
applied  
sciences

Article

Learning Behavior Trees for Autonomous Agents
with Hybrid Constraints Evolution

Qi Zhang ID , Jian Yao, Quanjun Yin * and Yabing Zha

College of Systems Engineering, National University of Defense Technology, Changsha 410073, Hunan, China;
zhangqiy123@nudt.edu.cn (Q.Z.); markovyao@163.com (J.Y.); zhayabing@nudt.edu.cn (Y.Z.)
* Correspondence: yinquanjun@nudt.edu.cn; Tel.: +86-0731-8450-6327

Received: 7 May 2018; Accepted: 28 June 2018; Published: 3 July 2018
����������
�������

Featured Application: The proposed approach can learn transparent behavior models represented
as Behavior Trees, which could be used to alleviate the heaven endeavor of manual agent
programming in game and simulation.

Abstract: In modern training, entertainment and education applications, behavior trees (BTs)
have already become a fantastic alternative to finite state machines (FSMs) in modeling and
controlling autonomous agents. However, it is expensive and inefficient to create BTs for various
task scenarios manually. Thus, the genetic programming (GP) approach has been devised to evolve
BTs automatically but only received limited success. The standard GP approaches to evolve BTs fail
to scale up and to provide good solutions, while GP approaches with domain-specific constraints
can accelerate learning but need significant knowledge engineering effort. In this paper, we propose
a modified approach, named evolving BTs with hybrid constraints (EBT-HC), to improve the evolution
of BTs for autonomous agents. We first propose a novel idea of dynamic constraint based on frequent
sub-trees mining, which can accelerate evolution by protecting preponderant behavior sub-trees
from undesired crossover. Then we introduce the existing ‘static’ structural constraint into our
dynamic constraint to form the evolving BTs with hybrid constraints. The static structure can
constrain expected BT form to reduce the size of the search space, thus the hybrid constraints would
lead more efficient learning and find better solutions without the loss of the domain-independence.
Preliminary experiments, carried out on the Pac-Man game environment, show that the hybrid
EBT-HC outperforms other approaches in facilitating the BT design by achieving better behavior
performance within fewer generations. Moreover, the generated behavior models by EBT-HC are
human readable and easy to be fine-tuned by domain experts.

Keywords: Behavior Trees (BTs); Genetic Programming (GP); autonomous agents; behavior modeling;
tree mining

1. Introduction

Modern training, entertainment and education applications make extensive use of autonomously
controlled virtual agents or physical robots [1]. In these applications, the agents must display
complex intelligent behaviors to carry out given tasks. Until recently, those behaviors have always
been developed using manually designed scripts, finite state machines (FSMs) or behavior trees
(BTs) etc. However, these ways may not only impose intensive work on human designers when
facing multiple types of agents, missions or scenarios, but also result in rigid and predictable
agent behaviors [2,3]. An alternative way is using machine learning (ML) techniques to generate
agent behaviors automatically [1,4,5]. Through providing sample traces or evaluation criterion
of experts’ desired behavior, an agent can learn behavior model from expert demonstration or

Appl. Sci. 2018, 8, 1077; doi:10.3390/app8071077 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2519-5580
http://www.mdpi.com/2076-3417/8/7/1077?type=check_update&version=1
http://dx.doi.org/10.3390/app8071077
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 1077 2 of 22

trial-and-error experience respectively. Nevertheless, pure ML approaches, like neuron network (NN)
or reinforcement learning (RL), usually generate behavior models as black box systems, which are
difficult for domain experts to understand, validate and modify [6,7].

Having the advantages of modularity, reactiveness and scalability compared to FSMs, BTs have
become a dominant approach to encode embodied agent behavior in computer games, simulation and
robotics [8,9]. A BT can be regarded as a hierarchical goal-oriented reactive planner, which can
represent not only a static task plan, but also a complex task policy through conditional checks of
various situations. Moreover, due to the hierarchical and modular tree structure, BTs are compatible
with genetic programming (GP) to perform sub-tree crossover and mutation, which can yield an
optimized BT [6]. Furthermore, the well organized behavior model in BT formalism is accessible and
easy to fine-tune for domain experts [10,11].

To balance between automatic generation and model accessibility, recently, several researchers
are focusing on learning transparent behavior models as BTs, particularly using genetic
programming [11–14]. GP is an evolutionary optimization approach to search an optimal program for
a given problem through learning from experience repeatedly [15,16]. The evolving BT is a series of
specific approaches which apply GP for agent behavior modeling in certain tasks. The learned model
is represented and acted upon in the form of a BT, which is usually evaluated according to a fitness
function defined by domain expert based on mission/task. While those approaches have achieved
positive results, there are still some open problems [12,14]. For the standard evolving BTs approach
(EBT), the global random crossover and mutation would result in dramatically growing trees with
many nonsensical branches, which makes it fail to scale up and to provide good solutions. To efficiently
generate a good BT solution, some approaches apply a set of domain-specific constraints to reduce the
size of the search space, which may limit the application of evolving BTs approaches [13,17].

In this paper, we propose a modified approach, named evolving BTs with hybrid constraints
(EBT-HC), to learn behavior models as BTs for autonomous agents. Firstly, a novel idea of dynamic
constraint based on frequent sub-trees mining is presented to accelerate learning. It first identifies
frequent sub-trees of the superior individuals with higher fitness, then adjusts node crossover
probability to protect such preponderant sub-trees from undesired crossover. However, for the
large global random search and increasing risk trapped in unwanted local optima, the evolving
BTs with only dynamic constraint (EBT-DC) may find unstable solution. Secondly, we extend our
dynamic constraint with the existing ‘static’ structural constraint (EBT-SC) [14] to form the evolving
BTs with hybrid constraints. The static constraint can set structural guideline for expected BTs to
limit the size of search space, thus the hybrid constraints would lead more efficient learning and find
better solutions without the loss of the domain-independence. The experiments, carried out on the
Pac-Man game environment, show that in most cases the dynamic constraint is effective to help both
EBT-DC and EBT-HC to accelerate evolution and find comparable final solutions than the EBT and
EBT-SC. However, the solutions found by EBT-DC become more unstable as the diversity of population
decreases. The hybrid EBT-HC can outperform other approaches by yielding more stable solutions
with higher fitness in fewer generations. Additionally, the resulting BTs and frequent sub-trees found
by EBT-HC are comprehensible and easy to analyze and refine.

The remainder of this paper is organized as follows. Section 2 introduces background and related
works of agent behavior modeling and evolving BTs. Section 3 describes the proposed evolving BTs
with hybrid constraints approach. Section 4 tests the proposed approach in the Pac-Man AI game.
Finally, Section 5 draws conclusions and suggests directions for future research.

2. Background and Related Works

In this section, we recall behavior trees and genetic programming as our necessary research
background, and review some related works of agent behavior modeling and evolving behavior trees.



Appl. Sci. 2018, 8, 1077 3 of 22

2.1. Behavior Trees

A behavior tree can be regarded as a hierarchical plan representation and decision-making tool
to encode autonomous agent behavior. It is an intuitive alternative to FSM with modularity and
scalability advantages. Thus, experts can decompose a complex task into simple and reusable low level
task modules and build them independently. Nowadays BTs have been adopted dominantly to model
the behavior of non-player characters (NPC) (a.k.a. computer generated forces (CGF) in simulation) in
game industry, and also applied widespread on robotics [10].

A BT is usually defined as a directed rooted tree BT =< V, E, τ >, where V is the set of all the
tree nodes, E is the set of edges to connect tree nodes, τ ∈ V is the root node. For each connected node,
we define parent as the outgoing node and child as the incoming node. The root has no parents
and only one child, and the lea f has no child. A single leaf node represents a primitive behavior.
In addition, a node between root and leaves represents a composed behavior combining of primitive
behaviors and other composed behaviors, which corresponds to a behavior hierarchy. The execution
of a BT proceeds as follows. Periodically, the root node sends a signal called tick to its children. This
tick is then passed down to leaf nodes according to the propagation rule of each node type. Once
a leaf node receives a tick, a corresponding behavior is executed. The node returns to its parent status
Running if its execution has not finished yet, Success if it has achieved its goal, or Failure otherwise.

In this paper, we adopt the BTs building approach recommended in [18], whose components
include Condition, Selector, Sequence and Action nodes.

Condition: The condition node checks whenever a condition is satisfied or not, returning success
or f ailure accordingly. The condition node never returns running.

Selector: a selector node propagates the tick signal to its children sequentially. If any child returns
Success or Running, the Selector stops the propagation and returns the received state. If all children
return Failure, the Selector returns Failure.

Sequence: a sequence node also propagates the tick signal to its children sequentially. However,
if any child returns Failure or Running, the Sequence stops the propagation and returns the received
state. Only if all children return Success, the Sequence returns Success.

Action: The action node performs a primitive behavior, returning success if the action is completed
and f ailure if the action cannot be completed. Otherwise it returns running.

Figure 1 shows the graphical representation of all types of nodes used in this paper.

Figure 1. The graphical representation of a behavior tree nodes used.

2.2. Genetic Programming

Genetic programming is a specialization of genetic algorithms which performs a stochastic
search to solve a particular task inspired by Darwin’s theories of evolution [15,16]. In GP, each
individual within the evolving population represents a computer program, which typically is a tree
structure such as a behavior tree. The evolving BTs approach applies GP to optimize a population
of randomly-generated BTs for agent behavior modeling. Each BT represents a possible behavior
model to control autonomous agent evaluated according to a fitness function defined by domain
expert based on task. The learning goal is to find a BT controller which can maximize the fitness in the
task. For a BT controller, possible states related to decision-making are encoded as condition nodes,
available primitive actions in the task are encoded as action nodes, decision-making logic is controlled
by BT composite nodes (such as selector, sequence or parallel), a behavior policy is a tree individual
with ordered composition of control nodes and leaf nodes.



Appl. Sci. 2018, 8, 1077 4 of 22

For BT populations, individuals are evolved using genetic operations of reproduction, crossover,
and mutation. In each iteration of the algorithm, some fitter individuals are selected for
reproduction directly. Some individuals take crossover operation where a random sub-tree from
one individual is swapped with a random sub-tree from another individual and produce two new trees
for the next generation. A mutation operator that randomly produces small changes to individuals
is also used in order to increase diversity within the population. This process continues until the GP
finds a BT that satisfies the goal (e.g., minimize the fitness function and satisfy all constraints).

Often, the crossover operation can bring on undesirable effect of rapidly increasing tree sizes for
final generated BT. This phenomenon of generating a BT of larger size than necessary can be termed
as bloat. Several approaches for dealing with bloat have been developed [16]. These approaches
essentially have a fitness cost based on the size of the tree, thus increasing the tendency for more
compact tree to be selected for reproduction.

2.3. Agent Behavior Modeling and Evolving Behavior Trees

In computer games and simulation, a variety of agent programming techniques have been
employed to represent and embed agent behaviors, especially for decision-making process.
Those techniques usually encode agent behaviors in well-defined structures/models based on domain
expertise and customizable constrains, such as FSMs, hierarchical finite state machines (HFSMs),
rule-based systems and BTs etc. [2,3]. Among which, BTs have come to the forefront recently for their
modularity, scalability, reusability and accessibility [8–10]. However, most of the developments based
on those scripting approaches rely on domain expertise and suffer from time-consuming, expensive
and difficult endeavor of programming complexity [2,4,19].

On the other side of the spectrum, various approaches are emerged in machine learning
community to generate adaptive agent behavior automatically [5,20–22]. This field has been
studied basically from two perspectives [1,2]: learning from observation (LfO) (a.k.a, learning from
demonstration, programming from demonstration) and learning from experience. The former allows
agent to extract the behavior model of the target agent by observing the behavior trace of another agent
(e.g., using NN and case-based learning) [4,20]. For example, Fernlund et al. [20] adopted LfO to build
agents capable of driving a simulated automobile in a city environment. Ontañón et al. [23] use learning
from demonstration for realtime strategy games in the context of case-based planning. While the later
leads virtual agent to learn and optimize its behavior by interacting with environment repeatedly
(e.g., reinforcement learning and evolutionary algorithms) [5,22]. The performance of the agent is
measured according to how well the task is performed as expert’s evaluation criterions, which may
sometimes find creative solutions that are not found by humans termed as computational creativity [4].
For instance, Aihe and Gonzalez [24], propose Reinforcement learning (RL) to compensate for situations
where the domain expert has limited knowledge of the subject being modeled. Teng et al. [22]
use a self-organizing neural network to learn incrementally through real-time interactions with the
environment, which can improve air combat maneuvering strategies of CGFs. Please note that most
of those machine learning methods generate behavior model as a black box system [6,7]. As a result,
domain expert could not produce a clear explanation of the relationship between behaviors and models,
which is hard to analyze and validate.

To remedy the disadvantages, in both behavior learning perspectives, there are some attempts to
generate behavior models represented as BTs from observation [7,25] or experience [11,12,14,26,27]
automatically. In this paper, we are focusing on generate BTs through experiential learning, especially
evolving BTs. Please note that comparing with other policy representation approaches (decision tree
etc.), BT is a more flexible representation which allows explicitly a course of actions as a sub-policy
for certain situation. Therefore, for evolving BTs, the scalability is still an open problem stemming
from the random large space search [12,14]. In [12], the author points out it is too flexible for evolving
BTs without structural guidelines, which would result in most trees that are quite inefficient and
impossible to read. So the author constrains the crossover with fixed ’behavior block’ sub-trees, which



Appl. Sci. 2018, 8, 1077 5 of 22

yield comparable reactive behavior. In [14], the authors investigate the effect of ’standard BT design’
constraint on evolving BTs approach, which is domain-independent and efficient. They also point
out most existing evolving BT approaches adopt different manual constraints to design what the BTs
represent and the nature of the tree’s constraints. Some of those approaches can speed up learning
efficiently but need a lot of knowledge engineering works, which may limit the application of evolving
BT approaches. For instance, Scheper et al. [17] apply genetic algorithm to generate improved BTs
for a real-world robotic, the initial creation of the trees are not random but human design. In [13],
the whole task in game DEFCON is decomposed into a series of sub-tasks and the learning task is just
to evolve simple parameter for each sub-task respectively.

Even though the works mentioned above cover most aspects of the behavior modeling with
evolving BTs, we intend to use a model-free dynamic constraint to accelerate evolution. We base our
work on the standard evolving BTs approach. The main concern is around how to apply model-free
constraint or heuristic to speed up BT evolving.

3. Methodology

In this section, we give details about our proposed approach in mainly tow folds. Firstly,
we show an overview of the proposed framework, including its main components and basic workflow.
Secondly, we elaborate the proposed dynamic constraint and how we extend it with the existing static
structural constraint.

3.1. The Proposed Evolving Behavior Trees Framework

Our proposed approach, evolving BTs with hybrid constraints (EBT-HC), is outlined in Figure 2.
As the figure shows, two new components, ‘Static Structural Constraint’ and ‘Dynamic Constraint’,
are added and interacted with the standard evolving BTs process. For the static structural constraint,
it set some tree rules to constrain expected BT structure in population initialization and crossover,
which can avoid many meaningless and inefficient tree configurations in evolution. For the
dynamic constraint, it first applies frequent sub-trees mining for a few higher ranked individuals in
each generation, then adjusts nodes crossover probabilities based on the extracted frequent sub-trees,
which can protect preponderant structures against undesirable crossover.

Figure 2. The proposed evolving behavior tree framework, behavior tree (BT).



Appl. Sci. 2018, 8, 1077 6 of 22

In detail, the workflow of the proposed EBT-HC for agent behavior modeling can be described
as follows:

At first, the GP system creates initial BT population individuals under static structural constraint.
Unlike fully random combination of leaf nodes and control nodes in standard evolving BTs, the initial
BTs are generated constrained by predefined BT syntax rules which will be elaborated in Section 3.3.

Secondly, the GP system evaluates each individual in the population respectively, which needs
to run the BT simulator and calculate fitness according to the simulation results and behavior
evaluation function. The BT simulator simulates the task execution with the agent controlled by the
evaluated BT individual, the behavior evaluation function depicts desired behavior effect quantitatively,
which will serve as the fitness measure base that determines the appropriateness of the individuals
being evolved.

Thirdly and foremost, some superior individuals with higher fitness are selected to perform
crossover and mutate operations to reproduce offsprings. Here we adopt tournament select,
sub-tree crossover and single point mutation. Please note that in the sub-tree crossover, the select of
crossover node should be constrained by both static structural constraint and dynamic constraint.

Before crossover, we execute a FREQT similar tree mining algorithm for the population and find
frequent sub-trees as preponderant structure needing to protect. For each tree individual, according to
whether a node belongs to a frequent sub-tree found, we classify nodes in this tree (except the root node)
to two sets, protected nodes and unprotected nodes. Then we adjust selected crossover probability of
each node accordingly. In brief, we increase the selected probability of unprotected nodes and reduce
the selected probability of protected nodes to avoid undesired crossover.

After genetic operation, we update the population to next generation to continue evolution until
the end condition is reached.

3.2. Dynamic Constrain Based on Frequent Sub-Tree Mining

In genetic programming, the learner selects preponderant individuals of the current population
to reproduce offspring through select operator (e.g., tournament, wheel roulette). From another
perspective, the evolution to find an optimal BT is also the process of preponderant structures
combination, where a preponderant structure is usually a self-contained behavior sub-tree to deal
with certain local situation correctly. So regarding the population individuals as dataset, in each
generation, we can mine frequent sub-tree structures of higher fitness individuals. After that we adjust
nodes crossover probability to protect such sub-trees against destroyed for faster experiential learning.
We call such soft way as dynamic constraint based on frequent sub-tree mining. The intuition behind
dynamic constraint is that a frequent sub-tree in superior individuals has a bigger chance to be required
by most individuals with higher fitness, even as a sub-tree of the optimal target BT. Thus, we should
give more chance to protect such preponderant sub-trees for inherited to next generation. Through
preference of crossover nodes based on frequent sub-trees found, in the next generation, there will be
more individuals containing those frequent sub-trees, which would lead more precise search around
problem space based on those frequent sub-trees, and increase the chance to find a better solution.

In detail, there are two steps to apply dynamic constraint in evolution, frequent sub-tree mining
and nodes crossover probability adjustment.

3.2.1. Frequent Sub-Tree Mining

In this section, an adaptation of FREQT [28] is used to mine frequent sub-tree structures
in population. FREQT is a classic pattern mining algorithm to discover frequent tree patterns
from a collection of labeled ordered trees (LOT). It adopts rightmost expansion technique to
construct candidate frequent patterns incrementally. At the same time, frequencies of the candidates
are computed by maintaining only the occurrences of the rightmost leaf efficiently. It has been
demonstrated that FREQT can scale almost linearly in the total size of maximal tree patterns slightly
depending on the size of the longest pattern [28,29].



Appl. Sci. 2018, 8, 1077 7 of 22

A labeled ordered tree usually represents a semi-structured data structure such as XML.
According to the structure and semantics, a behavior tree is a typical labeled ordered tree. Thus the
formalism of BT can be expanded from definition of LOT as BTLOT =< V, E, τ, L,�>, where
BT =< V, E, τ > is the basic structure of a BT, τ ∈ V is the root node. The mapping L : V → ι

is the labeling function, ι includes the labels of root node, control nodes and leaf nodes (condition
nodes and action nodes) of a BT. The binary relation �⊆ V ×V represents a sibling relation for two
nodes in a BT. For two nodes µ and υ of the same parent, iff µ � υ then µ is an elder brother of υ.
The execution of BT is following order of depth first from left to right, � represents execution orders of
two nodes. Thus, we can construct indexes for all the nodes as depth first in an LOT, which can be
consistent with records in GP.

Let TD = {T1, T2, ..., Tn} be the dataset of tree mining, which includes a small fraction of
individuals with higher fitness in current population. Tp is a candidate frequent pattern, which is
usually a sub-tree in tree mining. δT(Tp) is the frequency of Tp in a tree T, dT(Tp) depicts whether
Tp exists in T. There is dT(Tp) = 1 if δT(Tp) > 0, else dT(Tp) = 0. σ(Tp) = ∑T∈TD

dT(Tp) represents
the number of trees where frequent pattern sub-tree Tp exists. nt(Tp) depicts terminal node size of
frequent pattern tree Tp in tree T.

To adapt the notions from FREQT to BTs mining in GP system, we modify the rules to judge
whether a sub-tree is frequent. According to BT syntax and its design pattern, a tree Tp can be regarded
as a frequent pattern iff it satisfies all the following proposed rules.

1. σ(Tp)/|TD| > σmin and NTpmin < |Tp| < NTpmax , where σmin depicts the minimal support of
a frequent pattern, NTpmin depicts the minimal node size of a frequent pattern and NTpmax depicts
the maximal node size of a frequent pattern.

2. All terminal nodes in a frequent pattern |Tp|must be leaf nodes (condition nodes or action nodes).
3. nt(Tp) > NTptmin , where NTptmin depicts the minimal terminal node size of a frequent pattern.

Rule 1 is the basic requirement of FREQT data mining algorithms. Rule 2 and rule 3 represent
proposed form requirements of expected patterns in behavior modeling with BT. As a decision
making tool, the core of a BT is rooted in the logic relation among its leaf nodes. Thus, in rule 2,
we believe if a terminal node is a control node, it is meaningless for its located branch. For rule 3, if
a frequent pattern has too few terminal nodes (for example only one terminal node), it shows trivial
effect on the whole tree construction.

3.2.2. Nodes Crossover Probability Adjustment

After finding the frequent sub-trees collection, the crossover probability of each node is adjusted
according to its relation to discovered frequent sub-trees, which can protect those preponderant
structures to be inherited to the next generation more likely.

Formally, let TDi depict the set of the selected superior individuals of BTs population at generation i,
T is a chromosome tree selected for crossover in TDi , V(T) is the set of all the tree nodes in T except
the root node τ. Let TD f depict the set of the mined frequent sub-trees in TDi , Tp is a frequent sub-tree
in TD f , Vp(T) is the set of all the tree nodes in Tp, where we define Vr

p(T) as the root node of Tp,
Vin

p (T) = Vp(T) \Vr
p(T) as the set of nodes in Tp.

Provided we find N distinct frequent sub-trees Tk
p in T, k = 1, 2, ..., N, Tk

p ∈ TD f . Then for the
tree T, we define the root node set Vr(T) =

⋃N
k=1 Vr

p,k(T), the inside node set Vin(T) =
⋃N

k=1 Vin
p,k(T),

and the other node set Vneu(T) = V(T) \ (Vr(T) ∪Vin(T)). To protect the frequent sub-trees unbroken
more likely in crossover, we can classify V(T) to two sets, protected nodes set Vpro(T) and unprotected
nodes set Vunpro(T). That is, Vpro(T) = Vin(T), which stores nodes needing to be protected in T,
and Vunpro(T) = Vr(T) ∪Vneu(T), which stores nodes to be unprotected in T.



Appl. Sci. 2018, 8, 1077 8 of 22

Obviously, to protect preponderant sub-trees inherited to the next generation, we should decrease
the select probability of nodes in Vpro(T) and increase the select probability of nodes in Vunpro(T)
as crossover point. We consider the fact that standard sub-tree crossover operation produce two
child trees, as illustrated in Figure 3.

Figure 3. The proposed crossover operation with frequent sub-trees.

As we can see in the leftup parent tree, except the root node, its nodes are classified to unprotected
nodes and protected nodes enclosed with two dashed curves respectively. The mined frequent sub-tree
is enclosed with a non-dashed curve including all the protected nodes and the root node of the
frequent sub-tree. Let us denote the select probability as a crossover point at a node v by pcross(v).
The GP system picks up two individuals (e.g., by a tournament selection) from the population,
and performs a crossover operation at a node v with the probability pcross(v), which has been modified
and normalized as follows:

pcross(v) =
γ

|Vpro(T)|+ |Vunpro(T)|
v ∈ Vpro(T) (1)

pcross(v) =
1

|Vpro(T)|+ |Vunpro(T)|
+

1−γ
|Vpro(T)|+|Vunpro(T)| ∗ |Vpro(T)|

|Vunpro(T)|
v ∈ Vunpro(T) (2)

where γ depicts the discount factor, which control the select probability preference for nodes in the
protected nodes set.

In Figure 3, the light protected nodes have more chance to be selected in crossover, node ‘A4’ with
red square in the figure. Then two sub-trees including preponderant structures will be combined in
the right up child tree inherited to next generation. Besides, we can see in Equations (1) and (2), if we
cannot find any frequent sub-trees, there is no effect on the standard evolving process. With generation
increasing, the crossover probability adjustment would have bigger effect on exploiting frequent
preponderant sub-trees.

3.3. Evolving BTs with Hybrid Constraints

Although the idea behind dynamic constraint based on frequent sub-tree mining is intuitive
to accelerate evolution, we found it cannot achieve expected performance in some real applications.
For standard evolving BT approach, the global random crossover and mutation result in dramatically
growing trees with many nonsensical branches. Therefore, it is hard for the standard evolving BT
approach to escape from the local minimum, and some frequent patterns found may be inefficient



Appl. Sci. 2018, 8, 1077 9 of 22

with inactive nodes never to be executed. In this section, we extend our dynamic constraint
with the existing static structural constraint [14]. The static constraint sets structural guideline for
generated BTs in initiation and crossover, the dynamic constraint adjusts nodes crossover probability
to protect preponderant structure based on constrained configuration space, which can lead more
efficient learning.

The static structural constraint is referred from paper [14], which enforce following tree rules as
‘standard behavior tree design’:

• Selector node may only be placed at depth levels that are even.
• Sequence node may only be placed at depth levels that are odd.
• All terminal child nodes of a node must be adjacent, and those child nodes must be one or more

condition nodes followed by on or more action nodes. If there is only one terminal child node,
it must be an action node.

Figure 4 is an example generated BT using above static structural constraint. The generated initial
BT individuals are efficient and well understood. To ensure the static structural constraint conformed
in evolution, the adjacent terminal child nodes of a node will be regarded as a sequential block to
swap together.

Figure 4. An example behavior tree designed using static structural constraint.

To combine dynamic constraint with static structural constraint in evolution, the following two
points should be taken into account for Section 3.2:

1. The available selected units are changed in evolving BTs with hybrid constraint.

In evolving BTs based on dynamic constraint, we sort all nodes in a tree to either protected nodes
set or unprotected nodes set. While in evolving BTs with hybrid constraints, the candidate nodes to be
sorted are subset of all the tree nodes. On one hand, in each parent tree, we regard the adjacent terminal
child nodes as a sequential block to crossover as Figure 4. So the size of candidate nodes to be sorted is
the sum of control nodes and blocks. Under static constraint, the adjacent terminal child nodes are
regarded as a sequential behavior block and the crossover is constrained only between nodes/blocks
with the same type, so the possible behavior blocks will be unchanged in crossover, which will reduce
the population diversity and limit the search for possible solution. Thus, we should set a high mutation
probability to maintain the diversity of generated behavior blocks. On the other hand, for the crossover
node in the first parent tree, candidate nodes can be control nodes or blocks, while for the crossover
nodes in the second selected parent tree, the crossover node must be the same type as the selected
node in the first tree to keep the static structural constraint unbroken, here types include sequence,
selector or terminal block.

2. Nodes crossover probability is adjusted based on step 1.

After modifying the candidate nodes in step 1, the crossover probability of nodes should be
adjusted accordingly in Section 3.2.2. It should be noted that iff all nodes in a sequential block are in
a frequent sub-tree found, the block can be protected.



Appl. Sci. 2018, 8, 1077 10 of 22

4. Experimental Section

In this section, a series of experiments are carried out in the Pacman AI open-source benchmark
to test the performance of our approach in agent behavior modeling. The experiments are run single
threaded on an Intel Core i7, 3.40 GHz CPU using the Windows 7 64-bit operating system. Four
evolving BTs approaches with different constraints and a handcrafted BT are compared, the training
and final test performance are monitored over time, along with other statistical measurements.
The main goal of our experiments is to demonstrate whether our proposed dynamic constraint
can help the original approaches to accelerate behavior trees generation and reach comparable
behavior performance. Another goal is to ascertain whether we can get useful behavior sub-trees and
well-designed final behavior model as handcrafted BTs.

4.1. Simulation Environment and Agents

Our experiments are tested in the ‘Ms. Pac-Man vs Ghosts’ game competition environment [30],
which provides available AI API for the original arcade game Ms. Pac-Man. As Figure 5 shows,
this game consists of 5 agents, a single Ms. Pac-Man and 4 Ghost agents. In the game, the player,
controlling Pac-Man, must navigate a maze-like level to collect pills and avoid enemy ghosts or else
lose a life. After collecting large ‘power’ pills, Pac-Man can consume the ghosts and score additional
points in a limited period of time. When all the pills in the level are collected the player moves
on to the next level, but if three lives are lost the game is over. The only actions available to the
player are movement in a 2-dimensional space along the cardinal directions (up, down, left and right),
which makes the action space very small. However, the behavior of an AI agent for this game can be
quite complex, making it a suitable candidate for the experiments. The scoring method for the game is
as follows: eating a normal pill earns Pac-Man 10 points, eating a power pill earns Pac-Man 50 points,
and eating ghosts earn 200 points for the first ghost but doubling each time up to 1600 points for the
fourth ghost.

Figure 5. The benchmark ‘Ms. Pac-Man vs. Ghosts’ used in the experiments.

To test our evolving BTs approach for agent behavior modeling, we integrate behavior trees and
genetic programming into the ‘Ms Pac-Man vs Ghost’ API to model Pac-Man behavior. The ghosts are
controlled by the basic script provided in the competition, in which ghosts can communicate to share
their perception and choose action with a little randomness. The design of behavior trees for Pan-Man
agent are modeled on [18], with the components used including sequence, selector, condition and
action nodes. So the function set in GP contains ‘sequence’ and ‘selector’, and the terminal set contains
several game-related conditions and actions. At each time step, the game environment requests a single
move (up, down, left, right, no move) from the AI agent, which is returned by executing the behavior
tree. The actions and conditions are defined as [14], which can be implemented easily by API provided:



Appl. Sci. 2018, 8, 1077 11 of 22

• Conditions

isInedibleGhostCloseVLow/Low/Med/High/VHigh/Long, six condition nodes which return
‘true’ if there is a ghost in the ‘Inedible’ state within a certain fixed distance range, as well as
targeting that ghost.

isEdibleGhostCloseVLow, Low/Med/High/VHigh/Long, six condition nodes which return ‘true’
if there is a ghost in the ‘Edible’ state within a certain fixed distance range, as well as targeting
that ghost.

isTargetGhostEdibleTimeLow/Med/High, three condition nodes which return ‘true’ if a previous
condition node has targeted a ghost, which is edible and whose remaining time in the ‘edible’
state is within a certain fixed range.

isGhostScoreHigh/VHigh/Max, three condition nodes which return ‘true’ if the current point
value for eating a ghost is 400/800/1600.

• Actions

moveToEatAnyPill: an action node which set Pac-Man’s direction to the nearest pill or power pill,
returning ‘true’ if any such pill exists in the level or ‘false’ otherwise.

moveToEatNormalPill: an action node which set Pac-Man’s direction to the nearest normal pill,
returning ‘true’ if any such pill exists in the level or ‘false’ otherwise.

moveToEatPowerPill: an action node which set Pac-Man’s direction to the nearest power pill,
returning ‘true’ if any such pill exists in the level or ‘false’ otherwise.

moveAwayFromGhost: an action node which set Pac-Man’s direction away from the nearest ghost
that was targeted in the last condition node executed, returning ‘true’ if a ghost has been targeted
or ‘false’ otherwise.

moveTowardsGhost: an action node which set Pac-Man’s direction towards the ghost that was
targeted in the last condition node executed, returning ‘true’ if a ghost has been targeted or
‘false’ otherwise.

• Fitness Function

The fitness function is the sum of averaged game score and a parsimony pressure value as
formula fp(x) = f (x)− cl(x) [16]. Where x is the evaluated BT, fp(x) is the fitness value, f (x) is
the averaged game score for a few game runs, c is a constant value known as the parsimony
coefficient, l(x) is the node size of x. The simple parsimony pressure can adjust the original fitness
based on the size of BT, which will increase the tendency for more compact tree to be selected
for reproduction.

4.2. Experimental Setup

In the experiments, four evolving BTs approaches with different constraints are implemented
to make comparison. Those are standard evolving BTs, evolving BTs with static constraint, evolving
BTs with dynamic constraint, and evolving BTs with hybrid constraints, which are denoted simply as
EBT, EBT-SC, EBT-DC and EBT-HC respectively. A handcrafted BT denoted as Hand is also created
manually in order to provide a baseline comparison, which is provided by the competition [30].
The handcrafted BT follows some simple sequential rules: initially checking if any inedible ghosts
were too close and moving away from them before moving to chase nearby edible ghosts. If there are
no ghosts within range, Pac-Man would travel to the closest pill.



Appl. Sci. 2018, 8, 1077 12 of 22

The parameter settings for four evolving BTs approaches are listed as Table 1. Please note that all
four approaches use crossover operator to produce two child trees from two parent trees. The main
differences are the crossover node select and mutation probability as follows. For the approach EBT,
each node, except the root node, has equal chance to be selected as a crossover point. For the approach
EBT-SC, the adjacent terminal nodes are regarded as a sequential block, all the control nodes and blocks
has equal chance to be selected and swapped. The second crossover node must be the same type as the
first selected one. For the approach EBT-DC, each node is selected according to adjusted probability.
For the approach EBT-HC, the crossover is similar to the approach EBT-SC, but node select probability
is adjusted based on frequent sub-trees found. For the approaches EBT-DC and EBT-HC, the minimal
support σmin for frequent sub-trees are set as 0.3, the minimal node size NTpmin of a frequent sub-tree is
set as 3, the minimal terminal node size NTptmin is set as 2, the maximal terminal node size NTptmax is set
as 15. The discount factor is set as 0.9.

To validate the robustness of the proposed approach, a few GA parameters are selected to be
variable for the same game scenario. Specifically, we vary three important GA parameters (crossover
probability, new chromosomes, and mutation probability) and report 9 results of different combinations
for the four evolving approaches. Please note that the sum of crossover probability and reproduction
probability is always equal to 1. The number of full variable parameters combination can be very big,
thus we adopt following combination strategy. First we set a group of common GA parameters as basis,
with crossover proportion 0.9, new chromosomes 0.3, and mutation probability 0.01. Because under
static constraint, the adjacent terminal child nodes are regarded as a sequential behavior block and
the crossover is constrained only between nodes/blocks with the same type, so the population
diversity is reduced greatly. Thus, we set a high mutation probability of 0.1 as basic value for the
EBT-SC and EBT-HC to increase the diversity of generated behavior blocks. For example, when new
chromosomes and mutation probability are fixed as 0.3 and 0.01/0.1 (EBT, EBT-DC/EBT-SC, EBT-HC
correspondingly), the crossover probability is set as different values of 0.6, 0.7, 0.8 and 0.9 respectively.
Similarly, the new chromosomes is set as different values of 0.1, 0.2 and 0.3 respectively, and the
mutation probability is set as different values of 0.01 and 0.1 respectively. So we get 9(4 + 3 + 2)
experimental results for all the evolving approaches.

Table 1. Parameter settings for different tested approaches, evolving BTs with only dynamic constraint
(EBT-DC), evolving BTs with hybrid constraints (EBT-HC).

Approach Parameter Value

fixed to all approaches

population size 100
generations 100

initial min depth 2
initial max depth 3

selection tournament size 5%
parsimony coefficient 0.7

variable to all approaches

new chromosomes 10/20/30%
crossover probability 0.6/0.7/0.8/0.9

reproduction probability 0.4/0.3/0.2/0.1
mutation probability 0.01/0.1

EBT-DC/EBT-HC

superior individuals 50%
the minimal support σmin 0.3

the minimal node size NTpmin 3
the maximal node size NTpmin 15

the minimal terminal node size NTptmin 2
the discount factor γ 0.9



Appl. Sci. 2018, 8, 1077 13 of 22

For each evolving approach, agents are trained for 100 generations with corresponding
configuration and the resulting BT with highest averaged fitness is then played 1000 game runs.
Please note that in each generation, each individual is evaluated for 100 game runs to get an expected
score as fitness, which is used to reduce the effect of game randomness. All above evolving processes
are averaged across 10 trials.

4.3. Results and Analysis

During the learning process, we record all fitness values of individuals and frequent sub-trees
found for each generation. After finishing learning, the final test results for generated best individual,
the frequent sub-trees found and the final generated BTs are also recorded as results to evaluate the
generated behavior models.

Figures 6–8 show the learning curves of mean best fitness for the tested approaches across 10 trials.
Table 2 and Figures 9–11 show the performance of the best individual averaged for 1000 simulation tests
across 10 trials. Table 2 shows average results of mean and standard deviation, and the Figures 9–11
are more intuitionistic box-plots reflecting results distribution.

As the dynamic constraint is proposed to accelerate learning directly, we first check the learning
speed of different approaches under different parameters. Figure 6 shows the learning curves of mean
best fitness with variable crossover probability 0.6, 0.7, 0.8 and 0.9 respectively, Figure 7 shows the
learning curves of mean best fitness with variable new chromosomes 0.1, 0.2 and 0.3 respectively,
and Figure 8 shows the learning curves of mean best fitness with variable mutation probability 0.01
and 0.1 respectively.

In all the learning curves, the approaches EBT-HC and EBT-SC are obviously faster than the
approaches EBT and EBT-DC and get higher best mean fitness in the end of evolution.That is because
the static constraint can provide well-designed possible tree structure based on common design pattern,
which would reduce search space effectively and find a good solution easier. However, the static
structure can only support limited use of control nodes, selector and sequence.

Figure 6 shows the learning curves of four evolving approaches under the values of crossover
probability 0.6, 0.7, 0.8 and 0.9 respectively. We can see that, in all 4 subfigures, the approach EBT-HC
is faster than the EBT-SC and achieves comparable best mean fitness in the end of evolution. When the
crossover probability is 0.6, the fitness of EBT-DC climbs obviously faster than the EBT within the
first 20 generations, but becomes slower after that. In the end of evolution, the EBT-DC gets a lower
mean best value fitness than EBT. It indicates that the EBT-DC converges prematurely to a local
minimal value. When the crossover probability grows to 0.7, the EBT-DC performs slower than EBT
in most generations, but converges to a similar final mean best fitness with EBT. When the crossover
probabilities are 0.8 and 0.9 respectively, the EBT-DC begins to show better performance on average
than EBT at generations of 20 and 10 respectively, and finally achieve a higher mean best fitness at
generation 100. The results show that the dynamic constraint is robust to help EBT-SC to accelerate
learning, while in partial values 0.8, 0.9 of crossover probability, it can help EBT to accelerate learning.

Figure 7 show the learning curves under the values of new chromosome proportion 0.1, 0.2 and
0.3 respectively. We can see that in all 3 subfigures, the EBT-DC is obviously faster than EBT to achieve
higher fitness within limited generations. When the new chromosomes is 0.1, the EBT-HC shows
similar performance with EBT-SC in term of learning speed and final mean best fitness. As the new
chromosomes grow to 0.2 and 0.3, the EBT-HC learns faster at early stage of generation 10 and middle
stage of generation 60, and finaly achieve a slight higher final best fitness than EBT-SC. The results
show that the dynamic constraint can accelerate learning of EBT and get a better final best fitness,
while for EBT-SC, it can help to accelerate learning in new chromosomes 0.2 and 0.3.



Appl. Sci. 2018, 8, 1077 14 of 22

Table 2. Mean and standard deviation of the best individual of four evolving approaches under
different parameters settings. The mean and standard deviation of the baseline handcrafted BT are
5351.3 and 47.6 (with 95% confidence interval), evolving BTs approach (EBT), existing ‘static’ structural
constraint (EBT-SC).

EBT EBT-DC EBT-SC EBT-HC

Crossover probability

0.6 6011.8 ± 320.2 5734.6 ± 347.3 7344.8 ± 428.4 7324.5 ± 221.8
0.7 5768.0 ± 341.6 5930.9 ± 572.2 7174.5 ± 454.0 7371.0 ± 224.0
0.8 5781.7 ± 267.9 6274.8 ± 728.5 7169.6 ± 353.1 7419.5 ± 218.5
0.9 5978.8 ± 361.1 6168.4 ± 609.4 7173.5 ± 402.2 7406.5 ± 258.2

new chromosomes
0.1 5886.4 ± 282.9 5962.3 ± 311.3 7353.6 ± 274.9 7350.0 ± 221.4
0.2 5471.7 ± 769.9 6105.8 ± 592.1 7197.0 ± 369.3 7300.5 ± 344.9
0.3 5978.8 ± 361.1 6168.4 ± 609.4 7173.5 ± 402.2 7406.5 ± 258.2

Mutation probability 0.01 5978.8 ± 361.1 6168.4 ± 609.4 6720.7 ± 606.6 6737.2 ± 262.6
0.1 6456.9 ± 523.0 6087.7 ± 473.0 7173.5 ± 402.2 7406.5 ± 258.2

0 20 40 60 80 100
4500

5000

5500

6000

6500

7000

7500

8000

8500

Generation

M
ea

n 
be

st
 fi

tn
es

s 
(a

ve
ra

ge
d 

ac
ro

ss
 1

0 
tr

ia
ls

)

 

 

Standard Evolving BT
Evolving BT with dynamic constraint
Evolving BT with static constraint
Evolving BT with hybrid constraint
Hand

0 20 40 60 80 100
4500

5000

5500

6000

6500

7000

7500

8000

8500

Generation

M
ea

n 
be

st
 fi

tn
es

s 
(a

ve
ra

ge
d 

ac
ro

ss
 1

0 
tr

ia
ls

)

 

 

Standard Evolving BT
Evolving BT with dynamic constraint
Evolving BT with static constraint
Evolving BT with hybrid constraint
Hand

0 20 40 60 80 100
4500

5000

5500

6000

6500

7000

7500

8000

8500

Generation

M
ea

n 
be

st
 fi

tn
es

s 
(a

ve
ra

ge
d 

ac
ro

ss
 1

0 
tr

ia
ls

)

 

 

Standard Evolving BT
Evolving BT with dynamic constraint
Evolving BT with static constraint
Evolving BT with hybrid constraint
Hand

0 20 40 60 80 100
4500

5000

5500

6000

6500

7000

7500

8000

8500

Generation

M
ea

n 
be

st
 fi

tn
es

s 
(a

ve
ra

ge
d 

ac
ro

ss
 1

0 
tr

ia
ls

)

 

 

Standard Evolving BT
Evolving BT with dynamic constraint
Evolving BT with static constraint
Evolving BT with hybrid constraint
Hand

Figure 6. Learning curves of different approaches with variable crossover probability 0.6, 0.7, 0.8 and 0.9.

0 20 40 60 80 100
4500

5000

5500

6000

6500

7000

7500

8000

8500

Generation

M
ea

n 
be

st
 fi

tn
es

s 
(a

ve
ra

ge
d 

ac
ro

ss
 1

0 
tr

ia
ls

)

 

 

Standard Evolving BT
Evolving BT with dynamic constraint
Evolving BT with static constraint
Evolving BT with hybrid constraint
Hand

0 20 40 60 80 100
4500

5000

5500

6000

6500

7000

7500

8000

8500

Generation

M
ea

n 
be

st
 fi

tn
es

s 
(a

ve
ra

ge
d 

ac
ro

ss
 1

0 
tr

ia
ls

)

 

 

Standard Evolving BT
Evolving BT with dynamic constraint
Evolving BT with static constraint
Evolving BT with hybrid constraint
Hand

0 20 40 60 80 100
4500

5000

5500

6000

6500

7000

7500

8000

8500

Generation

M
ea

n 
be

st
 fi

tn
es

s 
(a

ve
ra

ge
d 

ac
ro

ss
 1

0 
tr

ia
ls

)

 

 

Standard Evolving BT
Evolving BT with dynamic constraint
Evolving BT with static constraint
Evolving BT with hybrid constraint
Hand

Figure 7. Learning curves of different approaches with variable new chromosomes 0.1, 0.2 and 0.3.



Appl. Sci. 2018, 8, 1077 15 of 22

In Figure 8 we can see that, when the mutation probability is 0.01, the EBT-DC learns faster than
EBT and converges to a higher mean best fitness in the end of evolution. For the EBT-HC, it climbs
faster than EBT-SC within generation 10 and gets a comparable mean best fitness. When the mutation
probability is 0.1, the EBT-DC is faster than EBT at early stage but converges to a lower value than EBT
in the end of evolution. The EBT-HC learns faster than EBT-SC at early stage and both two converge to
a similar mean best fitness in the end. It should be noted that, the final mean best fitness of EBT-SC and
EBT-HC under mutation probability 0.01 are obviously lower than those under mutation probability
of 0.1. In both the approaches EBT-SC and EBT-HC, the adjacent terminal child nodes are regarded
as a sequential behavior block and the crossover is carried out only between nodes/blocks with the
same type, thus the possible behavior blocks will remain unchanged and the population diversity
declines to a great extent. The results indicate that under both mutation probabilities, the dynamic
constraint can help EBT and EBT-SC to accelerate learning, but the approaches EBT-SC and EBT-HC
need a bigger mutation probability to maintain higher diversity in generated blocks.

0 10 20 30 40 50 60 70 80 90 100
4500

5000

5500

6000

6500

7000

7500

8000

Generation

M
ea

n 
be

st
 fi

tn
es

s 
(a

ve
ra

ge
d 

ac
ro

ss
 1

0 
tr

ia
ls

)

 

 

Standard Evolving BT
Evolving BT with dynamic constraint
Evolving BT with static constraint
Evolving BT with hybrid constraint
Hand

0 10 20 30 40 50 60 70 80 90 100
4500

5000

5500

6000

6500

7000

7500

8000

8500

Generation

M
ea

n 
be

st
 fi

tn
es

s 
(a

ve
ra

ge
d 

ac
ro

ss
 1

0 
tr

ia
ls

)

 

 

Standard Evolving BT
Evolving BT with dynamic constraint
Evolving BT with static constraint
Evolving BT with hybrid constraint
Hand

Figure 8. Learning curves of different approaches with variable mutation probability 0.01 and 0.1.

On the whole, in most tested GA parameters, the dynamic constraint can help standard evolving
BT and evolving approach with static constraint to accelerate learning speed and achieve better
individuals with higher final fitness.

For agent behavior modeling, another important concern is whether we can get an expected
behavior model satisfying the evaluation criterions of domain expert. In evolving BTs for behavior
modeling specifically, the goal is to produce the best BT individual with higher fitness than other
existing approaches in simulation tests. Thus, we will check the average fitness of the best individual
generated by different approaches. Table 2 shows all the average fitness results of mean and standard
deviation under different GA parameters. Figure 9 shows the results distribution of mean best
fitness with variable crossover probability 0.6, 0.7, 0.8 and 0.9 respectively, Figure 10 shows the
results distribution of mean best fitness with variable new chromosomes 0.1, 0.2 and 0.3 respectively,
and Figure 11 shows the results distribution of mean best fitness with variable mutation probability
0.01 and 0.1 respectively..

From Table 2 we can see that, when crossover probabilities are 0.7, 0.8 and 0.9, the EBT-HC can
achieve bigger means of 7371.0, 7419.5 and 7406.5 than the EBT-SC with 7174.5, 7169.6 and 7173.5
respectively, and lower standard deviation of 224.0, 218 and 258.2 than the EBT-SC with 454.0, 353.1
and 402.2 respectively. In the boxplot Figure 9 we also can see that, the whole distribution of all the
individuals in EBT-HC is above the distribution in EBT-SC. All three lower adjacent values in EBT-HC
are higher than the lower whiskers in EBT-SC, which indicates the lowest individual in EBT-HC is



Appl. Sci. 2018, 8, 1077 16 of 22

better than more than 25% of individuals in EBT-SC. When the crossover probability is 0.6, the EBT-HC
gets slightly smaller values of mean and standard deviation than EBT-SC. In terms of EBT-DC and EBT,
we can see when the crossover probability is 0.6, the EBT-DC gets a lower 5734.6 than EBT with 6011.8.
When the value grows to 0.7, the EBT-DC achieves similar mean with EBT, and when the value is 0.8
and 0.9, the EBT-DC achieves higher mean than EBT. In most cases, the standard deviation of EBT-DC
is bigger than EBT. Those results indicate that the dynamic constraint can help EBT-DC and EBT-HC
achieve better final solutions than EBT and EBT-SC respectively under bigger crossover probability
like 0.8 and 0.9. The EBT-DC can achieve comparable final solution under crossover probability 0.8
and 0.9, but result in unstable solution. While for EBT-HC, it achieves higher and more stable final
solution than EBT-SC.

5500

6000

6500

7000

7500

EBT EBT−DC EBT−SC EBT−HC Hand

5500

6000

6500

7000

7500

EBT EBT−DC EBT−SC EBT−HC Hand

5500

6000

6500

7000

7500

EBT EBT−DC EBT−SC EBT−HC Hand

5500

6000

6500

7000

7500

EBT EBT−DC EBT−SC EBT−HC Hand

Figure 9. Boxplot results for the best generated BTs with variable crossover probability 0.6, 0.7, 0.8 and 0.9.

5500

6000

6500

7000

7500

EBT EBT−DC EBT−SC EBT−HC Hand

4000

4500

5000

5500

6000

6500

7000

7500

EBT EBT−DC EBT−SC EBT−HC Hand

5500

6000

6500

7000

7500

EBT EBT−DC EBT−SC EBT−HC Hand

Figure 10. Boxplot results for the best generated BTs with variable new chromosomes 0.1, 0.2 and 0.3.

In Table 2 and Figure 10, when the new chromosomes is 0.1, the EBT-HC and EBT-DC get similar
results with EBT-SC and EBT respectively. When the new chromosomess are 0.2 and 0.3, the EBT-HC
and EBT-DC get higher mean and median than EBT-SC and EBT respectively. The EBT-DC gets bigger
standard deviation than EBT, while EBT-HC gets smaller standard deviation than EBT-SC. That may
be because when new chromosome proportion is lower as 0.1, the population diversity is declined,



Appl. Sci. 2018, 8, 1077 17 of 22

which may increase the risk of dynamic constraint trapped local minimum. Thus, we should use slight
bigger new chromosome proportion like 0.2 and 0.3.

In Table 2 and Figure 11, when the mutation probability is 0.01, the EBT-DC gets higher mean and
median but larger distribution. Comparing with EBT-SC, EBT-HC gets higher median, similar mean
and smaller standard deviation. When the mutation probability is 0.1, EBT-DC gets obviously lower
mean and median than EBT, EBT-HC gets higher median and mean than EBT-SC. It should be noted
that the values of EBT-SC and EBT-DC under mutation probability 0.01 are obviously lower than those
values under mutation probability 0.1. That is because the static constraint on crossover will decline
the diversity of swapped behavior blocks, we should set a big mutation probability for the EBT-SC
and EBT-HC.

5500

6000

6500

7000

7500

EBT EBT−DC EBT−SC EBT−HC Hand

5500

6000

6500

7000

7500

EBT EBT−DC EBT−SC EBT−HC Hand

Figure 11. Boxplot results for the best generated BTs with variable mutation probability 0.01 and 0.1.

Those results show that the EBT-HC can achieve higher and more stable solution than EBT-SC in
most tested parameter values. While for EBT-DC, the dynamic constraint can help it to achieve higher
mean but bigger standard deviation when the population diversity is declined.

From above statistical experimental results of learning curves and final best individuals, we can
draw conclusions that the EBT-DC with dynamic constraint can get faster learning speed and
comparable final solution than EBT. However the results are more unstable. The EBT-HC can learn
faster and achieve higher and more stable final solution than EBT-SC. Considering the sensitivity
for variable parameters, the EBT-DC is a bit sensitive to the learning parameters, especially the
crossover probability, the EBT-HC is more robust than the EBT-DC under tested GA parameters.
Both EBT-HC and EBT-DC need a bigger crossover probability, a slight bigger new chromosome
and a bit bigger mutation probability to increase the population diversity, which is important for
approaches with dynamic constraint, especially EBT-DC.

The static structural constraint can effectively restrict the search space to find better solution
faster. At the same time, it is easier to escape from the local optimal under existing genetic operators.
When applying the dynamic constraint in the evolving approach with static constraint, it is easier to
find valuable and tidy frequent sub-trees to accelerate learning for the hybrid approach, which will
accelerate optimal tree structure composition. While in standard evolving BT approach, the search
space is very big and many solutions found are inefficient with inactive nodes never executed. When
the changes of GA parameters reduce the population diversity, such as a small crossover probability
of 0.6, it is harder for the standard evolving BT approach to escape from the local minimum than the
approach with static constraint. When applying dynamic constraint in standard evolving approach,
the preference for crossover may increase the chance trapped in local minimum, which leads to the
result more unstable.



Appl. Sci. 2018, 8, 1077 18 of 22

In the experiment, we also record the final generated BTs and the mined frequent sub-trees to
check the intuitive products of behavior modeling. Figure 12 shows a BT generated by the approach
EBT-HC. We can see that it is easy to understand the logic behind the controller. It divides the
decision-making of full state space into some specific situations to deal with. For example, when the
distance to the nearest inedible ghost is low, the agent chooses to evade from the ghost. When the
distance to the nearest inedible ghost is very high, the agent chooses to move to eat the nearest power
pill. When all the above conditions are not meted, the action ‘moveToEatAnyPill’ is executed with the
lowest priority to execute. Comparing with the handcrafted BT, it seems to be plausible. An interesting
phenomenon is that the generated BT does not check the condition ‘isEdibleGhostClose’ and chooses
action ‘moveTowardsGhost’ as the handcrafted BT does, it is out of our expectation but actually reaches
a higher fitness than the handcrafted BT. It may be the expected result of large number of game runs
considering the randomness. This phenomenon acting in a different way as human can be regarded as
computational creativity that are not found by humans [5].

Figure 12. A BT generated by the proposed EBT-HC approach.

Figure 13 shows the sub-trees evolution of the proposed evolving BT approach with hybrid
constraints over generations. Because of the limitation of space, we just show the distinct sub-trees
found at generation 1, 10, 50 and 100. We can see that at generation 1, only a simple sub-tree is mined
which leads agent to move to a pill, which can be formed in most initial individuals with higher
ranked fitness. Please note that if a frequent sub-tree is a child of another frequent sub-tree, we only
record the one with bigger size. So in fact the action nodes ‘moveToAnyPill’ and ‘moveToNormalPill’
are both frequent. For the next generation, the higher ranked individuals with the frequent sub-tree
will protect the structure with a little preference, which encourage individuals to search better solution
around this structure. At generation 10, we can see that the preponderant sub-tree of generation
1 is no longer frequent. More valuable frequent sub-trees are found which represent the reactive
decision-making or action priority for some local situations. For example, when the distance to the
nearest inedible ghost is very high, the agent will choose to seek to eat power pill which can provide
the agent attack capacity. At generation 50, we can see that some bigger sub-trees become frequent
based on the frequent sub-tree found at generation 10, some sub-trees are still frequent those in
generation 10. At the same time, some more appropriate action priority is found to replace original
structure, for example the node ‘moveToAnyPill’ is set as the node with lowest priority, which seems
to be reasonable. At generation 100, some sub-trees at generation 10 are still frequent, which indicate
that they are really necessary building blocks of optimal solution. While some new frequent sub-trees
are found such as ‘moveAwayFromGhost’, some frequent sub-trees in generation 50 are changed.
Comparing with the final structure in Figure 12, we can see that most frequent sub-trees mined at
generation 100 are the sub-trees of the final best model. The evolution of sub-trees reflects transparently
that how the final full model be composed of the frequent sub-tree found generation by generation,
which can justify our approach further. Additionally, those sub-trees can be used to facilitate the BT
design by domain expert.



Appl. Sci. 2018, 8, 1077 19 of 22

Figure 13. An evolution of frequent sub-trees found over generation by EBT-HC.

5. Conclusions and Future Works

This paper proposed a modified evolving behavior trees approach, named evolving BTs with
hybrid constraints (EBT-HC), to facilitate behavior modeling for autonomous agents in simulation
and computer games. Our main contribution is a novel idea of dynamic constraint to improve the
evolution of Behavior Trees, which discovers the frequent preponderant sub-trees and adjusts nodes
crossover probability to accelerate preponderant structure combination. To improve the evolving
BT with only dynamic constraint further, we proposed the evolving BTs approach with hybrid
constraints by combing the existing static structural constraint with our dynamic constraint. The hybrid
EBT-HC can further accelerate behavior learning and find better solutions without the loss of the
domain-independence. Preliminary experiments on ’Ms Pac-Man vs Ghosts’ benchmark showed that
the proposed EBT-HC approach can produce plausible behaviors than other approaches. The stable
final best individual with higher fitness satisfies the goal of generating better behavior policy based
on evaluation criteria provided by domain expert. The fast and stable learning curve showed the
advantage of hybrid constraints to speed up convergence. From the perspective of tree design and
implementation, the generated BTs are human readable and easy to analyze and fine-tune, which can
be a promising initial step for transparent behavior modeling automatically.

There are some avenues of research to improve this study. Firstly, the proposed approach should
be validated in more complex task scenarios and configurations for behavior modeling automatically.
In current work, the Pac-Man game is configured as a simple and typical simulation environment



Appl. Sci. 2018, 8, 1077 20 of 22

to validate proposed approach. However, the interaction between the learning technique and the
agent environment is nontrivial. The environmental model, behavior evaluation function, perception,
and action sets are critical for behavior performance. Thus, more complex scenarios, such as bigger
state-space representation, partial observation or multiple agents in real-time strategy game [31],
should be considered to provide rich agent learning environment to validate the proposed approach.
On the other hand, it is important to research automatic learning for appropriate parameters setting
in GP systems. It is necessary to broaden the applications of proposed approach in more scenarios
and configurations.

Another interesting research topic is learning behavior trees from observation. For behavior
modeling through experiential learning, it is measured by how well the task is performed based on
the evaluation criteria provided by experts. However, the optimal behavior may be inappropriate
or unnatural. Thus, there are a few works of learning BTs from observation emerged but still an
open problem [7,25]. We believe GP is a promising method and the frequent sub-tree mining can
be a potential tool to facilitate behavior block building and accelerate learning. The possible issue
behind the method is the similarity metric to evaluate the generated behavior. In [32], the authors
investigate a gamalyzer-based play trace metric to measure the difference between two play traces in
computer games. Based on above techniques, we can develop a model-free framework to generate BT
by learning from training examples.

Author Contributions: Q.Z. and J.Y. conceived and designed the paper structure and the experiments; Q.Z.
performed the experiments; Q.Y. and Y.Z. contributed with materials and analysis tools.

Funding: This work was partially supported by the National Science Foundation (NSF) project 61473300, CHINA.

Acknowledgments: This work was partially supported by the National Science Foundation (NSF) project
61473300, CHINA. The authors would like to thank the helpful discussions and suggestions with Xiangyu Wei,
Kai Xu and Weilong Yang.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

BTs Behavior Trees
FSMs Finite State Machines
NPC Non-player Characters
CGF Computer-Generated Force
GP Genetic Programming
RL Reinforcement Learning
LfO Learning from Observation
NN Neural Network
NSF National Science Foundation

References

1. Tirnauca, C.; Montana, J.L.; Ontanon, S.; Gonzalez, A.J.; Pardo, L.M. Behavioral Modeling Based on
Probabilistic Finite Automata: An Empirical Study. Sensors 2016, 16, 958. [CrossRef] [PubMed]

2. Toubman, A.; Poppinga, G.; Roessingh, J.J.; Hou, M.; Luotsinen, L.; Lovlid, R.A.; Meyer, C.; Rijken, R.;
Turcanik, M. Modeling CGF Behavior with Machine Learning Techniques: Requirements and Future
Directions. In Proceedings of the 2015 Interservice/Industry Training, Simulation, and Education Conference,
Orlando, FL, USA, 30 November–4 December 2015; pp. 2637–2647.

3. Diller, D.E.; Ferguson, W.; Leung, A.M.; Benyo, B.; Foley, D. Behavior modeling in commercial games.
In Proceedings of the 2004 Conference on Behavior Representation in Modeling and Simulation (BRIMS),
Arlington, VA, USA, 17–20 May 2004; pp. 17–20.

http://dx.doi.org/10.3390/s16070958
http://www.ncbi.nlm.nih.gov/pubmed/27347956


Appl. Sci. 2018, 8, 1077 21 of 22

4. Kamrani, F.; Luotsinen, L.J.; Løvlid, R.A. Learning objective agent behavior using a data-driven modeling
approach. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Budapest,
Hungary, 9–12 October 2017; pp. 002175–002181.

5. Luotsinen, L.J.; Kamrani, F.; Hammar, P.; Jändel, M.; Løvlid, R.A. Evolved creative intelligence for computer
generated forces. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,
Budapest, Hungary, 9–12 October 2017; pp. 003063–003070.

6. Yao, J.; Huang, Q.; Wang, W. Adaptive human behavior modeling for air combat simulation. In Proceedings
of the 2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications
(DS-RT), Chengdu, China, 14–16 October 2015; pp. 100–103.

7. Sagredo-Olivenza, I.; Gómez-Martín, P.P.; Gómez-Martín, M.A.; González-Calero, P.A. Trained Behavior
Trees: Programming by Demonstration to Support AI Game Designers. IEEE Trans. Games 2017. [CrossRef]

8. Sekhavat, Y.A. Behaivor Trees for Computer Games. Int. J. Artif. Intell. Tools 2017, 1, 1–27.
9. Rabin, S. AI Game Programming Wisdom 4; Nelson Education: Scarborough, ON, Canada, 2014; Volume 4.
10. Colledanchise, M.; Ögren, P. Behavior Trees in Robotics and AI: An Introduction. arXiv 2017, arXiv:1709.00084.
11. Nicolau, M.; Perezliebana, D.; Oneill, M.; Brabazon, A. Evolutionary Behavior Tree Approaches for

Navigating Platform Games. IEEE Trans. Comput. Intell. AI Games 2017, 9, 227–238. [CrossRef]
12. Perez, D.; Nicolau, M.; O’Neill, M.; Brabazon, A. Evolving behaviour trees for the mario AI competition using

grammatical evolution. In Proceedings of the European Conference on the Applications of Evolutionary
Computation, Torino, Italy, 27–29 April 2011; pp. 123–132.

13. Lim, C.U.; Baumgarten, R.; Colton, S. Evolving behaviour trees for the commercial game DEFCON.
In Proceedings of the European Conference on the Applications of Evolutionary Computation, Torino, Italy,
7–9 April 2010; pp. 100–110.

14. Mcclarron, P.; Ollington, R.; Lewis, I. Effect of Constraints on Evolving Behavior Trees for Game AI.
In Proceedings of the International Conference on Computer Games Multimedia & Allied Technologies,
Los Angeles, CA, USA, 15–18 November 2016.

15. Press, J.R.K.M. Genetic programming II: Automatic discovery of reusable programs. Comput. Math. Appl.
1995, 29, 115.

16. Poli, R.; Langdon, W.B.; Mcphee, N.F. A Field Guide to Genetic Programming; lulu.com: Morrisville, NC, USA,
2008; pp. 229–230.

17. Scheper, K.Y.W.; Tijmons, S.; Croon, G.C.H.E.D. Behavior Trees for Evolutionary Robotics. Artif. Life 2016,
22, 23–48. [CrossRef] [PubMed]

18. Champandard, A.J. Behaivor Trees for Next-gen Game AI. Available online: http://aigamedev.com/insider/
presentations/behavior-trees/ (accessed on 12 December 2007).

19. Zhang, Q.; Yin, Q.; Xu, K. Towards an Integrated Learning Framework for Behavior Modeling of Adaptive
CGFs. In Proceedings of the IEEE 9th International Symposium on Computational Intelligence and Design
(ISCID), Hangzhou, China, 10–11 December 2016; Volume 2, pp. 7–12.

20. Fernlund, H.K.G.; Gonzalez, A.J.; Georgiopoulos, M.; Demara, R.F. Learning tactical human behavior
through observation of human performance. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2006, 36, 128.
[CrossRef]

21. Stein, G.; Gonzalez, A.J. Building High-Performing Human-Like Tactical Agents Through Observation and
Experience; IEEE Press: Piscataway, NJ, USA, 2011; p. 792.

22. Teng, T.H.; Tan, A.H.; Tan, Y.S.; Yeo, A. Self-organizing neural networks for learning air combat maneuvers.
In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia,
10–15 June 2012; pp. 1–8.

23. Ontañón, S.; Mishra, K.; Sugandh, N.; Ram, A. Case-Based Planning and Execution for Real-Time Strategy
Games. In Proceedings of the International Conference on Case-Based Reasoning: Case-Based Reasoning
Research and Development, Northern Ireland, UK, 13–16 August 2007; pp. 164–178.

24. Aihe, D.O.; Gonzalez, A.J. Correcting flawed expert knowledge through reinforcement learning.
Expert Syst. Appl. 2015, 42, 6457–6471. [CrossRef]

25. Robertson, G.; Watson, I. Building behavior trees from observations in real-time strategy games.
In Proceedings of the International Symposium on Innovations in Intelligent Systems and Applications,
Madrid, Spain, 2–4 September 2015; pp. 1–7.

http://dx.doi.org/10.1109/TG.2017.2771831
http://dx.doi.org/10.1109/TCIAIG.2016.2543661
http://dx.doi.org/10.1162/ARTL_a_00192
http://www.ncbi.nlm.nih.gov/pubmed/26606468
http://aigamedev.com/insider/presentations/behavior-trees/
http://aigamedev.com/insider/presentations/behavior-trees/
http://dx.doi.org/10.1109/TSMCB.2005.855568
http://dx.doi.org/10.1016/j.eswa.2015.04.015


Appl. Sci. 2018, 8, 1077 22 of 22

26. Dey, R.; Child, C. Ql-bt: Enhancing behaviour tree design and implementation with q-learning.
In Proceedings of the IEEE Conference on Computational Intelligence in Games (CIG), Niagara Falls,
ON, Canada, 11–13 August 2013; pp. 1–8.

27. Zhang, Q.; Sun, L.; Jiao, P.; Yin, Q. Combining Behavior Trees with MAXQ Learning to Facilitate CGFs
Behavior Modeling. In Proceedings of the 4th International Conference on IEEE Systems and Informatics
(ICSAI), Hangzhou, China, 11–13 November 2017.

28. Asai, T.; Abe, K.; Kawasoe, S.; Arimura, H.; Sakamoto, H.; Arikawa, S. Efficient Substructure Discovery
from Large Semi-structured Data. In Proceedings of the Siam International Conference on Data Mining,
Arlington, Arlington, VA, USA, 11–13 April 2002.

29. Chi, Y.; Muntz, R.R.; Nijssen, S.; Kok, J.N. Frequent Subtree Mining—An Overview. Fundam. Inf. 2005,
66, 161–198.

30. Williams, P.R.; Perezliebana, D.; Lucas, S.M. Ms. Pac-Man Versus Ghost Team CIG 2016 Competition.
In Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG), Santorini, Greece,
20–23 September 2016.

31. Christensen, H.J.; Hoff, J.W. Evolving Behaviour Trees: Automatic Generation of AI Opponents for
Real-Time Strategy Games. Master’s Thesis, Norwegian University of Science and Technology, Trondheim,
Norway, 2016.

32. Osborn, J.C.; Samuel, B.; Mccoy, J.A.; Mateas, M. Evaluating play trace (Dis)similarity metrics. In Proceedings
of the AIIDE, Raleigh, NC, USA, 3–7 October 2014.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Works
	Behavior Trees
	Genetic Programming
	Agent Behavior Modeling and Evolving Behavior Trees

	Methodology
	The Proposed Evolving Behavior Trees Framework
	Dynamic Constrain Based on Frequent Sub-Tree Mining
	Frequent Sub-Tree Mining
	Nodes Crossover Probability Adjustment

	Evolving BTs with Hybrid Constraints

	Experimental Section
	Simulation Environment and Agents
	Experimental Setup
	Results and Analysis

	Conclusions and Future Works
	References

