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Featured Application: This work can be applied to the problem of autonomous search and rescue
with a swarm of the drones.

Abstract: This paper proposes a novel search method for a swarm of quadcopter drones. In the
proposed method, inspired by the phenomena of swarms in nature, drones effectively look for
the search target by investigating the evidence from the surroundings and communicating with
each other. The position update mechanism is implemented using the particle swarm optimization
algorithm as the swarm intelligence (a well-known swarm-based optimization algorithm), as well
as a dynamic model for the drones to take the real-world environment into account. In addition,
the mechanism is processed in real-time along with the movements of the drones. The effectiveness
of the proposed method was verified through repeated test simulations, including a benchmark
function optimization and air pollutant search problems. The results show that the proposed method
is highly practical, accurate, and robust.

Keywords: unmanned aerial vehicle; swarm intelligence; particle swarm optimization; search algorithm

1. Introduction

The demand for autonomous aerial vehicles, commonly called drones, has largely increased in
recent years due to their compactness and mobility, which enable them to carry out various tasks
that are economically inefficient or potentially dangerous to humans. For example, it is not easy for
humans to explore rugged mountain terrains, flooded areas, or air pollution regions without drones.
Consequently, they have been extensively employed in various search applications, such as industrial
building inspections [1,2], search and rescue operations [3–5], and post-disaster area exploration [6–8].

The search applications have one important factor in common: search efficiency. Previous research
has focused on improving the stand-alone performance of each drone, such as localization accuracy,
communication robustness, and various sensors [9]. However, it is relatively expensive to employ a
group of such high-end drones. Additionally, it takes a long time for a drone or a few drones to cover
a broad search space. Thus, previous studies have tried to decompose the search space [10] or control
a number of low-cost drones into several formation patterns [11,12].

Despite the previous research successfully demonstrating the feasibility of search-by-drones,
there is still room for improvement. Most of all, considering time and cost, it is not the best strategy to
thoroughly scan every available location in the search space. In other words, it is more effective for
drones to conduct a brief survey first and successively progress to better locations by investigating the
evidence of the surroundings and communicating with each other. We can easily find examples of
this kind of strategy from nature, such as ants, bees, fish, birds, and so on. They show cooperative
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and intelligent behaviors to achieve complex goals, which is called swarm intelligence [13–16]. In fact,
in the area of multi-robot path planning in 2-D space, there have been several studies of approaches
based on swarm intelligence [17,18]. However, there is a crucial difference between mobile robots
in 2-D space and drones in 3-D space. Whereas mobile robots can stand stably without any posture
control and only need to be controlled by position feedback, the postures and positions of drones
should be carefully controlled based on a certain dynamic model in order to hover stably.

Therefore, in this paper, a novel swarm search method for quadcopter drones is proposed by
integrating the position update rule of the swarm intelligence algorithm and the motion controller
using a dynamic model of the drones. In the proposed method, a swarm of more than 10 drones was
employed for a search mission. The swarm was controlled by a position update mechanism which
included the swarm intelligence inspired from a well-known swarm-based optimization algorithm.
In addition, a dynamic model for the drones was applied to the mechanism since real-world drones,
in contrast to the individuals in the optimization algorithm, have physical limitations such as maximum
speed and maximum acceleration. Moreover, the overall mechanism was processed in real-time along
with the movements of the drones.

To verify the effectiveness of the proposed method, the overall procedure was implemented as
a simulation and repeatedly tested. As the test problems, Rosenbrock function optimization and air
pollutant search problems were employed. The Rosenbrock function is a well-known benchmark
function for numerical optimization. The air pollutant search problem was designed by modeling
atmospheric dispersion though a Gaussian air pollutant dispersion equation. Additionally, the results
of the proposed method were compared to those of a conventional grid search method.

This paper is organized as follows. Section 2 explains the proposed methodology in detail.
In Section 3, the experimental results are demonstrated. Finally, Section 4 presents conclusions.

2. The Proposed Swarm Search Method

The main contribution of this paper is that a novel drone position update mechanism for the
swarm search was designed to be specific enough to consider real-time control and the real-world
environment. There are two important issues in the mechanism: the swarm intelligence and the
dynamic model of the drones. The swarm intelligence calculates the next destinations of the drones at
each iteration based on the particle swarm optimization algorithm, and the dynamic model determines
how the drones approach the next destination based on the real-world environment. Note that,
for simplicity, it is assumed that the drones are fully sharing their information, are able to predict
the collisions between them, and can stop before the collision on their own. In other words, in the
mechanism, the position commands of two or more drones can be the same at the same control period.

In this section, the drone position update mechanism is explained in detail, and then the entire
search process is described step-by-step.

2.1. The Drone Position Update Mechanism

2.1.1. The Swarm Intelligence for the Mechanism

At each iteration of the proposed method, the update mechanism should calculate the next
positions of the drones by obtaining the information of the current positions and sharing them
with each other (i.e., swarm intelligence). To implement the swarm intelligence, as a backbone,
a particle swarm optimization (PSO) scheme is employed [19,20]. In the PSO scheme, each drone
decides where to go by combining the information of its previous displacement, the personal best
position it has ever experienced, and the global best position the entire swarm has ever found. If we
denote the displacement, the personal best position, and the global best position at iteration t as vt, pxt,
and gxt, respectively, then the next displacement of a drone is determined as:

vt+1 = w · vt + c · [φ1(
pxt − xt) + φ2(

gxt − xt)], (1)
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where w = 0.7 and c = 0.6 are constants and φ1 and φ2 are random real values uniformly distributed in
[0, 1]. Note that the random values are newly generated at each iteration for each particle. Obviously,
the next destination x∗t+1 is calculated as:

x∗t+1 = xt + vt+1. (2)

However, drones in the real world cannot teleport to their destinations. Instead, they gradually
approach their destinations following control commands based on their dynamic model. Therefore,
the next position xn+1 at the (n + 1)-th control period is determined as:

xt,n+1 = xt,n + ṽ(x∗t+1), (3)

where ṽ represents the control output according to the input. This control loop is repeated until
xt,n = x∗t+1, and then t increases by 1.

2.1.2. The Dynamic Model of the Drones for the Mechanism

The update mechanism should reflect the way in which the drones approach the next destination
based on the real-world environment (i.e., the dynamic model). To establish the dynamic model, first,
the kinematic model of a drone is necessary, as shown in Figure 1.

radius r
mass M

length lmass m
F1

F2

F3

F4

roll ϕ

pitch θ

yaw ψ

Figure 1. The physical model of a quadcopter drone.

From this kinematic model, the rotation matrix R for mapping the vector from the body frame to
the inertial frame can be derived as

R =

 cφcψ − cθsφsψ −cψsφ − cφcθsψ sθsψ

cθcψsφ + cφsψ cφcθcψ − sφsψ −cψsθ

sφsθ cφsθ cθ

 , (4)

where cφ and sφ represent cos(φ) and sin(φ), respectively. Then, from Newton’s equation, the linear
motion can be derived as

mẍ =

 0
0
−mg

+ RTB + FD, (5)

where x is the position of the drone, g is the acceleration due to gravity, FD is the drag force, and TB is
the thrust vector in the body frame. For simplicity, in this paper, the drag force is regarded as 0, and TB
is calculated based on [21]. Additionally, from Euler’s equation, the angular motion can be derived as

Iẇ = τ − w× (Iw), (6)
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where w is the angular velocity vector, I is the inertia matrix, and τ is a vector of external torques.
In this paper, I and τ are calculated based on [22,23]. Finally, based on these motion equations, the final
state space equations for the dynamic model can be derived as

ẋ1 = x2,

ẋ2 =

 0
0
−g

+
RTB
m

+
FD
m

,

ẋ3 =

 1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ


−1

· x4,

ẋ4 = I−1 · [τ − x3 × (Ix3)],

(7)

where x1 is the velocity vector, x2 is the acceleration vector, x3 is the angular velocity vector, and x4 is
the angular acceleration vector. The model parameters used in this paper are listed in Table 1.

Table 1. Model parameters.

Parameters Values

Environment Gravity acceleration g 9.81
Draft coefficient b 0.02

Kinematic model

M 1.2
m 0.1
l 0.3
r 0.1

Controller

Linear proportional (P) gain [300, 300, 7000]
Linear integral (I) gain [0.04, 0.04, 4.50]

Linear derivative (D) gain [450, 450, 5000]
Angular P gain [22,000, 22,000, 1500]
Angular I gain [0.00, 0.00, 1.20]
Angular D gain [12,000, 12,000, 0.00]

As shown in Figure 2, the control system of the drone can be designed based on a well-known
proportional-integral-derivative (PID) control scheme [24]. Note that the control system is not for
the low-level motor actuation control, but for the high-level control of the commands transmitted to
each drone. In addition, in simulation, the sensor system and the environment can be replaced by the
dynamic model derived above.

Linear
PID+

xt+1 + vn+1 Scaling
Matrix

θn+1 ++ Angular
PID

Actuator

θn+1
Environ-
mentSensors

xn θn

- -

* ~ *

~

θn+1

Figure 2. The control system of a quadcopter drone.

First, the position error at the n-th control period is calculated. Then, the linear PID system
yields the desired displacement ṽn+1, and the next destination posture θ∗n+1 can be calculated by
multiplying a scaling matrix, since it is assumed that the drone is in a piecewise hovering state.
Lastly, the angular PID system yields the posture displacement vector θ̃n+1, and the actuation system
executes the corresponding throttle commands for the motors. As a result, the drone can gradually
approach the next destination x∗t+1.



Appl. Sci. 2018, 8, 1169 5 of 12

Algorithm 1 Swarm search.

S: The search space of the problem
S: The swarm of the drones
ND: The number of drones in S
dk: The k-th drone
xk

t : The position of dk at iteration t
vk

t : The displacement of dk at iteration t
f (xk

t ): The objective function value of xk
t

gxt: The global best position of S at iteration t
pxk

t : The personal best position of dk at iteration t
xk

t,n: The position of dk in the n-th control period at iteration t
c: The command output of the controller

(1) Initialize S.
for k = 1, 2, . . . , ND do

xk
0 = random vector ∈ S

vk
0 = 0

Evaluate f (xk
0)

pxk
0 = xk

0
Deploy dk at xk

0
if f (pxk

0) is better than f (gx0) then
gx0 = pxk

0
end if

end for
t = 0

(2) Update S.
for k = 1, 2, . . . , ND do

vk
t+1 = w · vk

t + c · [φ1(
pxk

t − xk
t ) + φ2(

gxt − xk
t )]

x∗kt+1 = xk
t + vk

t+1
xk

t,0 = xk
t

n = 0
while xk

t,n 6= x∗kt+1 or a collision is not predicted do
c = Controller(xk

t,n, x∗kt+1)
Actuate dk with c
(n = n + 1)
Evaluate f(xk

t,n)

if f (xk
t,n) is better than f (pxk

t ) then
pxk

t = xk
t,n

end if
end while
if f (pxk

t ) is better than f (gxt) then
gxt = pxk

t
end if

end for
(t = t + 1)

(3) Repeat (2) until a termination condition is met.
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2.2. The Overall Procedure of the Swarm Search

The overall procedure of the proposed swarm search is summarized in Algorithm 1, and each
step of the algorithm is explained in the following.

First, the swarm of the drones is initialized. For each drone in the swarm, the position is randomly
initialized in the search space S, and the displacement is initially set to a zero vector. The objective
functions are initially calculated for each drone, and the initial personal best position of each drone pxk

0
is set as the position of itself. Additionally, the initial global best position of the swarm gx0 is set as px1

0.
Following this, the swarm of the drones is updated. For each drone in the swarm, the position

is updated through the drone position update mechanism, as explained above. During the update
process, the personal best positions and the global best position are also updated, and this update
process is repeated until a termination condition is met. For example, a termination condition can be
defined as a maximum number of iterations.

3. Experiment

In the experiment, first, the proposed swarm search method and, as a comparison,
the conventional grid search method were implemented. Then, for each test problem, the objective
function was designed and applied to both methods. Lastly, 100 simulations were run for each problem
and method. Note that in the conventional method, it was assumed that the drones maintained a
parallel formation and scanned every location of the search space unidirectionally along the axis in
the order of x-, y-, and then z-axes. In addition, in the conventional method, since its position update
process is independent of the objective function of the problem, the drones began the search mission at
one corner of the search space and the goal was randomly set at each trial. To balance the different
conditions of the two methods, in the comparison, one iteration for a drone was defined as one change
of the searching direction instead of one visit to a point. Thus, for example, visiting all the grid points
from (−50, 0, 0) to (50, 0, 0) along the x-axis direction was regarded as one iteration in the conventional
method.

In this section, the detailed information about the environment settings is demonstrated, and then
the experimental results and their analysis are provided.

3.1. Environment Settings

The proposed method was implemented as a software written in Python (Python software
foundation, version 3.5.2) language with Numpy and Matplotlib libraries. The software was run on
Linux OS (version 16.04) with Intel i7-6900K CPU, 128 GB DDR4 RAM, and NVIDIA Titan X Pascal
GPU. The source code of the simulation engine was based on [25]. The update period of the drone
dynamics was set to 0.01 s and the control period was set to 0.015 s.

The search mission based on the Rosenbrock function was adopted as Test Problem 1. In this
problem, the drones obtained the sensor data at their positions virtually according to the mathematical
model which was based on the Rosenbrock function, and the final goal was the position at which the
function value was globally minimum. The Rosenbrock function is a well-known benchmark function
for numerical optimization because it is hard to find the global minimum in its search space [26,27].
The following is the equation of the sensor data model:

f (x) =
N−1

∑
i=1

[100(
xi+1

25
− xi

2

252 )
2 + (1− xi

25
)2], (8)

where x = [x1, ..., xN ] ∈ [−50.00, 50.00). In this problem, N was set to 3 since the real world is
three-dimensional, and the number of drones was set to 25. The corresponding global minimum could
be found at the position of (25.00, 25.00, 25.00).

For Test Problem 2, an air pollutant search problem was employed. The mission of this problem
was to find the origin of the air pollutant at which the pollution concentration was globally maximum.
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The air pollutant search problem was designed by modeling atmospheric dispersion through a
Gaussian air pollutant dispersion equation [28,29]. Figure 3 shows the visualization of the Gaussian
air pollutant dispersion on x- and z-axes, which was originally from [30].

from the plume source is calculated.  The calculated 
plume rise is added to the height of the plume's 
source point to obtain the so-called "effective stack 
height".  Second, the ground-level pollutant 
concentration beneath the plume at the given 
downwind distance is predicted using the Gaussian 
dispersion equation. 
    The Gaussian dispersion equation can be written 
as: 
 
 
 
 
                                                                         (1)
    
 
which was developed by [11], where C is the 
concentration, Q is the emission rate of the pollutant 
from the source, u is the wind speed which defines 
the direction x.  y is the horizontal distance 
perpendicular to the wind direction, z is the vertical 
direction, H is the effective height of the plume 
(considering the additional height ∆h to which the 
hot gases rise above the physical height of the source 
h); i.e.,  H = h + ∆h, and σy & σz are the parameters 
of the normal distributions in y and z directions, 
usually called the dispersion coefficients in y and z 
directions respectively.  A definition sketch of the 
plume dispersion is shown in figure (1). 
 
 
 
 
  
 
 
 
 
 
 
 
 
    In this equation, the ground is usually assumed to 
be a perfect reflector and its presence is represented 
by a mirror image source placed below ground.  For 
a receptor at the ground surface, or a source located 
at the ground (z=0), the previous equation reduces to: 
                                                                           
                                                                          (2) 
 
 
    In analyzing the Gaussian plume model, the 
following assumptions are usually made:  
1) Continuous emission and negligible diffusion in 

the direction of travel. 

2) The material diffused is a stable gas or aerosol, 
with a negligible deposition rate. 

3) Mass is conserved through reflection at surfaces. 
4) Background pollution is negligible. 
5) Steady-state conditions. 
6) Constant wind speed and direction with time and 

elevation. 
7) Negligible wind shear effect on horizontal 

diffusion.  
8) The dispersion parameters are assumed to be 

functions of x (and hence u alone). 
9) The terrain is relatively flat, open country.  
    Plume rise ∆h plays an important role in 
determining ground-level concentrations for real 
sources.   The plume rise schemes of Briggs [18] are 
recommended by EPA, and they are the commonly 
used schemes.  These schemes express the final rise 
height of the buoyant release as a function of, among 
other parameters, the buoyancy flux, the mean wind 
speed at the stack top, and the friction velocity. 
    Gaussian plume models are applicable for 
downwind distance, x>100 m, because near the 
source concentration approaches infinity [19].  
Accordingly, many researchers imposed a lower limit 
on σy(x) and σz(x), or an upper limit on the near-
source concentration. 
   The dispersion coefficients, σ, define the spread of 
the plume.  As with the normal distribution, 67% of 
the pollutant is assumed to be within ±σ of the 
centerline of the plume. Thus a plume may be 
described as being approximately four to six σ wide. 
The value of σ is determined by the magnitude of the 
turbulence in the atmosphere.  The larger eddies, and 
larger values of σ, will be observed during periods 
when the atmosphere is unstable. The smaller eddies, 
and smaller values of σ, will be observed when the 
atmosphere is stable. 
    Measurements of σ have been made under a 
variety of atmospheric conditions. The measurements 
of σ used in virtually all the models are those 
published by Turner [20] (called the "Pasquill-
Gifford coefficients") from data taken in open, rural 
surroundings.  Because of their origin they are 
appropriate for dispersion estimates in rural settings 
but less so for urban areas. The greater surface 
roughness and greater release of heat at the surface 
means that atmospheric conditions in urban areas are 
seldom as stable as in rural areas.  
   The measurements of the Pasquill-Gifford 
coefficients were made over periods of 10 to 20 
minutes and are strictly applicable only to such short 
time periods.. In order to calculate long-term (e.g., 
annual) average concentrations, it is necessary to take 
into account the wind speed, direction, and 
atmospheric stability over the entire period.  
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Figure 3. The visualization of the Gaussian air pollutant dispersion on x- and z-axes.

The Gaussian air pollutant dispersion equation can be written as:

C(x, y, z) =
Q
u
· f

σy(x)
√

2π
· g1 + g2

σz(x)
√

2π

=
Q

2π · σy(x) · σz(x) · u · e
− y2

2σy(x)2 · [e−
(z−H)2

2σz(x)2 + e
− (z+H)2

2σz(x)2 ], if x ≥ 0,

C(x, y, z) = 0, otherwise,

(9)

where:

x, y ∈ [−50.00, 50.00), z ∈ [0.00, 50.00)

f = crosswind dispersion = e
− y2

2σ2
y

g1 = vertical dispersion with no reflections = e
− (z−H)2

2σ2
z

g2 = vertical dispersion for reflection from the ground = e
− (z+H)2

2σ2
z

C = concentration of emissions, in g/m3

Q = source pollutant emission rate, in g/s

u = horizontal wind velocity along the plume centerline, in m/s

H = height of emission plume centerline above ground level, in m

σz = vertical standard deviation of the emission distribution, in m

σy = horizontal standard deviation of the emission distribution, in m.

From [29], σy(x) and σz(x) can be determined as:

σy(x) = e[Iy+Jy ·log(x+ε)+Ky ·log(x+ε)2],

σz(x) = e[Iz+Jz ·log(x+ε)+Kz ·log(x+ε)2],
(10)

where ε was set to 10−10 in this problem.
In this problem, the number of drones was set to 15. In addition, Q, u, and H were set to 10, 3,

and 10, respectively. It was assumed that the atmosphere was in a neutral state, and, according to the
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classification of stability class proposed in [31,32], Iy, Jy, Ky, Iz, Jz, and Kz were set to−2.55, 1.04, −0.01,
−3.19, 1.11, and−0.03, respectively. Based on these settings, the corresponding global maximum could
be found at the position of (0.00, 0.00, 10.00).

3.2. Experimental Results

The results demonstrate the effectiveness of the proposed method through the following figures
describing the trajectories of the drones with the proposed method, as well as the tables representing
the statistical comparisons between the proposed and conventional methods.

Figure 4 shows the simulation of Test Problem 1 through the proposed method at iterations 1,
10, 50, and 1500. As shown in the figure, the drones successfully found the target position at which
the Rosenbrock function had the minimum value within 150 iterations. Note that the drones were
unaware of the function as well as its derivatives.
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Figure 4. Screenshots of the simulation of Test Problem 1 by the proposed method.

Figure 5 shows the simulation of Test Problem 2 through the proposed method at iterations 1,
10, 20, and 30. As shown in the figure, the drones successfully found the target position at which
the pollutant was being emitting within 30 iterations. Note that the drones had no knowledge of the
dispersion model, and could simply measure the air pollution concentrations at their positions.
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Figure 5. Screenshots of the simulation of Test Problem 2 by the proposed method.

The full simulation videos for Test Problems 1 and 2 are provided through the YouTube links
“https://youtu.be/fIUmsO5B4CA” and “https://youtu.be/cdlCZQeN-Bo”, respectively. The videos
show that the drones could find the global minimum or maximum under non-convex or near
non-convex environments. The videos also show that the drones could be controlled stably in real-time,
and the dynamic model was well-applied considering the real-world environment.

Moreover, Table 2 shows the averages (AVGs) and standard deviations (STDs) of the number
of iterations n for the proposed and conventional methods to satisfy the corresponding termination
condition (TC) about error distance derr. Since the search space was based on a real-world environment,
the unit of distance was meters. If we consider the size of commonly-used drones (approximately
1.0 m), the minimum grid size for the conventional grid search should be greater than 1.0 m. Based on
this condition, we can approve that the drone is close enough to the goal if derr is less than 2.0, which is
double the minimum grid size. Additionally, the AVGs and STDs of the final derr for the proposed and
conventional methods with the limited number of iterations nlimit are shown in Table 3. Smaller values
of both n and derr are desirable, where n and derr imply the speed and the accuracy of the methods,
respectively. As displayed in the tables, the proposed method could find the target more quickly and
more accurately and robustly than the conventional method. Note that the proposed method showed
a more powerful result in the real-world problem (e.g., Test Problem 2) than the virtual problem
(e.g., Test Problem 1).

https://youtu.be/fIUmsO5B4CA
https://youtu.be/cdlCZQeN-Bo
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Table 2. The averages (AVGs) and standard deviations (STDs) of the number of iterations n for the
methods to satisfy the termination condition (TC).

Problem
Proposed Conventional TC

AVG(n) STD(n) AVG(n) STD(n)

1 141.72 37.73 409.68 244.95 derr < 2.0
2 27.41 7.62 366.66 211.01 derr < 2.0

Table 3. The AVGs and STDs of the error distance (derr) for the methods with the limited number of
iterations (nlimit).

Problem
Proposed Conventional nlimit

AVG(derr) STD(derr) AVG(derr) STD(derr)

1 0.88 0.56 58.79 51.82 200
2 0.04 0.05 64.14 39.10 50

4. Conclusions

In this paper, a novel search method for a swarm of quadcopter drones was proposed. In the
proposed method, inspired by the phenomena of swarms in nature, drones could effectively look for
better locations by investigating the evidence from the surroundings and communicating with each
other. The position update mechanism was implemented based on the particle swarm optimization
algorithm (a well-known swarm-based optimization algorithm), as well as the dynamic model of the
drones, which was used to take the real-world environment into account. In addition, the mechanism
could be processed in real-time along with the movements of the drones. The experimental results
showed that through the proposed method, the drones could find the target more quickly and
accurately than by the conventional algorithm. Most importantly, the proposed method has high
practical potential, considering that the drones were simulated in real-time and the dynamic model
sufficiently reflected the real-world environment.
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