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Abstract: This paper proposes “An Integrated Self-diagnosis System (ISS) for an Autonomous Vehicle
based on an Internet of Things (IoT) Gateway and Deep Learning” that collects information from
the sensors of an autonomous vehicle, diagnoses itself, and the influence between its parts by using
Deep Learning and informs the driver of the result. The ISS consists of three modules. The first
In-Vehicle Gateway Module (In-VGM) collects the data from the in-vehicle sensors, consisting of
media data like a black box, driving radar, and the control messages of the vehicle, and transfers each
of the data collected through each Controller Area Network (CAN), FlexRay, and Media Oriented
Systems Transport (MOST) protocols to the on-board diagnostics (OBD) or the actuators. The data
collected from the in-vehicle sensors is transferred to the CAN or FlexRay protocol and the media data
collected while driving is transferred to the MOST protocol. Various types of messages transferred are
transformed into a destination protocol message type. The second Optimized Deep Learning Module
(ODLM) creates the Training Dataset on the basis of the data collected from the in-vehicle sensors
and reasons the risk of the vehicle parts and consumables and the risk of the other parts influenced
by a defective part. It diagnoses the vehicle’s total condition risk. The third Data Processing Module
(DPM) is based on Edge Computing and has an Edge Computing based Self-diagnosis Service (ECSS)
to improve the self-diagnosis speed and reduce the system overhead, while a V2X based Accident
Notification Service (VANS) informs the adjacent vehicles and infrastructures of the self-diagnosis
result analyzed by the OBD. This paper improves upon the simultaneous message transmission
efficiency through the In-VGM by 15.25% and diminishes the learning error rate of a Neural Network
algorithm through the ODLM by about 5.5%. Therefore, in addition, by transferring the self-diagnosis
information and by managing the time to replace the car parts of an autonomous driving vehicle
safely, this reduces loss of life and overall cost.

Keywords: autonomous vehicle; Integrated Self-diagnosis System; In-Vehicle Gateway; Optimized
Deep Learning Module; Edge Computing

1. Introduction

The self-driving, autonomous vehicle has been getting lots of attention, due to significant
developmental efforts and dramatic progress made by companies such as Google. While general use
of autonomous vehicles for widespread use on public roads is likely years away, these vehicles are
already being employed in “constrained” applications, such as open-pit mines and farming. Among
the many technologies that make autonomous vehicles possible is a combination of sensors and
actuators, sophisticated algorithms, and powerful processors to execute software [1]. With Tesla’s
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recent announcement of a semi-autonomous vehicle and Google’s strides in testing self-driving cars,
we are beginning to see the first signs of a driverless future [2].

A vehicle with autonomous driving capability may be configured to receive signal inputs from
the sensors that monitor the vehicle’s operations, surrounding objects, and road conditions in order
to identify safety hazards and generate countermeasures to deal with various driving situations.
The autonomous vehicle may also collect and record data from various information sources such
as the cellular network, satellites, as well as user inputs such as a user’s identification, destinations
and routes of navigation requests, and vehicle operation preferences. A vehicle with autonomous
driving capability may further be adapted to detect various potential hazardous conditions and issue
warnings to the user. The potential hazardous condition may include, for example, the vehicle’s
approaching a sharp curve, nearby pedestrians, or icy roads, etc. Such vehicle may also be configured
with mechanisms that take active steps to avoid these hazards; e.g., slowing down the vehicle or
applying the brake, etc. [3].

Cars have been diagnosing their own problems for decades, and to an extent, fixing themselves.
Diagnosing and repairing faults is easy—dependent on the fault—but as software begins to drive the
industry, surely it must be a question of big data?

Without a doubt, the cars of the future will be able to diagnose more faults and conditions than ever
before. That particular feature of car ownership may be dramatically influenced by the Internet of Things,
and software controlled hardware could possibly outlive any useful life. That doesn’t make vehicles
self-repairing in the truest sense of the common meaning, but it does mean a huge step towards this goal.

This paper proposes “An Integrated Self-diagnosis System (ISS) for an Autonomous Vehicle based
on an IoT Gateway and Deep Learning” which collects information from the sensors of an autonomous
vehicle, diagnoses itself and the influence between parts by using Deep Learning and informs drivers
of the result. The ISS consists of 3 modules.

The first In-Vehicle Gateway Module(In-VGM) collects the data from the in-vehicle sensors,
the media data like a black box and a radar in driving, and the control message of a vehicle and
transfers each data collected through each controller area network (CAN), FlexRay and Media Oriented
Systems Transport (MOST) protocol to on-board diagnostics (OBD) or actuators. The data collected
from the in-vehicle sensors is transferred to the CAN or FlexRay protocol and the media data in driving
is transferred to the MOST protocol. Various types of messages transferred like this are transformed
into a destination protocol message type. The second Optimized Deep Learning Module (ODLM)
creates the Training Dataset on the basis of the data collected from the in-vehicle sensors and reasons
the risk of the vehicle parts and consumables and the risk of the other parts influenced by a defective
part. It diagnoses the risk of a vehicle’s total condition. The third Data Processing Module (DPM),
based on Edge Computing, has an Edge Computing based Self-diagnosis Service (ECSS) to improve the
self-diagnosis speed and reduce the system overhead, while a V2X based Accident Notification Service
(VANS) informs adjacent vehicles and infrastructures of the self-diagnosis result analyzed by the OBD.

2. Related Works

2.1. In-Vehicle Internet of Things (IoT) Gateway

The CAN communication, which is the standard for most vehicles today, cannot process a large
number of sensor data in real time [4]. Therefore, recent research has deployed FlexRay [5], which is a
high speed protocol, or MOST [6], which is a high speed optical communication network of multimedia
devices, to solve the sensor data problem. Figure 1a shows how these protocols are used with the CAN
protocol. Other research improves upon the CAN protocol. Figure 1b shows that the Gateway uses the
improved CAN protocol.

For example, a fast gateway [7] using FlexRay and CAN was proposed using FlexRay and CAN.
A CAN controller and a FlexRay controller are designed with software (SW) and hardware (HW),
respectively. The study did not consider the MOST protocol, but it reduced the run time by up to 94.7%.
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A FlexRay-MOST gateway [8] using static segments and control messages was designed.
The proposed gateway system is designed with Verilog hardware description language (HDL) and
implemented using system-on-a-chip (SoC) kits. A reliable gateway [9] for communication between
the local interconnect network (LIN), CAN, FlexRay protocols is presented. The main function of this
gateway is translation.

Figure 1. Controller Area Network (CAN) protocol. (a) CAN protocol; (b) Improved CAN protocol.

It proposes a reliable gateway based on OSEK OS and OSEK NM for In-Vehicle Networks (IVNs).
However, this gateway does not include the fault-tolerant mechanism. It will improve the reliability
and safety of the gateway by adding the fault-tolerant mechanism that is called OSEK FTCOM.

A gateway framework for IVNs is proposed based on CAN, FlexRay, and Ethernet [10].
The gateway framework provides state-of-the-art functionalities that include parallel reprogramming,
diagnostic routing, Network Management (NM), dynamic routing update, multiple routing
configuration, and security. Ethernet can provide the required bandwidth, and it has several
advantages for use in IVNs, including low cost, high bandwidth, and mature technology.

Combined with the idea of mobile cloud services, a new network architecture and data
transmission method is proposed [11]. The proposed method can obtain a shorter transmission
delay and ensure a higher transmission success rate. The timing impact introduced by various
CAN/Ethernet multiplexing strategies at the gateways is determined [12]. They present a formal
analysis method to derive upper bounds on end-to-end latencies for complex multiplexing strategies,
which is the key for the design of safety-critical real-time systems.

A FlexRay-CAN gateway using a node-mapping method to overcome the message-mapping-
based FlexRay-CAN gateway for a vehicle is presented [13]. A synchronization mechanism for
FlexRay and Ethernet Audio Video Bridging (AVB) network that guarantees a high quality-of-service
is proposed [14]. The synchronization mechanism provides timing guarantees for the FlexRay network
that is similar to those of the Ethernet AVB network.

Ju proposes a novel gateway discovery algorithm for communication between VANETs and
3G, providing an efficient and adaptive Location-Aided and Prompt Gateway Discovery (LAPGD)
mechanism [15]. Aljeri proposes a reliable QoS-aware and location aided gateway discovery protocol
for vehicular networks by the name of fault tolerant location-based gateway advertisement and
discovery. Their proposed protocol succeeded in balancing the load between gateways with the
presence of gateway and road component failures [16].

A reliable gateway for in-vehicle networks is described. Such networks include local interconnect
networks, controller area networks, and FlexRay. It is proposed a reliable gateway based on the
OSEK/VDX components for in-vehicle networks [17].

The various actual arriving orders of gateway messages are examined in detail and then an
explorative Worst-Case Response Time (WCRT) computation method is proposed. It is proved that
the obtained WCRT results are safe WCRT bounds. The method proposed by this paper reduced
WCRT by 24% [4]. A gateway system for a mix of CAN and controller area network flexible data-rate
(CANFD) networks using a valid routing method is proposed. This method applies to several cases
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for validation purposes. When CANFD messages are routed, the memory buffer in the ring structure
enables sequential routing without data loss [18].

Seo proposes a Universal Plug And Play (UPnP)-CAN gateway system using UPnP middleware
for interoperability between external smart devices and an in-vehicle network. The proposed gateway
consists of a UPnP communication device, a CAN communication device, and a device translator
layer. The CAN communication device transmits and receives real-time vehicle data between the real
vehicular simulator and external devices through the UPnP. The device translator layer configures a
message frame for enabling seamless data input and output between the CAN and UPnP protocols [19].

This paper proposes a gateway that supports the MOST, FlexRay, and CAN protocols. To improve
compatibility between protocols, different types of data are converted into the same message format.
It supports reliable real-time communication and proposes an internal gateway scheduler to solve the
data transmission delay problem.

2.2. Fault Diagnosis of a Vehicle

Currently, most self-diagnostics for vehicles use non-OEM or OEM-based OBD methods [20–22].
However, they do not use any neural network model. In case of a neural network used for a vehicle,
studies are underway on electric vehicles and connected vehicles. Besides, there is active research in
various fields. Some of these studies diagnose the failure of a particular system in a vehicle through a
deep-learning method. So we briefly describe those studies. The following are examples about studies
that use neural network in vehicles.

The sensor abrupt-faults of Hybrid Electric Vehicles (HEV) control system are focused. A novel
method for diagnosing sensor abrupt-faults is proposed based on the Wavelet Packet Neural Network
(WPNN). It puts the feature data that have been normalized as the input vector of the WPNN and
trains the neural network. Then the features of a fault signal can be effectively identified [23].

A new data compression approach is provided and validated on a method based on Neural
Network (NN) to detect both failure type and degree in a driving system. A brief method was
introduced to preprocess training data by analyzing the linear relationship between features and
patterns to be classified. This indicates that the proposed method used to preprocess data can
significantly improve the efficiency and precision in categorizing all the fault samples, especially
for the fault degrees considered in this study [24].

An Artificial Neural Network (ANN)-based fault diagnosis method after extraction of a new
pattern is proposed. ANN is a neural network that sets various features of the converter as parameters.
The new pattern of an AC-DC converter failure in view of SHEV application has been used as the
training data of the ANN [25].

The diagnosis method based on a wavelet and neural network is proposed. This method does
not need to collect a large number of data, but simplifies the diagnostic process while ensuring the
accuracy of the diagnostic result. Chuang focuses on the Self-Organizing feature Map (SOM) neural
network to diagnose the stator winding faults in the Permanent Magnet Synchronous Motor (PMSM).
In order to train and work easily about the network, the fault feature data was extracted from the
current sample by using the Wavelet Transform (see Figure 2). This method uses only stator currents
as raw data; the energy of high frequency in the current is extracted based on the wavelet transform
and then the energy is used as the fault feature after the normalizing processing [26].

Yurii examines an approach to increasing the safety of a vehicle’s design with the help of ANNs
integrated in the vehicle’s self-diagnostic system. The method that is proposed to improve the
safety of the vehicle’s structural design based on artificial neural networks that are integrated in the
self-diagnostic system, and these help to ensure a fast response due to the parallel processing of the
flows of diagnostic information from the different nodes, assembly units, and systems, as well as
increasing the credibility of the diagnostic state of the electronic systems. This also includes processing
of individual information about the previous states of the systems of some specific vehicles. However,
this suggestion is theoretical and there is no experimental data [27].
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In order to avoid the interference and coupling of the control channels between Active Front
Steering (AFS) and Active Suspension Subsystems (ASS), Chunyan presents a composite decoupling
control method, which consists of a neural network inverse system and a robust controller. The neural
network inverse system is composed of a static neural network with several integrators and state
feedback of the original chassis system to approach the inverse system of the nonlinear systems [28].

Figure 2. Process of diagnosis health and stator winding fault in Permanent Magnet Synchronous
Motor (PMSM).

Chu proposes a novel vehicle detection scheme based on multi-task deep Convolutional Neural
Networks (CNNs) and Region-Of-Interest (RoI) voting. In the design of the CNN architecture, this
study enriches the supervised information with subcategory, region overlap, bounding-box regression,
and a category for each training RoI as a multi-task learning framework [29].

Liu proposes a method, which integrates deep neural networks with balanced sampling to
address the challenges of classifying imbalanced data acquired from visual traffic surveillance sensors.
The proposed method is able to enhance the mean precision of all the categories, in the condition of
high overall accuracy [30].

A Lane Departure Prediction (LDP) method based on the Monte Carlo simulation and a Deep
Fourier Neural Network (DFNN) is proposed to make improvements on the vision-based Lane
Departure Warning Systems (LDWS). The proposed technique enhances the system’s functions of the
over-speed warning on a curved road and the over-steer warning on a low-adhesion road [31].

A probabilistic model named the Collision Prediction model based on a GA-optimized Neural
Network (CPGNN) for decision-making in the rear-end collision avoidance system is proposed [32].

Wang presents a novel method to detect vehicles using a far infrared automotive sensor. Firstly,
vehicle candidates are generated using a constant threshold from the infrared frame. Contours are
then generated by using a local adaptive threshold based on maximum distance, which decreases the
number of processing regions for classification and reduces the false positive rate. Finally, vehicle
candidates are verified using a Deep Belief Network (DBN) based classifier. This study is approximately
a 2.5% improvement on previously reported methods and the false detection rate is also the lowest
among them [33].

George uses the process of real-time intrusion detection on a robotic vehicle. This study shows
that by offloading this task to a remote server, we can utilize approaches of much greater complexity
and detection strength based on deep learning [34].

A novel framework is proposed for vehicle Make and Model Recognition (MMR) using local tiled
deep networks. A Local Tiled Convolutional Neural Network (LTCNN) is proposed to alter the weight
sharing scheme of a CNN with a local tiled structure. This architecture provides the translational,
rotational, and scale invariance as well as the locality. The experimental results show that their LTCNN
framework achieved a 98% accuracy rate in terms of vehicle MMR [35].

Liujuan investigates the possibility of exploiting deep neural features towards robust vehicle
detection and a vehicle detection framework, which combines Deep Convolutional Neural Network
(DCNN) based feature learning with an Exemplar-SVMs (E-SVMS) based, robust instance classifier to
achieve robust vehicle detection in satellite images. Their models show that the combination of both
schemes can benefit from each other to jointly improve the detection accuracy and effectiveness [36].
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Meng firstly puts forward a new memetic evolutionary algorithm, named the Monkey King
Evolutionary (MKE) Algorithm, for global optimization. It gives an application of this algorithm
to solve the least gasoline consumption optimization (find the least gasoline consumption path) for
vehicle navigation. They use this algorithm to find the least gasoline consumption path in vehicle
navigation, and have conducted experiments that show the proposed algorithm outperforms A*
algorithm and the Dijkstra algorithm as well [37].

Zhao proposes a CNN model of visual attention for image classification. Their systematic
experiments on a surveillance-nature dataset that contains images captured by surveillance cameras in
the front view demonstrate that the proposed model is more competitive than the large-scale CNN in
vehicle classification tasks [38].

A vehicle fault detection and diagnosis combining Auto Associative Neural Networks (AANN)
and several Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is proposed. This system is a process
history based method; only normal operating conditions data are needed for training the system.
The approach could tackle the problem of false alarms, due to the correlation among variables [39].

RBF neural network consensus-based distributed control scheme is proposed for non-holonomic
autonomous vehicles in a pre-defined formation along the specified reference trajectory [40].
Luo proposed a deep convolution neural network that is no less than nine layers. Compared with a
traditional vehicle recognition based on machine learning, which requires vehicle location and has
low accuracy of shortcomings, the proposed model using a deep convolution neural network displays
better performance [41].

Glowacz described an acoustic based fault diagnosis technique of the three-phase induction
motor. Four states of the three-phase induction motor were analyzed: healthy three-phase
induction motor, three-phase induction motor with broken rotor bar, three-phase induction
motor with two broken rotor bars, and a three-phase induction motor with the faulty ring of a
squirrel-cage. The proposed feature extraction methods: SMOFS-32-MULTIEXPANDED-2-GROUPS
and SMOFS-32-MULTIEXPANDED-1-GROUP were analyzed. The Nearest Neighbor classifier,
backpropagation neural network, and the modified classifier based on words coding were used
for recognition. It can prevent unexpected failure and improve the maintenance of electric motors.
Advantages of the acoustic based fault diagnosis technique are: non-invasive technique, low cost, and
instant measurement of the acoustic signals [42].

Praveenkumar reports on the feasibility of performing vibrational monitoring in real world
conditions; i.e., by running the vehicle on the road and performing the analysis. The data were
acquired for the various conditions of the gearbox and features were extracted from the time-domain
data and a decision tree was trained for the time-domain analysis. Fast Fourier Transform was
performed to obtain the frequency domain, which was divided into segments of equal size and the
area covered by the data in each segment was calculated for every segment to train the decision trees.
The classification efficiencies of the decision trees were obtained and in an attempt to improve the
classification of efficiencies, the time-domain, and a frequency-domain analysis was also performed on
the normalized time-domain data [43].

Ganovska focuses on the problem of the prediction of surface roughness in AWJ process and
contributes to the online monitoring of the hydro-abrasive material disintegration process and its
possible control. The main scope of study is to contribute to the usage of an artificial neural network as
a decisive part in surface roughness prediction and to outline a suitable online control mechanism [44].

Hu considers the usage of artificial intelligence, in particular, neural networks, to correct and
compensate for thermocouple errors. Proposed in this paper are the correction of the thermocouple
tolerance, the error due to the conversion characteristic drift under the influence of high operating
temperatures as well as the compensation of the error due to acquired thermoelectric inhomogeneity
of thermocouple legs. The corrections are carried out using individual mathematical models based on
neural networks. The neural network method for controlling a temperature field to compensate for the
error due to the acquired thermoelectric in-homogeneity is proposed [45].
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In this paper, input nodes and output nodes are generated flexibly by receiving signals from all
sensors. The input node is the number of sensors, and the output node is the number of parts to be
diagnosed. That is, all the parts that can be measured by the sensors can be diagnosed. The generated
neural network model is simulated using a Deep Belief Network (DBN) [46], Long Short Term Memory
(LSTM) [47], and the proposed ODLM, which are learning models used in real-time processing.

3. An Integrated Self-Diagnosis System for an Autonomous Vehicle Based on an IoT Gateway
and Deep Learning

3.1. Overview

Because an autonomous vehicle is one that can drive itself from a starting point to a predetermined
destination in “autopilot” mode using various in-vehicle technologies and sensors, including adaptive
cruise control, active steering (steer by wire), anti-lock braking system (brake by wire), GPS navigation
technology, lasers and radar, it is important to accurately inform drivers of a failure and the failure
causes about a vehicle while driving. If the failure and the failure causes are not transferred or
are delayed, it brings about fatal consequences. To tackle these problems, this paper proposes
“An Integrated Self-diagnosis System (ISS) for an Autonomous Vehicle based on an IoT Gateway
and Deep Learning”, which collects information from the sensors of an autonomous vehicle, diagnoses
itself by using Deep Learning, and informs the driver of the result.

The ISS consists of three modules as shown in Figure 3. The first In-VGM collects the data from
the in-vehicle sensors, the media data like a black box and a radar in driving, and the control message
of a vehicle, and transfers the data collected through each CAN, FlexRay, and MOST protocol to the
OBD or actuators. The data collected from the in-vehicle sensors is transferred to the CAN or FlexRay
protocol and the media data in driving is transferred to the MOST protocol. Various types of messages
transferred like this are transformed into a message type of a destination protocol. The second ODLM
creates the Training Dataset on the basis of the data collected from in-vehicle sensors and reasons the
risk of the vehicle parts and consumables and the risk of the other parts influenced by a defective part.
It diagnoses the risk of the vehicle’s total condition. The third DPM based on Edge Computing has
the SS to improve the self-diagnosis speed and reduce the system overhead and the VANS to inform
adjacent vehicles and infrastructures of the self-diagnosis result, which is analyzed by the OBD.

Figure 3. The Structure of an Integrated Self-diagnosis System (ISS).
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3.2. A Design of an In-Vehicle Gateway Module (In-VGM)

The data types collected from the in-vehicle sensors are diverse. The existing CAN protocol has
limits on transmission capacity and speed. However, even if the FlexRay and MOST protocol ensuring
high communication speed, the exact transmission time is used instead of the CAN, as they might also
have another problems such as cost and compatibility.

Therefore, this paper proposes the dedicated In-VGM which integrates the CAN, FlexRay,
and MOST protocol to solve compatibility and distributed data transmission and ensures reliable
and real time communication by transforming various types of messages into a message type of a
destination protocol.

The existing in-vehicle gateway protocols like CAN, FlexRay, and MOST have the
following problems.

• First, they do not use a multi-directional network.
• Second, they are inefficient and lack the overhead to transform messages in various protocols.
• Third, they have a transmission delay because they have no priority protocol in place to hierarchize

individual messages in transferring multiple messages.
• Fourth, they do not ensure compatibility because an autonomous vehicle collects unstructured

data like image, radar, and video.

However, the In-VGM proposed in this paper has the following functions to solve the
above problems.

• First, it allocates ID to a CAN bus interface which collects and transfers the general sensing data
of vehicles and to a FlexRay-CAN bus interface that collects and transfers the emergent sensing
data of vehicles and to the MOST bus interface, which collects and transfers media data. It has a
bus architecture connecting the interfaces.

• Second, it supports a multi-directional network because the mapping table with message
transformation information is used for it.

• Third, it provides a priority based transmission mode to increases the transmission efficiency of
messages based on an event and to reduce the transmission delay of important messages.

• Fourth, it uses an inner scheduler to reduce the transmission delay.

The In-VGM works as follows.

• First, the in-vehicle data is classified into general sensing data, emergent sensing data, control
system and sensor data, media data, and OBD data. The CAN, FlexRay, and MOST protocols are
used according to the importance and classification of data. The Bus architecture of the In-VGM
is shown in Figure 4.

• Second, the data collected and transferred in the sensor and control system is transferred to the
In-VGM through the CAN, FlexRay, and MOST protocols. At this time, the In-VGM allocates ID
according to a sending and receiving CAN, FlexRay, and MOST protocol. The kinds of IDs are
shown in Table 1.

• Third, the source and destination protocol ID of the transmission data are recorded in a mapping
table and transmission paths are set on the basis of the ID. If the transmission paths are set, the
transmission message type is transformed into a message type of a destination protocol by using
the mapping table.

• Fourth, because the size of data collected and transferred by the FlexRay and MOST is very big,
compared to that of the CAN, the header information like Start Message Delimiter, Length of
message, and Identifier is to be added to every CAN Fragment so that the FlexRay and MOST
data can be transferred to the CAN protocol. The Header information has a maximum of 35 bits.
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Figure 4. The structure of the In-Vehicle Gateway Module (In-VGM).

Table 1. The kinds of message IDs about protocols.

No. Source Destination ID

1

CAN

CAN 10
2 FlexRay 801
3 MOST 811
4 HSCAN 30
5 FlexRayCAN 60

6

FlexRay

CAN 803
7 FlexRay 802
8 MOST 812
9 HSCAN 813

10 FlexRayCAN 814
... ... ... ...

24
MOST

HSCAN 821
25 FlexRayCAN 823

In a multi-directional network environment, because the number of the headers gets larger in
proportion to the number of the CAN fragments, the CAN has overhead. If the CAN message type
is transformed into a message type of the FlexRay or the MOST protocol, the problem is that all the
messages are not transferred because of the overhead of the headers. To solve the problem, the ID of
the proposed CAN Fragment Header, instead of the Priority and Service type of the existing CAN
fragment Header, is proposed and the Sequential Number of the proposed CAN Fragment Header
instead of the Request, Destination ID, Service, and Source ID of the existing CAN Fragment Header is
proposed. Because the In-VGM uses the Sequential Number of the CAN Fragment Header, it sorts
the CAN fragments in the Mapping Table in ascending order and then transfers them to a destination
where the CAN fragments are sorted in ascending order.

If the data is transformed and transferred after the Sequential Numbers are sorted, the In-VGM
identifies the fragments of the CAN with Sequential Numbers and IDs. For example, in Figure 5, if the
number of the CAN fragments is 20 and each fragment size is 4 bytes, the first fragment’s Sequential
Number is 01, the next fragment is 02, 03, and 04 in order.

When the CAN fragments are transferred to the FlexRay, the In-VGM assembles the fragments
sequentially according to the Sequential Number and transfers the assembled packet.
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Figure 5. CAN fragment Header and fragment assembly process in the In-VGM.

3.3. A Design of an Optimized Deep Learning Module (ODLM)

The ODLM proposed in this paper works in a Cloud Environment and consists of
two sub-modules.

The first Vehicle Part Diagnosis Sub-module (VPDS) diagnoses the condition of parts and of
the other parts influenced by a defective part by using the data collected by the in-vehicle sensors.
The second Total Diagnosis Sub-module (TDS) diagnoses the total condition by using the real-time
sensor data of a vehicle and the result diagnosed by the VPDS as input data.

The ODLM generates a Training Data Set with the sensor data of a vehicle, starts a learning
process and diagnoses the vehicle itself if the learning is completed. Through the cloud, the ODLM
transfers to a vehicle the results of two submodules and the difference between the current sensor data
and normal sensor data. The flowchart of the ODLM is shown in Figure 6.

Figure 6. Flowchart about Optimized Deep Learning Module (ODLM).
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3.3.1. A Design of the VPDS

The VPDS diagnoses the condition of the parts and of the other parts influenced by a defective
part. To do this, the input and output value of the VPDS, the Hidden Layers of the VPDS and the
VPDS Mathematical modeling must be decided as follows.

The Input and Output Value of the VPDS

The VPDS uses the sensor data received from the vehicle as the input value of the VPDS. The data
collected from the in-vehicle sensors are digital numerical data and represents the condition of each
part. The VPDS input is represented as X = {x1, x2, x3, x4, . . . , xn}. Here, X means the set of sensors,
xn means the sensor data from each sensor, and n means the number of sensors. For example, a tire
temperature sensor and a tire air pressure sensor measure the condition of a tire and an oil pressure
sensor measures the condition of engine oil. The output value of the VPDS represents the condition of
each part. Each part has three output nodes to diagnose its condition. The VPDS output is represented
as Y = {y1, y2, y3, y4, . . . , yk}. Here, Y means the set of all output nodes, yk means the output value
of each node, and the number of output nodes, k is 3 times the number of parts. Each node of each
part represents “normal”, “check”, and “danger”.

Let us take 8 outputs of a tire for example. (1) If the normal node for the tire is 1 and the check
node and the danger node are 0, then this means the tire is in a normal state. (2) If the check node for
the tire is 1 and the normal node and the danger node are 0, then this means the tire is in a checking
state. (3) If the danger node for the tire is 1 and the normal node and the check node are 0, then this
means the tire is in a dangerous state. (4) If the normal node and the check node for the tire are 1 and
the danger node are 0, then this means the tire is in a checking state. (5) If the danger node and the
check node for the tire are 1 and the normal node are 0, then this means the tire is in a dangerous state.
(6) If the normal node and the danger node for the tire are 1 and the check node are 0, then this means
the condition of the tire cannot be judged. (7) If all three nodes of a tire are 0 or 1, then this means the
condition of the tire cannot be judged. Figure 7 shows the 8 outputs of a tire.

Figure 7. The structure of the Vehicle Part Diagnosis Sub-module (VPDS).

The Hidden Layers of the VPDS

Though an existing Back-propagation algorithm does not decide the number of Hidden Layers
and the number of its Nodes, the proposed Back-propagation algorithm that is used by The VPDS



Appl. Sci. 2018, 8, 1164 12 of 24

decides the number of them dynamically according to the input sensor data and the number and types
of output parts. If there are a number of input and output nodes and a number of Hidden Layers and
their nodes, an over-fitting problem can occur. The VPDS in this paper limits the number of Hidden
Layers to five to reduce the over-fitting. The number of Nodes in each Hidden Layer is equal to that
of input nodes. The Nodes in each Hidden Layer are used to compute the risk of vehicle parts and
consumables and the risk of the other parts influenced by a defective part.

The VPDS Mathematical Modeling

The VPDS uses a Back Propagation algorithm with high accuracy and speed for the safety of
a vehicle. The Training Data made out of the sensor data are used for the learning of the VPDS.
The Training Data are collected from the real time sensor data of a vehicle or the batch sensor data
of a Car Service Center. The collected data are integrated numeric data about the normality and
abnormality of each part. The Training Dataset is made out of the Training Data based on parts.

Figure 7 shows the structure of the VPDS. The h of the Hidden Layer means a node value.
The vector of a Hidden Layer is H. The y of the Output Layer means the condition of the parts.
The condition of the parts is classified into ‘danger’, ‘inspection’, and ‘normality’ by the result value
of the Output Layer. W~Z represent the weight connecting to each Output Layer and are modified
during learning. Formula (1) is the loss function of the VPDS.

1
2
(d− y)2 (1)

The VPDS uses the ReLU function and the Sigmoid function as an activation function, solves the
vanishing gradient problem from an input layer to the last hidden layer by using an ReLU function, and
diagnoses the result between the last hidden layer and an output layer by using a Sigmoid function.

The VPDS is processed in the following phases.

• The 1st phase: the weight W~Z are initialized as a small value, not 0 and Training Datasets
are used.

• The 2nd phase: The initial learning rate and a critical value of an error, Emax are decided.
• The 3rd phase: The nodes’ values of the 1st Hidden Layer and the weight sum of the h1j of the

1st Hidden Layer by using Formula (2), NETh1j
are obtained in the VPDS. At this time, the xi of

Formula (2) means the value of the ith input node, and Wij means a weight between the ith input
node and the jth Hidden Layer. The VPDS computes the h1j, which is the node value of the 1st
Hidden Layer by applying the NETh1j

of the expression (3).

NETh1j
=

n

∑
i=1

xiWij (2)

h1j = max
(

0, NETh1j

)
(3)

In this way, the VPDS computes NET and the Output value from the 1st hidden layer to the rest
of the hidden layer.

• The 4th Phase: The VPDS computes the NETyk between the 5th hidden layer and an Output layer
by using Formula (4) and computes the output value, yk by using Formula (5). The NETyk is
applied to the Sigmoid function of Formula (5).

NETyk =
l

∑
i=1

h5iZik (4)

yk =
1

1 + e−NETyk
(5)
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• The 5th Phase: The VPDS computes an error E in the Formula (6) and compares it with the Emax
of the 2nd Phase. The VPDS closes the learning if the error E is less than the Emax. The VPDS
goes to the 5th Phase if the error E is greater than the Emax.

E =
1
2

k

∑
i=1

(di − yi)
2 (6)

Here, di means a target value and, yi is the result value of the Output Layer computed in the
3rd phase.

• The 6th Phase: The VPDS computes an error signal, δh between the Output Layer and the last
Hidden Layer and between the Hidden Layers.

The process works as follows.
First, the VPDS computes the error signal, δy between the Output Layer and the last Hidden Layer

by using the Formula (7).
δy = (d− y)y(1− y) (7)

Second, It computes the error signal, δh between the Hidden Layers by using the Formula (8).

δh5 = h5(1− h5)
k

∑
i=1

δyZli (8)

Here, h5 means the 5th Hidden Layer, δy means the error signal between Output Layer and the
last Hidden Layer and Zli means the weight between the Output Layer and the last Hidden Layer.
The VPDS computes the δh4~δx in the same way as Formula (8).

• The 7th Phase: The VPDS modifies the weight, Z between the last Hidden Layer and Output
Layer by using the Formula (9).

Zk+1 = Zk + αδyh5. (9)

Here, Zk means the weight before being modified and Zk+1 means the weight after being modified.
α means a learning rate, δy means the error signal computed by the Formula (8), and h5 means the
5th Hidden Layer.

The VPDS modifies the weight from the 5th Hidden Layer to an input layer in the same way as
Formula (8). For example, If the weight between the 1st Hidden Layer and an Input Layer is W, the W
is modified in Formula (9).

Wk+1 = Wk + αδh1 x (10)

Here, Wk means the weight before being modified and Wk+1 means the weight after being
modified. And α means a learning rate, δh1 means the error signal of 1st Hidden Layer. And x means
nodes value of the Input Layer.

• The 8th Phase: the VPDS repeats the learning process (training) from the 3rd phase to the 7th phase
till an error E becomes less than the Emax.

3.3.2. A Design of TDS

The TDS is a Lightweight Neural Network Module that diagnoses a vehicle’s total condition by
entering each diagnosed result of the autonomous vehicle parts computed by the VPDS. The TDS of
Figure 8 shows the Multiple Output Perceptron that sets the weights of the input nodes differently.
That is, it shows a Lightweight Neural Network with a Step Function that has a critical value 0 as an
Activation Function. For example, Figure 8 shows that the TDS judges total condition by integrating
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each analysis result of an engine, a tire, a headlight, and a generator etc. If the analysis result of the
TDS is (1, 1, 0), it judges the total diagnosis result as “Check”.

Figure 8. The example of the Total Diagnosis Sub-module (TDS) perceptron operation.

A Learning Method of the TDS

The TDS should set the learning method. The following Algorithm 1 is the Learning Algorithm of
the TDS and works as follows.

Algorithm 1. TDS learning algorithm

TDS_Learning(VPDS Output, W[[], learning rate, Training Data Set){
k < −1
while(true) {

new-W <- W
for 1 to the number of the Training Data Sets{

NET <- VPDS Output * new-W
TDS-Output <- Step Function(NET)
if (TDS-Output == Training Data.out) {
}
else {

new-W <- learning rate * VPDS Output *
(Training Data.out–Output)

}
}
if (W == new-W) then End
else {

k < −k + 1
7W <- new-W

}
}

}

• First, the TDS uses the VPDS output, the initial value of weight W[], the learning rate and the
Training Data.

• Second, if the learning gets started, an existing weight W is assigned to the new-W.
• Third, the fourth and fifth phases are repeated as large as the number of the Training Data Sets is.
• Fourth the VPDS Output value multiplied by new-W is stored in the NET. Then, the result of a

Step Function for NET is stored in the TDS-Output
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• Fifth, if the TDS-Output is the same as the output of the learning data, the weight is not modified.
If the TDS-Output is different from the output of the learning data, TDS modifies weight and
stores it in the new-W.

• Sixth, if to repeat the learning is over, the existing weight W compares the new-W. If the W is
the same as the new-W, the learning is completed. If the existing W is different from the new-W,
the learning cycle is increased by 1 and is repeated.

The Operational Process of TDS

A vehicle’s total condition is judged as follows by using the TDS.

• The 1st Phase: The TDS uses as input data a vehicle’s part analysis result of the VPDS.
• The 2nd Phase: The TDS computes a Output Node value by learning the input data. At this time,

the Output Nodes consists of y1, y2, and y3. If the Output node y1 is 1, it becomes “Normality”.
If the Output Node y2 is 1, it becomes “Check”. If the Output node y3 is 1, it becomes “Danger”.

• The 3rd Phase : The TDS judges a vehicle’s total condition according to an Output Node value
as shown in the Table 2. At this time, a vehicle’s total condition is classified into “Normality”,
“Check”, “Danger”, and “Error”. “Normality” means that a vehicle has no problem at all in the
total condition. “Check” means that abnormality happened in some parts with a low possibility
of an accident. “Danger” means that vehicle breakdown can happen in some parts with a high
possibility of an accident. “Error” means that the condition of a vehicle cannot be judged.

The TDS decides that the total condition of a vehicle is “Normality” if y1 is “1”, y2 is “0”, and y3
is “0”. The TDS decides that the total condition of a vehicle is “Check” if y1 is “1”, y2 is “1” and y3 is
“0” and that the total condition of a vehicle is “Danger” if y1 is “0”, y2 is “1” and y3 is “1”. The TDS
decides that the total condition of a vehicle is “Error” if y1, y2, and y3 are all “1” and that the total
condition of a vehicle is “Error” if y1 is “1”, y2 is “0” and y3 is “1”.

• The 4th Phase : The TDS informs a vehicle manager of it in case a total condition of a vehicle is
“Check” or “Danger”.

Table 2 shows the result of Output Node value and the total condition of a vehicle in the TDS.

Table 2. The result of the TDS.

Output Node
Result7y1 y2 y3

Normality Check Danger

1 1 1 Error
1 1 0 Check
1 0 1 Error
1 0 0 Normality
0 1 1 Danger
0 1 0 Check
0 0 1 Danger
0 0 0 Error

The ODLM analyzes the received in-vehicle sensor data by using two learning sub-module.
The self-diagnosis result of each part is made by the VPDS. The result is transferred to the TDS and the
TDS creates a total analysis result. The ODLM transfers the difference between real time in-vehicle
sensor data and standard in-vehicle sensor data and the analysis result to a vehicle manager.

3.4. A Design of a Data Processing Module (DPM) Based on Edge Computing

The DPM proposed in this paper improves the self-diagnosis speed of a vehicle and reduces the
system overhead by using an Edge Computing based Self-diagnosis Service (ECSS) that informs the
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adjacent vehicles and infrastructure of the self-diagnosis result analyzed in the in-vehicle OBD by
using VANS.

3.4.1. An Edge Computing Based Self-Diagnosis Service

The ECSS supports communication between the OBD self-diagnosis system based on Edge
Computing and the Main Cloud Server as shown in Figure 9. Because the Main Cloud Server transfers
the continuous updates of the ODLM to vehicles, it improves the learning exactness of the ODLM.
A vehicle improves the speed of the self-diagnosis by using the ODLM transferred from the Main
Cloud Server.

Figure 9. The structure of the Edge Computing based Self-diagnosis Service (ECSS).

The Algorithm 2 shows that of the ECSS and works as follows.

• First, the vehicles transfers the sensing data and the analysis result of the ODLM through the
In-VGM to the Main Cloud Server. If there is no analysis result of the ODLM, NULL is used.

• Second, the Main Cloud Server checks that the car having transferred the sensing data and the
analysis result of the ODLM is a new car or not.

• Third, if the car is a new car, the Main Cloud Server generates, learns, and stores the ODLM about
a new car and transfers the ODLM about the new car to vehicles.

• Fourth, if the car is not a new car, the Main Cloud Server already has the ODLM and learns by
applying the sensing data from the vehicles and the analysis result of the ODLM. If the learning is
completed, the existing ODLM and the learned ODLM are compared. If the ODLM was changed,
the changed contents are transferred to the vehicles.

Algorithm 2. Algorithm of the ECSS

ECSS(Kind of Car, Car’s Sensors Data, ODLM _result){
root <- Kind of Car
data <- Car’s Sensor Data
training <- ODLM _result
if (Is ODLM for root Exist in Cloud) then {

Learning ODLM (data, training)
if(Is ODLM Changed) then {

send ODLM to Car }
}
else{

create ODLM
Learning ODLM (data, training)
save ODLM in Cloud
send ODLM to Car

}
}
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3.4.2. The V2X Based Accident Notification Service

The VANS informs the adjacent vehicles and infrastructure of the diagnosis result transferred
from the Main Cloud Server.

Figure 10 shows the operational process of the VANS.

• First, the VANS informs the adjacent vehicles of the diagnosis result. According to Figure 10,
vehicle A receives the ODLM suitable for itself from the Main Cloud Server. The vehicle analyzes
the sensing data by using the received ODLM. If the analysis result decides that the condition of
vehicle A is dangerous, the danger alarming message about vehicle A is generated by the VANS.
At this time the hop field of the danger alarming message is set as 2. Vehicle A transfers the
danger alarming message to an adjacent vehicle B through V2V communication. At this time, the
hop field of the danger alarming message becomes 1. The vehicle B having received the danger
alarming message transfers it to an adjacent vehicle C through V2V communication. The vehicle
C knows the condition of vehicle A by receiving a danger alarming message of vehicle A. At this
time, because the hop field of the danger alarming message has 0, vehicle C does not transfer it to
other vehicles.

• Second, the VANS informs the adjacent infrastructure of the diagnosis result. According to
Figure 10, vehicle A transfers the danger alarming message to the adjacent vehicles and to the
adjacent infrastructure at the same time. At this time a hop is not used because a danger alarming
message can be transferred to only the adjacent infrastructure. Therefore, the infrastructure
having received the danger alarming message of vehicle A transfers the condition of vehicle A to
the adjacent vehicles. Vehicle A transfers the sensing data and the analysis result of the ODLM to
the Main Cloud Server.

Figure 10. The structure of the V2X based Accident Notification Service (VANS).

4. The Performance Analysis

This paper proposes an Integrated Self-diagnosis System (ISS) for an Autonomous Vehicle based
on an IoT Gateway and Deep Learning. It analyzes the performance of the In-VGM, the ODLM and
the DPM.

4.1. The Performance Analysis of the In-VGM

C language is used to analyze the In-VGM performance. If the FlexRay/MOST messages and
command are entered in the host PC; CAN message frames are generated in a sending node and
transferred to multiple protocols. When 2Byte messages are transferred to CAN, MOST, and FlexRay
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protocol bus, the message transformation rate and transformation time is compared in the simulation
as follows.

In the 1st simulation, the message transformation rate of the existing in-vehicle protocols is
compared with that of the In-VGM. 2 Byte messages and 500 s transmission time are used in the
simulation. The transmission message is a CAN message and the simulation result is shown in
Figure 11.

Figure 11. The comparison of the existing in-vehicle protocols with the In-VGM in message
transformation rate.

In case a CAN message was transferred to a CAN protocol, the existing in-vehicle protocol and
In-VGM have transferred 8000 messages for 500 s and any message transformation was not done.
In case a FlexRay message was transferred to a CAN protocol, the In-VGM did more transformations
than the existing in-vehicle protocol by 1942 times and its transformation rate is higher than the existing
in-vehicle protocol by 24%. In case a MOST message was transferred to a CAN protocol, the In-VGM
did more transformations than the existing in-vehicle protocol by 1304 times and its transformation
rate is higher than the existing in-vehicle protocol by 16%.

In case a CAN message was transferred to a FlexRay protocol, the In-VGM is higher than the
existing in-vehicle protocol by 24% in transformation rate. In case a CAN message was transferred to a
MOST protocol, the In-VGM is higher than the existing in-vehicle protocol by 13% in transformation
rate. This result was shown because the existing in-vehicle protocol has a disadvantage to put a header
in each CAN fragment.

In the 2nd simulation, the transformation time of the existing in-vehicle protocols is compared
with that of the In-VGM about 8000 messages and the simulation result is shown in Figure 12.

It took about 14 min 8 s for the existing in-vehicle protocol to transform 8000 CAN message into
the FlexRay protocol and about 12 min 55 s into the MOST protocol. It took about 9 min 47 s for the
In-VGM to transform 8000 CAN messages into the FlexRay protocol and about 10 min 2 s into the
MOST protocol. It took about 13 min 51 s for the existing in-vehicle protocol to transform a FlexRay
message into the CAN protocol, and about 13 min 42 s to transform a MOST message into the CAN
protocol. It took about 10 min 43 s for the In-VGM to transform a FlexRay message into the CAN
protocol, and about 10 min 27 s to transform a MOST message into the CAN protocol. The In-VGM
improves the transmission time by 1.37% compared to the existing in-vehicle protocol.
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Figure 12. The comparison of the existing in-vehicle protocols with the In-VGM in message
transformation time.

4.2. The Performance Analysis of the ODLM

To analyze the ODLM performance, the ODLM is compared with the existing Long Short Term
Memory (LSTM) and Deep Belief Networks (DBN) in the computation speed and reliability of a Neural
Network Model. The Training Data set and Test data are used to analyze the ODLM performance. The
ODLM, the LSTM, and the DBN decides the computation speed and reliability with the computation
time and error rate occurring in the computation of Test data.

Table 3 shows a control variable value for simulation. The simulation is done three times on the
basis of the control variable and compares a Training Dataset learning speed, the response speed of
Test Data analysis, and an error rate.

Table 3. A Control Variable Value for Simulation.

Control Variables Values

the number of Hidden Layers 2
the number of each Hidden Layer Nodes 20

a Learning Rate 0.1
weight (all) 0.2

The 1st experiment compares the average response time by classifying Test data according to the
number of sensors and the result is shown in Figure 13.

According to Figure 13, the average response time of the ODLM is 14.28 ms in case of 20 sensors,
15.61 ms in case of 30 sensors, and 26.4 ms in case of 50 sensors. The average response time of the
DBN is 13.81 ms in case of 20 sensors, 14.69 ms in case of 30 sensors, and 31.51 ms in case of 50 sensors.
The average response time of the LSTM is 20.34 ms in case of 20 sensors, 23.05 ms in case of 30 sensors,
and 37.44 ms in case of 50 sensors.

Therefore, the average response time of the LSTM is the longest and the more the data, the shorter
the average response time of the ODLM.

The 2nd experiment compares the error rate of diagnosis according to the number of Test data
sets and the result is shown in Figure 14. In the experiment, the Test data for measurement were
randomly selected.

According to Figure 14, the ODLM shows an error rate 0% in case of 20 Test data sets, 0% in case
of 30 Test data sets, 0% in case of 50 Test data sets and 1.5% in case of 400 Test data sets. The DBN
shows an error rate 10% in case of 20 Test data sets, 6.3% in case of 30 Test data sets, 8% in case of
50 Test data sets and 9% in case of 400 Test data sets. The LSTM shows an error rate 5% in case of 20
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Test data sets, 2% in case of 30 Test data sets, 2% in case of 50 Test data sets and 3% in case of 400 Test
data sets.

Therefore, in the 1st experiment the ODLM improved the analysis speed higher than the DBN by
0.05 s and the LSTM by 0.1 s. In the 2nd experiment, the ODLM showed the lower error rate than the
LSTM by 10.5% and the DBN by 1.5%.

Figure 13. The comparison of the average response time according to the kinds of sensors.

Figure 14. The error rate comparison of diagnosis according to the number of Training Data Set.

4.3. The Performance Analysis of the DPM

The response time and exactness about a self-diagnosis request in the DPM simulation was
compared in this section. The DPM simulation is proceeded with 2 PCs (client PC and server PC), but
not with a real vehicle according to the increasing number of vehicles. It is assumed that each vehicle
has 20 sensors. The sensor data is sent from the client PC to the server PC, and the server PC diagnoses
the condition of a vehicle.

The 1st experiment is processed as follows.
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Figure 15 shows an average response time of a self-diagnosis request. It takes 1.305 ms for the
DPM to reply to the request of about 20 vehicles, 2.175 ms of 30 vehicles, 4.65 ms of 50 vehicles,
14.78 ms of 800 vehicles, and 19.71 ms of roughly 1200 vehicles. It takes 0.48 ms for the existing Cloud
system to reply to the request of about 20 vehicles, 1.14 ms of 30 vehicles, 3.21 ms of 50 vehicles, 17.61
ms of 800 vehicles, 24.26 ms of 1200 vehicles. Therefore, it shows that the more vehicles there are, the
more efficient the DPM is over the existing Cloud system.

Figure 15. The comparison of an average response time about a self-diagnosis request.

The 2nd simulation shows the exactness comparison about a self-diagnosis request and reply.
Figure 16 shows the experimental result of error times about a self-diagnosis request and reply

between the DPM and the existing Cloud system. In case of transferring a request message to
100 vehicles or fewer, both the existing Cloud system and the DPM had 0 response error or 1 response
error. The existing Cloud system had 3 response errors in the case of transferring a request message
to 300 vehicles, 5 response errors to 500 vehicles, 10 response errors to 800 vehicles, and 13 response
errors to 1200 vehicles. Therefore, the response exactness of the existing Cloud system was analyzed
as 98%.

Figure 16. The comparison result of error times about a self-diagnosis request and reply.
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The DPM proposed in this paper had 2 response errors in the case of transferring a request
message to 300 vehicles, 6 response errors to 500 vehicles, 9 response errors to 800 vehicles, and
12 response errors to 1200 vehicles. Therefore, the response exactness of the DPM was analyzed as 99%
and the DPM shows that the larger number of vehicles there is, the higher the response speed.

5. Conclusions

This paper proposes “An Integrated Self-diagnosis System (ISS) for an Autonomous Vehicle based
on an IoT Gateway and Deep Learning” which collects information from the sensors of an autonomous
vehicle, diagnoses itself and the influence between parts by using Deep Learning and informs drivers
of the result. In three experiments, the In-VGM improves the transmission time by 1.37% compared to
the existing in-vehicle protocol and the ODLM improved analysis speed was higher than the DBN by
0.05 s and the LSTM by 0.1 s. The response exactness of the DPM was analyzed as 99%. This means
that the proposed ISS is better than existing vehicle diagnostic methods. The ISS has some advantages.
It guarantees compatibility by transforming different types of data from different communication
protocols into the same type of data. Also, it improves the response speed processing sensor data and
reduces overhead by using Edge Computing. Lastly, it prevents a chain collision by informing adjacent
vehicles and infrastructures of accidents and dangers in advance.

In this paper, a controlled environment is used with 50 limited sensors and 5 Hidden Layers,
but in future work more sensors and hidden layers will be applied to real vehicles, and not PCs, to
achieve a precise experiment.
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