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Abstract: In this work, we develop methods to assess the risk of profit–loss resulting from the choice
of a computational method for solving a joint production and maintenance-planning problem. In fact,
the optimal objective function is calculated via the use of algorithms and optimization methods.
The use of these methods can have an impact on an event that can disrupt the optimal production and
maintenance plan. To achieve our goals, we start with calculating the manufacturing system’s joint
production and maintenance plans over a finite horizon using different methods. In the second part
of the work, we propose analytical models to quantify the risk of profit–loss resulting from product
returns and the integration of an imperfect maintenance policy. Numerical examples are conducted
by adopting the different algorithms used. This study provides insights into the most efficient
computational methods for the encountered problems. This research proposes new approaches to
help and guide managers in the analysis and evaluation of their decisions.

Keywords: Lost profit–risk assessment; stochastic optimization; production system; preventive
maintenance; product returns

1. Introduction

A risk is described as a “hazard”, a chance of bad consequences, loss, or exposure to mischance
(from the Concise Oxford English Dictionary, reported in [1]). Its assessment may be incorporated into
the company’s planning and decision-making processes, encompassing profits, reliability, and other
performance objectives [2].

The minimization of financial risks is one of the keys to sustainable business development [3].
Risk identification and assessment provided specific indications of managerial attention to achieve
the performance objectives [2]. Indeed, Tuncel et al. [4] followed these indications using a timed
Petri nets framework. Their main objective was to illustrate the challenges where coordination within
supply chain networks brings to risk management. Furthermore, in his book, Zio [5] introduced the
application of the Monte Carlo simulation method for the analysis of system reliability and risk. Failure
mode and effects analysis (FMEA) is a risk assessment tool that reduces potential failures in systems,
process, designs, or services [6]. Hubbard et al. [7] described a number of common scoring methods
that are currently used to assess risk in a variety of different domains.

In our study, we propose methods in order to quantify the risk of certain strategies or events that
can disrupt the system. In the literature, many researchers are interested in risk issues, and they have
tried to classify types and propose tools to cope with some risks that can lead to bad consequences.
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Our innovative contribution is to evaluate the impact of the use of optimization algorithms on certain
events that may disrupt the calculated production and maintenance plan.

In fact, the relevance of the tools and algorithms used is never discussed in terms of impact on
an incident that may occur, and that disrupts the optimal production and maintenance plan decided.

The paper proposes a new contribution to the literature, which proposes on the one hand analytical
models to quantify the profit loss following an adopted strategy, and on the other hand the impact of
the use of different optimization algorithms on the calculation of profit loss.

In recent years, researchers have tried to investigate the problem of choice regarding a maintenance
policy that is adequate to their stochastic problems from a robustness and effectiveness point of view.
Cherkaoui et al. [8] proposed mathematical cost models to assess jointly the economic performance
and robustness of two maintenance policies. Caballé et al. [9] and Huynh et al. [10] also consider
the same objectives. The purpose of their work was to help decision-makers choose the adequate
maintenance policy that maximizes their profit as well as maintains a robust production system.

The integration of production and maintenance planning problems is a significant challenge
for industrial companies, and hence has received much research attention in the last few decades.
According to Alsyouf [11], the increased importance of maintenance activities is due to their impact
on system availability, performance efficiency, product quality, etc. One of the first authors to have
dealt with integrated production–maintenance strategies is Buzacott [12]. Rezg et al. [13] suggested
a method for the joint optimization of preventive maintenance and inventory control in a production
line that combined N machines, while Gharbi et al. [14] developed joint production and preventive
maintenance policies incorporating inventory levels. Rezg et al. [15] proposed a model to determine
a joint optimal inventory control policy and an age-based preventive maintenance policy for a randomly
failing production system. Kenne and Nkeungoue [16] introduced another model for the same context.
The work of Hajej et al. [17,18] considered the impact of the production plan on equipment degradation.
Nodem et al. [19] evolved a method to find the optimal production, replacement/repair, and preventive
maintenance policies for a deteriorated manufacturing system. Other researchers have had to adopt
other aspects. Ben-Salem et al. [20] and Hajej et al. [21] considered an ecological aspect on the
integration of production and maintenance planning problems of an unreliable manufacturing system
that was subject to degradation. Otherwise, some researchers have used other types of maintenance to
limit certain risks (unavailability of the manufacturing system, energy consumption, etc.). Selcuk [22]
adopted predictive maintenance by proposing new trends and techniques to protect the studied system.
Klos et al. [23] proposed a model of an intelligent maintenance management system in order to study
the impact of the availability of manufacturing resources on the throughput and average lifespan of
products. Renna [24] proposed the evaluation of the manufacturing system performance in dynamic
conditions when different maintenance policies are implemented in a multi-machines manufacturing
system controlled by multi-agent architecture. Table 1 summarizes the works that treat the problem of
integrating production and maintenance, but use different approaches.

Researches in joint production and maintenance present a lack of knowledge and contribution.
The area of integrated maintenance with production lot sizing is based on an optimization computation
using operational research tools. The optimum is obtained via an objective function where the cost is to
be optimized. Some works have proposed a multi-criterion optimization to take into account different
functions to optimize under several constraints. Consequently, in our case, we propose to implement
a risk analysis tool for the decisions taken following an optimization. It aims to evaluate the risks of
a decision resulting from the results of an optimization. These optimization results are calculated by
an analysis of the algorithms and tools used in the optimization step. Indeed, the risks assessment
considers risks of a decision resulting from operational anomalies such as a failure that can exceed
the maximum repair time and its impact on the robustness of the production and maintenance plan
computation. Guiras et al. [25] introduced the risk assessment of the repair time of random failures
following the optimization of a disassembly/assembly system.
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The assessment of lost profit risk (LPR) in our work entails first establishing optimal production
and maintenance plans, taking into account the impact of the production rate on the system’s
deterioration. Indeed, we study the profit loss underlying the choice of an algorithm to find the optimal
plans. We implement four different heuristic algorithms: the Nelder–Mead method, the differential
evolution method (DE), the simulated annealing method (SA), and the random search method.
Then, we determine the LPR for product returns and imperfect preventive maintenance actions.

The paper is structured as follows. The production and maintenance planning problems are
described and mathematically formulated in Section 2. The four heuristic algorithms employed
for these problems, along with a numerical example, are presented in Section 3. Next, we propose
analytical models of lost profit risk and apply them to the above numerical example in Section 4.
Finally, the last section presents our concluding remarks from the perspective of insights gained in this
study, and our recommendations for future research.

Table 1. Approaches used in solving the integrated maintenance–production problem.

Used Approach Authors

Simulation Rezg et al. [13,15], Gharbi et al. [14]
Genetic algorithm Benbouzid-Sitayeb et al. [26]

Ant colonies algorithms
Genetic algorithm

Benbouzid-Sitayeb et al. [27]
Belkaid et al. [28]

Linear stochastic optimal control approach Hajej et al. [18]
Global approach Hajej et al. [29]

2. Problem Description

Assume that a single machine (M) is a single operation manufacturing system producing a single
product with the view to satisfy a random demand over a finite horizon. We seek the combined
production and maintenance plans, which minimize the holding, production, and maintenance costs.
The production machine is subject to random failure, and the failure rate is increasing as a function of
both time and the production rate. A minimal repair is performed at failure, and a periodic replacement
is carried out periodically. According to this maintenance policy, preventive maintenance activities are
supposed to be able to restore the machine to be “as good as new”.

To determine the optimal production plan, an analytical model is presented to satisfy the random
demand. Secondly, depending on the production rate, we present the optimal preventive maintenance
plan. The adoption of the optimal production plan as an input to the maintenance plan is justified by
the influence of production rate variation on the failure rate of the machine. We denote the production
problem by P and maintenance problem by M. The production and maintenance-planning problem
(PMPP) is presented below.

2.1. Parameters

The following notations and assumptions used throughout this article are defined:

∆t period length
H period’s number in the planning horizon.
H. ∆t length of the finite horizon plan.
d(k) demand in period k, k = {0, 1, . . . , H}.
E[ ] mathematical expectation operator.
d̂(k) average demand in period k = E[d(k)], k = {0, 1, . . . , H}.
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S(k) level of the store at the end of period k, k = {0, 1, . . . , H}.
S(0) given initial inventory.
∧
S(k) average inventory level in period k = E[S(k)], k = {0, 1, . . . , H}.

V(S(k)) variance of storage = E[S(k)−
∧
S(k)2], k = {0, 1, . . . , H}.

Vd(k) variance of demand = E[d(k)−
∧
d(k)2], k = {0, 1, . . . , H}.

ϕ−1
d,k

(α)
inverse cumulative Gaussian distribution function with mean d̂(k)
and finite variance Vd(k).

U(k) production rate in each period k, k = {0, 1, . . . , H}.
Umax maximum machine production rate.
Cpr unit production cost.
Cs holding cost, per unit of product per period.
Cpm cost for a preventive maintenance action.
Ccm cost for a corrective maintenance action.
f (t) probability density function of time to failure.
λn(t) nominal failure rate that occurs when the production rate is Umax.
λk(t) failure rate of the machine during period k, k = {0, 1, . . . , H}.
N number of preventive maintenance actions over the finite horizon.
A(U, N) average number of failures over the finite horizon H.

2.2. Formulation of the PMPP

2.2.1. Production Policy

A production system describes an integrated set of processes that allow us to produce
a good service that meets the primary objective of the company, which is customer satisfaction.
The coordination of different activities such as production and maintenance is necessary in order to
achieve the profit maximization.

The aim of this subsection is to present the production plan that minimizes the production
and holding costs. Assuming that the horizon is partitioned equally into H periods of length ∆t.
The demand d(k) is a random variable that follows a normal distribution. Let {fk( ), k = 1, . . . , H}
represent the cost function of the production and storage. The following sequential stochastic linear
programming problem provides an optimal production plan over the planning horizon.

Min E
{
∑H−1

k=0 fk(S(k), U(k)) + fH(S(H))
}

(1)

Subject to:
S(k + 1) = S(k) + U(k) − d(k) k = 0, 1, . . . , H − 1 (2)

P [S(k + 1) ≥ 0] ≥ α k = 0, 1, . . . H − 1 (3)

0 ≤ U(k) ≤ Umax k = 0, 1, . . . , H − 1 (4)

The first constraint, (2), defines the inventory balance equation for each production period.
The second constraint, (3), imposes a service level requirement in each period, which in turn induces
a safety stock. Finally, constraints (4) define lower and upper bounds on the production rate during
each period.

The following equation represents the expected production and holding costs for each period k.
We use the quadratic form for our expression, which allows both an excess and shortage of inventory
to be penalized [18].

fk(S(k), U(k)) = Cs × E[S(k)2] + Cpr × U(k)2 (5)

Hence, over the finite horizon H. ∆t, the total expected cost of production and inventory can be
expressed as:
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F(U) =
H

∑
k=0
{ fk(S(k), U(k))} = Cs × E[S(H)2] +

H−1

∑
k=0

[Cs × E[S(k)2] + Cpr ×U(k)2] (6)

Note that U(H) is not included in the cost formulation, because we do not consider the production
order at the end of the horizon H.∆t. In practice, this constrained stochastic nonlinear programming
problem is generally difficult to solve. Therefore, we transformed it into an equivalent deterministic
problem, which becomes easier to solve [18]).

Note that V(S(0)) = 0 and let Vd(k) be constant and equal to Vd for all of k. After simplifying,
which is described in more detail in Hajej et al. [18], we obtain the following expression:

Min F(U) = Cs · Ŝ(H)2 +
H−1

∑
k=0

[
Cs · Ŝ(k)2 + Cpr ·U(k)2

]
+ Cs ·Vd ·

H(H + 1)
2

(7)

Subject to:

Ŝ(k + 1) = Ŝ(k) + U(k)−
∧
d(k) k = {0, 1, . . . , H − 1} (8)

P[S(k + 1) ≥ 0] ≥ α⇒ U(k) ≥ ϕ−1
d,k (α)Vd(k)− S(k) + d̂(k) k = {0, 1, . . . , H − 1} (9)

0 ≤ U(k) ≤ Umax k = {0, 1, . . . , H − 1} (10)

F(U) =
H

∑
k=0
{ fk(S(k), U(k))} = Cs × E[S(H)2] +

H−1

∑
k=0

[Cs × E[S(k)2] + Cpr ×U(k)2]

The transformation from stochastic to the deterministic problem is described as follows.
We have:

E[d(k)] =
∧
d(k)

and:
Vd(k) = σ2

d ≥ 0 ∀k

The storage variable S(k) is described statistically by the mean E[S(k)] =
∧
S(k).

And the variance E[(S(k)−
∧
S(k))2] = Var(S(k)).

Thus, the relation between
∧
S(k) and

∧
S(k + 1) is defined by the following equation:

E[S(k + 1)] = E[S(k) + U(k)− d(k)]

⇒
∧
S(k + 1) =

∧
S(k) + U(k)−

∧
d(k)

Indeed, this equation represents the average evolution of storage variable for each period k,
k ∈ {1 . . . H − 1}.

Moreover, U(k) is essentially deterministic, since this variable no longer depends on the random
variables d(k) and S(k).

E[U(k)] = U(k)

with:
V(U(k)) = 0 ∀k

By calculating the difference between:

S(k + 1)−
∧
S(k + 1) = S(k) + U(k)− d(k)−

∧
S(k)−U(k) +

∧
d(k)

⇒ S(k + 1)−
∧
S(k + 1) = S(k)−

∧
S(k)− (d(k)−

∧
d(k))
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⇒ (S(k + 1)−
∧
S(k + 1))2 = (S(k)−

∧
S(k))− (d(k)−

∧
d(k))2

⇒ E[(S(k + 1)−
∧
S(k + 1))2] = E[((S(k)−

∧
S(k))− (d(k)− d(k)))2]

⇒ E[(S(k + 1)−
∧
S(k + 1))2] = E[(S(k)−

∧
S(k))2 + (d(k)−

∧
d(k))2 − 2.(S(k)−

∧
S(k)).(d(k)−

∧
d(k))]

⇒ E[(S(k + 1)−
∧
S(k + 1))2] = E[(S(k)−

∧
S(k))2] + E[(d(k)−

∧
d(k))2]− 2.E[((S(k)−

∧
S(k)).(d(k)−

∧
d(k))]

Since S(k) and d(k) are independent random variables, we can deduce that:

E[(S(k)−
∧
S(k)).((k)−

∧
d(k))] = E[(S(k)−

∧
S(k)].E[(d(k)−

∧
d(k)]

On the other hand, we can note that:

E[(S(k)−
∧
S(k)] = E[S(k)]− E[

∧
S(k)] = 0

E[d(k)−
∧
d(k)] = E[d(k)]− E[

∧
d(k)] = 0

Thus:

E[(S(k + 1)−
∧
S(k + 1))2] = E[(S(k)−

∧
S(k))2] + E[(d(k)−

∧
d(k))2]

Generally speaking, ak is a random variable; we have:

E[ak −
∧
ak)

2] = Vak (k) = E[ak
2]− ∧a

2

k

Therefore, we have:
Vs(k + 1) = Vs(k) + Vd(k) = Vs(k) + σ2

dk

We suppose that Vs(k = 0) = 0 and σdk
is constant and equal to σd for all of k.

We can deduce that Vs(k) = k.σ2
d .

Demonstration:

For k = 0 ⇒ Vs(1) = Vs(0) + σ2
d

k = 1 ⇒ Vs(2) = Vs(1) + σ2
d = 2.σ2

d
k = 2 ⇒ Vs(3) = Vs(2) + σ2

d = 3.σ2
d .

For k ⇒ Vs(k) = k.σ2
d .

According to the previous equation:

Vs(k + 1) = Vs(k) + Vd(k)
⇒ Vs(k + 1) = k.σ2

d + σ2
d

⇒ Vs(k + 1) = (k + 1).σ2
d

Thus:
Vs(k) = k.σ2

d

E[(S(k)−
∧
S(k))2] = E[S(k)2]−

∧
S(k)2

⇒ E[S(k)2]−
∧
S(k)2 = Vs(k) = k.σ2

d

So:

E[S(k)2] = k.σ2
d +

∧
S(k)2

We replace E[S(k)2] = k.σ2
d +

∧
S(k)2 in F(U), we obtain Equation (7):

F(U) = Cs · Ŝ(H)2 +
H−1

∑
k=0

[
Cs · Ŝ(k)2 + Cpr ·U(k)2

]
+ Cs ·Vd ·

H(H + 1)
2
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For the constraint (9), we demonstrate it as follows:
We have:

S(k + 1) = S(k) + U(k)− d(k)

⇒ P[S(k + 1) ≥ 0] ≥ α

⇒ P[S(k) + U(k)− d(k) ≥ 0] ≥ α

⇒ P[S(k) + U(k) ≥ d(k)] ≥ α

⇒ P[S(k) + U(k)−
∧
d(k) ≥ d(k)−

∧
d(k)] ≥ α

⇒ P[ S(k)+U(k)−
∧
d(k)

Vd(k)
≥ d(k)−

∧
d(k)

Vd(k)
] ≥ α

We note that:

X = d(k)−
∧
d(k)

Vd(k)
: A Gaussian random variable for the demand d(k).

We suppose that, ϕ is the Gaussian demand distribution function, and f is the probability
density function.

ϕd,k(
S(k) + U(k)−

∧
d(k)

Vd,k
) ≥ α

ϕd,k is strictly increasing, so we note that ϕd,k.

⇒ S(k) + U(k)− d̂(k)
Vd,k

≥ ϕ−1(α)

⇒ S(k) + U(k)− d̂(k) ≥ Vd,k · ϕ−1
d,k (α)

⇒ U(k) ≥ Vd,k × ϕ−1(α) + d̂(k)− S(k)

So, P(S(k + 1) ≥ 0) ≥ α ⇒
(

U(k) ≥ Vd,k · ϕ−1
d,k (α) + d̂(k)− S(k)

)
k = 0, 1, . . . , H − 1 .

2.2.2. Maintenance Strategy

The maintenance strategy aims to improve the availability of the production system by reducing
the occurrence of failures in order to minimize the losses caused by the latter along with operating
costs. This activity is becoming increasingly important to companies, and should thus be based on
a clear strategy to reduce the associated costs while ensuring some level of equipment reliability.
The optimization of maintenance strategies has been widely studied in the literature.

The stochastic nature of the system is due to the machine, which is subject to breakdowns and
maintenance actions. Therefore, we consider a perfect periodic preventive maintenance scheme
combined with minimal repair at failure [30].

The total maintenance actions cost can be summed up in the following analytic expression:

ϕ(U, N) = Cpm × (N − 1) + Ccm × A(U, N) (11)

where N ∈ {1, 2, 3 . . . . . .} and A(U, N) accords to the expected number of failures that occur during
the horizon H. ∆t, considering the influence of the production rate in each production period k on the
failure rate of the machine, λk(t). Recall that λn(t) = the failure rate for nominal conditions, which is
equivalent to the failure rate under the maximum production rate during the horizon H. ∆t,

λk(t) = λk−1(∆t) +
U(k)
Umax

λn(t) ∀ t ∈ [0, ∆t] (12)

So, over the horizon H. ∆t, the average failure number is (see Hajej, et al. [18]):



Appl. Sci. 2018, 8, 88 8 of 18

A(U, N) =
N−1
∑

j=0

 In((j+1)× H
N.∆t )

∑
i=In(j× H

N.∆t )+1

∆t∫
0

λi(t) +
(j+1)× H

N−In((j+1)× H
N.∆t )×∆t∫

0
λIn((j+1)× H

N.∆t )+1(t) dt

+
(In((j+1)× H

N.∆t )+1)×∆t−(j+1)× H
N∫

0

U(In((j+1)× H
N.∆t )+1)

Umax
× λn(t) dt


(13)

In the next section, different algorithms are described for optimizing PMPP.

3. Optimization of the PMPP

Finding a “good” algorithm for a given optimization problem, which can be a knowledge and
time-intensive activity, depends on the nature of the objective function, i.e., its behavior (continuity,
differentiability, convexity), and the constraints characterizing the set of admissible solutions. One of
the fundamental challenges in engineering design is that the multiplicity of local solutions has led
to a major effort to develop global search algorithms. However, these often have a prohibitive
computational cost when it comes to solving real-life problems. Optimization techniques and
metaheuristics represent a different way to solve complex optimization problems and give good
solutions within an acceptable period of time through the reduction of the explored space.

There are two major categories of solution methods for optimization problems: exact and
approximation. Exact methods invariably yield optimal solutions, although the required computational
effort is often excessive. On the other hand, approximation methods, which are also called heuristics,
enable quickly achieving a suboptimal (but “good”) solution. This may be a suitable approach when
dealing with an optimization problem exhibiting high complexity, a difficult structure, vast amounts
of data, etc.

Many algorithms have been proposed in the literature to solve the joint production and
maintenance problem. For instance, Hajej et al. [18] formulated the problem as a linear stochastic
optimal control problem, while Hajej et al. [29] proposed a new optimization model. A joint genetic
algorithm was proposed by Benbouzid-Sitayeb et al. [26] for the joint production and maintenance.
scheduling problem applied to a flow shop. For their part, Belkaid et al. (2013) proposed a genetic
algorithm for the parallel machine-scheduling problem.

In this section, we will outline the numerical example of the problem studied and different
algorithms for its solution, along with the latter’s execution times and relative performance.

3.1. Numerical Example

We use the following numerical example in order to illustrate our proposed sequential approach
for solving the joint production and maintenance optimization problem.

We consider a single machine M that has to satisfy, over a finite horizon H. ∆t, a stochastic demand
that follows a Gaussian law with a mean d̂(k) and a variance Vd (k). The number H of periods ∆t is
equal to 24, with ∆t = 1. To satisfy the demand, we set a service level.

We consider that the deterioration of the production system follows a Weibull distribution with
parameters γ and β. From Equation (13), we determined the average number of failures assuming that
after each preventive maintenance action, the equipment is in the state “as good as new”.

The following data are used for the computations:

• Cpr = 3 monetary units (mu)/unit of product/period.
• Umax = 15 products.
• α = 0.95.
• Cs = 5 mu/unit of product/period.
• S0 = 20.
• Vd(k) = 1.21
• Cpm = 212 mu.
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• Ccm = 1000 mu.
• ∆t = 1.
• λ0 = 0.2.
• γ = 2.
• β = 100.
• H = 24. ∆t

Table 2 presents the average demand in each period.

Table 2. Random demands.

k 0 1 2 3 4 5 6 7 8
d(k) 15 17 15 15 15 14 16 14 16

k 9 10 11 12 13 14 15 16 17
d(k) 13 15 14 15 12 15 13 15 11

k 18 19 20 21 22 23
d(k) 16 13 15 12 14 16

3.2. Algorithms Used to Solve the PMPP in the Numerical Example

3.2.1. Exact Method

First, we solve the PMPP with the solver FICO Xpress 8.0, which uses exact methods to determine
an optimal solution. After computing, it provides four integer solutions. The best solution is optimal.
It was able to solve the problem in polynomial time: 0.1 s
√

Total cost = 22,281.25 mu.
√

Optimal production plan (see Table 3).
√

Optimal number of preventive maintenance actions = N* = 3.

Table 3. Optimal production plan yielded by exact method.

k 0 1 2 3 4 5 6 7 8
U(k) 1 12 15 15 15 15 15 15 15

k 9 10 11 12 13 14 15 16 17
U(k) 13 15 14 15 12 15 13 15 12

k 18 19 20 21 22 23
U(k) 15 13 15 12 14 15

3.2.2. Nelder–Mead Method

• Algorithm Description

For a function of n variables, the algorithm maintains a set of n + 1 points forming the vertices of
a polytope in n-dimensional space. This method is often termed the “simplex” method, which should
not be confused with the well-known simplex method for linear programming. The algorithm
performs a transformation sequence to decrease the function values of each vertex. At each iteration,
new function values are calculated for several points and compared with the function values of
the previous iteration that are at the vertices. This process is complete when the simplex becomes
sufficiently weak in a certain direction, or when the function values are sufficiently close in one
direction (provided that f is continuous). The Nelder–Mead simplex typically requires one or two
evaluations of the function at each iteration. It uses only two types of transformation to constitute
a new simplex in each iteration:

• Reflection: far from the worst peak (the one with the highest value of the function).
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• Shrinkage: toward the best vertex (the one with the smallest function value) [31]. In these
transformations, the angles between the edges of all of the simplexes remain constant throughout
the iterations so that the working simplex can change size, but not shape.

The following steps briefly summarize the Nelder–Mead algorithm [32]

1. Initial Simplex: Make the initial set of points usually constructed by generating n + 1 vertices.
2. Repeat the following tasks until the termination test is satisfied:

- Calculate the transformation for termination test (reflection and shrinkage).
- Il the termination test is not satisfied, recalculate the simplex of resolution.

3. Return the best solution of the current simplex S and the value of the associated function.

• Numerical Results

When we apply the Nelder–Mead method to the above numerical example, we obtain the
following results:
√

Total Cost = 315483.7 mu.
√

Optimal production plan (see Table 4).
√

Optimal number of preventive maintenance actions = N* = 2.

Table 4. Optimal production plan yielded by the Nelder–Mead method.

k 0 1 2 3 4 5 6 7 8
U(k) 0 15 0 15 15 15 0 15 15

k 9 10 11 12 13 14 15 16 17
U(k) 15 15 0 0 0 15 15 15 15

k 18 19 20 21 22 23
U(k) 15 15 15 0 0 15

3.2.3. Differential Evolution Method

• Algorithm Description

The remarkable performance of the differential evolution method (DE) as a global optimization
algorithm for continuous minimization problems has been extensively explored [33]. Three decisive
control parameters are involved in DE. First, there is the mutation control parameter, which is a real and
constant factor that controls the amplification of the differential variation. The next parameter is the
crossover control factor; it controls which parameter contributes to which trial vector parameter in the
crossover operation. Lastly, the population size is the number of population members. The algorithm
maintains a population of m points, {x1, x2 . . . xj . . . xm}, as a population for each generation.
The initial vector population is randomly generated from the entire parameter space by adding
normally distributed random deviations to the nominal solution (xnom of the initial generation).
The operation called “mutation” is when the DE generates new parameter vectors by combining
the weighted difference between two population vectors and a third vector. The mutated vector’s
parameters are then associated with the parameters of another predetermined vector. Parameter mixing
is often referred to as crossover operation. The last operation is called selection; each population vector
has to serve one as the target vector so that NP (Non-deterministic Polynomial) competitions take
place in one generation [34].

The process is assumed to have converged if the difference between the best function values in
the new and old populations, as well as the distance between the new best point and the old best point,
are less than the tolerances provided by the accuracy goal and the precision goal. DE is an evolutionary
algorithm; it belongs to a class that also includes genetic algorithms and strategies [35].
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• Numerical Results

When we apply the differential evolution method to the numerical example, we obtain the
following results:
√

Total Cost = 23379.85 mu.
√

Optimal production plan (see Table 5).
√

Optimal number of preventive maintenance actions = N* = 2.

Table 5. Optimal production plan yielded by the differential evolution (DE) method.

k 0 1 2 3 4 5 6 7 8
U(k) 14 10 10 13 12 15 15 14 15

k 9 10 11 12 13 14 15 16 17
U(k) 15 14 15 14 12 14 14 14 14

k 18 19 20 21 22 23
U(k) 13 15 14 14 13 14

3.2.4. Simulated Annealing Method

• Algorithm Description

The idea of the algorithm is to perform a movement according to a probability distribution that
depends on the quality of the various neighbors, with the best neighbors having a higher probability
and the worst having a lower probability. A parameter (T) called the temperature is used. When T is
high, all of the neighbors have approximately the same probability of being accepted. At low T,
a movement, which degrades the cost function, has a low probability of being selected. A T = 0,
no degradation of the cost function is accepted [36].

The following steps describe the simulated annealing algorithm:

1. Generate an initial solution S0 of S with S: =S0. Set an initial temperature T = T0.
2. Generate a random solution in the neighborhood of the current solution.
3. Compare the two solutions according to the criterion of metropolis.
4. Repeat 2 and 3 until the statistical stability is reached.
5. Decrease the temperature, and repeat until the system is frozen.

• Numerical Results

When we apply the simulated annealing method to the numerical example, we obtain the
following results:
√

Total Cost = 31,820.01 mu.
√

Optimal production plan (see Table 6).
√

Optimal number of preventive maintenance actions = N* = 2.

Table 6. Optimal production plan yielded by the simulated annealing (SA) method.

k 0 1 2 3 4 5 6 7 8
U(k) 12 15 15 13 12 15 14 15 15

k 9 10 11 12 13 14 15 16 17
U(k) 15 15 9 13 15 9 15 13 15

k 18 19 20 21 22 23
U(k) 15 15 15 15 2 15
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3.2.5. Random Search Method

• AlgorithmDescription

The last method used, random search, was first proposed by Anderson [37] and later by
Rastrigin [38] and Karnopp [39]. Let f : Rn → R be the fitness or cost function, and S be a subset of
Rn. Let x ∈ S designate a position or candidate solution in the search space [40]. The random search
method is described by the following steps:

1. Initialize x with a random position in the search space. Set k = 0.
2. Until a termination criterion is met (e.g., number of iterations performed, or adequate fitness

reached), repeat the following:

- Sample a new position xk from the hypersphere of a given radius surrounding the current
position x.

- If f (xk) < f (x), then move to the new position by setting x = xk.

• Numerical Results

When we apply the random search method to the numerical example, we obtain the following
results:
√

Total Cost = 386,743.62 mu.
√

Optimal production plan (see Table 7).
√

Optimal number of preventive maintenance actions = N* = 2.

Table 7. Optimal production plan yielded by the random search method.

k 0 1 2 3 4 5 6 7 8
U(k) 12 12 11 5 11 4 13 10 10

k 9 10 11 12 13 14 15 16 17
U(k) 11 1 11 15 10 13 11 4 13

k 18 19 20 21 22 23
U(k) 2 10 13 3 10 4

Table 8 summarizes the results obtained for each method presented in this section. We calculate
the relative gap between the best solution and the solution found from each used method. We note the
relative gap as follow:

GAP =
HeuristicSolution−OptimalSolution

OptimalSolution

Table 8. Comparative summary of the performance of the used methods.

Method Total Cost (mu) N* Execution Time (s) GAP

Exact Method 22,281.25 3 0.01 0
Nelder–Mead 315,483.7 2 12.93 13.16

Differential
Evolution 23,379.85 2 9.18 0.046

Simulated
Annealing 31,820.01 2 5.72 0.43

Random Search 386,743.62 2 404.67 16.36

Based on the results obtained (Table 7), using a medium data size, we observe that the differential
evolution method provides the best production plan and the best number of preventive maintenance
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actions compared with the other algorithms (simulated annealing, random search, and Nelder–Mead)
in order to obtain the best cost with a minimal execution time that gives the minimal GAP. Therefore,
our results echo what many types of research have observed. In fact, Lagarias [41] mentioned that
Nelder–Mead is not a true global optimization algorithm, although, in practice, it gives good results for
problems that do not have many local minima. Regarding the random search method, its significant
inconvenience is that the execution time increases exponentially with the problem size [42]. On the
other hand, the differential evolution algorithm is applied in solving complex optimization problems
according to its effectiveness and efficiency and robustness in a wide variety of applications.
The importance of DE is its ability to handle non-differentiable, nonlinear, and multimodal objective
functions; it mostly converges to the optimal solution, and uses few control parameters. For simulated
annealing, its main advantage is the ability to get out of a local minimum, based on an acceptance
probability related to an exponential function, called transformation Gibbs-Boltzmann [43].

Based on this numerical example, we can conclude that if we need to increase the data size,
the exact method may not lead to optimal solutions. Thus, we adopt the differential evolution method
for our problem, since it gives the minimal GAP.

In the next section, we relax our problem by adding other constraints and another hypothesis.
We tried to calculate the risk of loss profit using the results found by the different methods used in
this section.

4. Risk Assessment Study

Profit maximization is considered to be a main desired objective in the manufacturing sector.
Moreover, since companies and their environments evolve dynamically over time, the inherent risk
under which they must operate also changes [2]. In this section, we will tackle a production and
maintenance optimization problem from a financial risk point of view. Our model considers a contract
between a single operation manufacturing system and a customer, which calls for the former satisfying
the latter’s random demand for a single part type over a finite planning horizon. Anytime demand
cannot be satisfied; a financial loss ensues corresponding to the risk of non-payment by the customer.
We herein carry out an assessment of this risk, which is classified as low, medium, or high, and stems
from different factors such as machine failures, time to repair, inventory shortages, transportation
delays, etc. We will discuss risk assessment for two kinds of events, namely in regard to (i) the returned
products, and (ii) the quality of preventive maintenance actions.

4.1. Lost Profit Risk for Returned Products

Product returns give rise to high costs associated with inventory, transportation, handling, and
warehousing. According to Shear et al. [44], inbound handling costs alone can reach $50 per item,
possibly triple outbound shipping costs. Hence, the management of product returns, often involving
a high degree of uncertainty in terms of the return period and quantity of returned products, can be
a competitive differentiator [45].

This subsection deals with the financial risk associated with the returned product, namely its
impact on the loss of profit that is computed using each of the computational methods presented
previously. There exists a risk where the product sold in period k comes back at period k + a, a = 0, 1,
or 2 (for the purpose of this specific case study). Let the returned quantity in production period k be
denoted δ(k) = d(k − a) ρ, where ρ is a random variable that follows a Bernoulli distribution, ρ ∈ [0, 1].

Let be LRPRP the lost profit risk of a returned product for the horizon H based on the computation
method presented previously. We can assess LPR as the difference between the revenue generated

by selling the optimal product quantity during the finite horizon,
H−1
∑

k=0
U(k), and the costs incurred as

a result of the product being returned.
The assessment of LPR can be computed as follows, where g = unit sale price of the product.
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The revenue:

G = g×
[

H−1

∑
k=0

U∗(k) + S0

]
(14)

The quantity of returned products:

Rp =
H

∑
k−a=0

δ(k) (15)

The loss:
L = g× Rp (16)

LRPRP =
loss
gain

=
L
G

(17)

4.2. Lost Profit Risk for Imperfect Preventive Maintenance

In this section, we consider the case of machine failures and their subsequent repairs that cause
lost production and perhaps lost sales during downtimes. Production reliability depends on the
maintenance strategies; in other words, the quality of both corrective and preventive maintenance
actions is essential for improving system availability.

In this section, we deal with lost profit risk in our assessment in the context of imperfect preventive
maintenance. We assume that each preventive maintenance (PM) action restores the machine to
between the “as good as new” state and the “as bad as old” state.

The failure rate λ(t) can be written as:

λ(t±) = (1− α).λ(t) (18)

where α is a random variable that follows a Bernoulli distribution, α ∈ [0, 1].
Thus, based on Equation (12), the failure rate in the case of imperfect maintenance is expressed

as follows:

λk(t) = λk−1(∆t)(1−

 k− 1

(
⌊

k−2
T

⌋
+ 1)T

) + Uk
Umax

λn(t) +

 k− 1

(
⌊

k−2
T

⌋
+ 1)T

.(1− α).λT(∆t) (19)

Let LRPPM be the risk assessment for lost profit due to imperfect preventive maintenance based
on the computation method that was presented previously.

Consider that A(U, N) is the average number of failures during the horizon H, and B is the total
downtime of the machine over the horizon. We moreover note that for each failure, we need b time
units to repair the machine:

B = A(U, N).b (20)

With:

A(U, N) =
N−1

∑
i=0

 In((i+1)× T
∆t )

∑
k=In(i× T

∆t )+1

∆t∫
0

λk(t) dt

+
H.∆t

∑
k=N×T

∆t∫
0

λk(t) dt (21)

Thus, the production quantity during (H − B) is equal to:

C =

∑
k

U∗(k)× (H − B)

H
(22)

Consequently, the loss of production is:
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D =
H−1

∑
k=0

U∗(k)− C (23)

In this case, we can express the risk by the following equation:

LRPPM =
D

H−1
∑

k=1
U∗(k)

(24)

4.3. Comparative Analysis of Lost Profit Risk

The tables below present the comparative results for the key quantities derived in the foregoing
subsection using the numerical example and different algorithms introduced in Section 3. For the
calculation of returned product quantity, we take a = 1. ∆t, g = 4 mu/product, and the probability
distribution of ρ in Table 9.

Table 9. The probability distribution of ρ during the finite horizon.

k 0 1 2 3 4 5 6 7 8
ρk 0.51 0.47 0.67 0.021 0.996 0.039 0.456 0.722 0.41
k 9 10 11 12 13 14 15 16 17

ρk 0.271 0.259 0.045 0.562 0.50 0.31 0.129 0.064 0.33
k 18 19 20 21 22 23

ρk 0.086 0.352 0.873 0.082 0.432 0.075

Therefore, the quantity of returned product is Rp = 118 products. Thus, L = 472 mu.
For the lost profit risk of imperfect preventive maintenance, we take b = ∆t

4 and α = 0.99.
The aim of calculating the lost profit risk of some uncertainties is to evaluate the economic risk

and its impact on the system planning, and help decision-makers consider risk factors that have a big
influence on the system disruption. In our case study, the risk of having returned products at each
period gives a high risk (between 50–66% for all of the production plans with different computational
methods) (Table 10), which means that if we take into consideration a quantity returned in each
period, it will generate an important loss compared to the gain. This motivates decision-makers to find
a solution to reduce these returns, or incorporate this uncertainty into the production planning.

For the imperfect maintenance LPR, we take a non-negligible period for failure machine reparation.
We determine that if we take a period for reparation into consideration, the LPR is between 4.82% for
our example (Table 11). This result shows that it will have a risk percentage of lost production quantity
during the working horizon. The influence of these percentages vary from one decision-maker to
another; some find that this loss is important compared to the gain, which they bring to find solutions
that reduce these risks.

Table 10. Comparative financial losses using different computational methods for returned products.

Nelder–Mead Method Differential Evolution
Method

Simulated Annealing
Method

Random Search
Method

G 1040 1388 1368 956
LRPRP 45.38% 34% 34.5% 50.6%

Table 11. Comparative financial losses using different computational methods for imperfect
preventive maintenance.

Nelder–Mead Method Differential Evolution
Method

Simulated Annealing
Method

Random Search
Method

C 228,903 311,872 307,101 208.881
D 11.097 151,285 14.8988 10.1195

LRPPM 4.62% 4.62% 4.62% 4.62%
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5. Conclusions

In order to resolve the often-conflicting objectives of system reliability and profit maximization,
an organization should establish appropriate maintenance guidelines that take into consideration
costs associated with both production activities and equipment failures, the latter of which include
e.g., costs due to lost production. In fact, there is no profit without risk. Therefore, decision-makers
always try to study the effectiveness of their adopted strategies, and want to know how their decisions
lead to a loss of profit. Companies seek to generate more profit, without having to regret their decision.

In this context, this research can serve as a decision support to quantify the profit loss following
decisions made. Furthermore, in real life, decision-makers may involve this research in their work
strategies. Each company has a system that helps them make predictions before the manufacturing
process. The proposed models can be integrated into the employed systems, taking into account the
impact of the computational methods used. The work proposes a set of mathematical tools that help
evaluate decision-making in a random and risky environment, and can guide decision-makers in their
choices. Therefore, it is important to have approaches and tools to help managers make judicious and
efficient decisions in the face of this type of uncertainty.

The proposed approach aims to analyze the risk of profit–loss following a decision made on the
manufacturing system under uncertainties. A single operation manufacturing system is considered,
which produces a single product in order to satisfy a random multi-period demand over a finite
horizon H. A mathematical model is presented to formulate the model. The first objective is to find
the optimal production and maintenance plans with different optimization algorithms to deduce
among the most appropriate computational algorithm for our problem. Based on the results of each
method, the second objective of this study is to propose analytical models that evaluate the financial
losses for some work strategies by using the optimal production and maintenance plans found by the
presented methods. The goal is to evaluate the impact of the results of these computational methods
on the calculation of profit loss for the two cases presented in the paper. The first case studied is the
integration of an imperfect preventive maintenance policy. The second is the integration of a returned
product strategy in random production periods. The implemented numerical examples show that the
risk of profit–loss differs from one use of computational method to another. This shows that the use of
an algorithm can influence profit and cause loss of profit.

Our work is a new contribution, which treats the impact of optimization algorithms on decisions
made following incidents that may disrupt the systems. However, it is not exempt from limitations.
In fact, in the literature, several approaches can solve the problem type proposed in the paper. However,
this work deals with only four approximate methods, which are compared with the solution found
by an exact method. The choice of these algorithms is based on the most used ones in such types of
problems, and thus were easily adapted to our analytical model.

For future research, we will study the impact of the decisions made by decision-makers on various
industrial problems. We will also study the impact of the decision on the optimization of assembly
and disassembly systems, under different uncertainties.
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