0.010 0.50 31.4 548 1.00 0.165 90° 236 

TR30D4 (2 plies) 150 300 2.7 0.010 0.50 31.4 548 1.00 0.33 90° 236 

Khalifa2000 

BT1 (ref) 150 405 3.05 0.011 0.00 35.0 410     

BT2 (1-ply) 150 405 3.05 0.011  35.0 410 1.00 0.165 90° 228 

BT3 (2-plies) 150 405 3.05 0.011  35.0 410 1.00 0.33 90° 228 

BT4 (90 strip) 150 405 3.05 0.011  35.0 410 0.25 0.165 90° 228 

BT5 (90 strip) 150 405 3.05 0.011  35.0 410 0.25 0.165 90° 228 

BT6 (sheet) 150 405 3.05 0.011  35.0 410 1.00 0.165 90° 228 
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