
applied  
sciences

Article

Evaluation of Near-Infrared Hyperspectral Imaging
for Detection of Peanut and Walnut Powders in
Whole Wheat Flour

Xin Zhao 1, Wei Wang 1,* ID , Xinzhi Ni 2, Xuan Chu 1, Yu-Feng Li 3,* and Changpo Sun 4

1 College of Engineering, China Agricultural University, Beijing 100083, China; zx1992@cau.edu.cn (X.Z.);
cauchx0105@163.com (X.C.)

2 Crop Genetics and Breeding Research Unit, USDA-ARS, 2747 Davis Road, Tifton, GA 31793, USA;
xinzhi.ni@ars.usda.gov

3 Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences,
Beijing 100049, China

4 Academy of State Administration of Grain P.R.C, No. 11 Baiwanzhuang Avenue, Xicheng District,
Beijing 100037, China; scp@chinagrain.org

* Correspondence: playerwxw@cau.edu.cn (W.W.); liyf@ihep.ac.cn (Y.-F.L.); Tel.: +86-010-6273-7288 (W.W.)

Received: 22 May 2018; Accepted: 15 June 2018; Published: 3 July 2018
����������
�������

Featured Application: Near-infrared hyperspectral imaging was employed for inspection of
contaminant of peanut or walnut powders in whole wheat flour. A multispectral prediction
model and visualization maps demonstrated the potential of the technique for the application
of rapid quality control.

Abstract: The general utilization of processing equipment in industry has increased the risk of
foreign material contamination. For example, peanut and walnut contaminants in whole wheat
flour, which typically a healthy food, are a threat to people who are allergic to nuts. The feasibility
of utilizing near-infrared hyperspectral imaging to inspect peanut and walnut powder in whole
wheat flour was evaluated herein. Hyperspectral images at wavelengths 950–1700 nm were acquired.
A standard normal variate combined with the Savitzky–Golay first derivative spectral transformation
was adopted for the development of a partial least squares regression (PLSR) model to predict
contamination concentrations. A successive projection algorithm (SPA) and uninformative variable
elimination (UVE) for feature wavelength selection were compared. Two individual prediction
models for peanut or walnut-contaminated flour, and a general multispectral model for both
peanut-contaminated flour and walnut-contaminated flour, were developed. The optimal general
multispectral model had promising results, with a determination coefficient of prediction (Rp

2) of
0.987, and a root mean square error of prediction (RMSEP) of 0.373%. Visualization maps based on
multispectral PLSR models reflected the contamination concentration variations in a spatial manner.
The results demonstrated that near-infrared hyperspectral imaging has the potential to inspect peanut
and walnut powders in flour for rapid quality control.

Keywords: near-infrared hyperspectral imaging; peanut and walnut powders; whole wheat
flour; visualization

1. Introduction

The use of versatile food processing equipment and the globalization of the food supply chain
inevitably increase the risk of food contamination caused by extraneous impurities. Food safety
incidents of peanut and other nuts found in wheat products has been reported worldwide several
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times, and has become a serious health threat to people allergic to nuts. On the other hand, peanut and
other nuts are widely utilized as food ingredients in commercial food products, but in most cases,
they are not clearly stated on the product labels. Hence, the demand to detect peanut and other
nut contents in food products during the manufacturing process is of vital importance. However,
the most common methods for peanut and nut detection in food are on the basis of traditional protein
detection methods, such as real-time polymerase chain reaction (RT-PCR) [1] and enzyme-linked
immunosorbent assay (ELISA) [2]. Although these analytical methods are sensitive (0.1 mg/kg) [3],
they are also destructive, time-consuming, require skilled operators, and even produce byproducts
that are unfriendly to the environment. Thus, these laboratory-based detection techniques cannot meet
the demand of the majority of food factories for online detection of nuts contamination.

Near-infrared (NIR) spectroscopy in conjunction with multivariate analysis, as one of the
alternatives to the general physical and chemical detection methods, has the advantages of rapid and
non-destructive inspection for food quality [4]. It can provide information about chemical compositions
in food products based on that various peaks in the spectrum that are related to the bending and
stretching of chemical bonds involving O–H, S–H, N–H, and C–H, which are widely present in
large molecules or organic compounds [5]. Recent studies have illustrated the potential of NIR for the
identification of peanut contamination in wheat flour, milk, and cocoa powder [6], and the classification
of peanuts from different cereal, legume, oilseed, and nut samples [7]. However, NIR has the limitation
induced by the point measurement; thus, it cannot provide visual images of the samples to represent
the spatial variations of peanut contamination proportions and identify the spatial location or position
of peanut particles contaminants in a given food product.

Hyperspectral imaging (HSI), which integrates spectroscopy and imaging techniques, is able
to simultaneously achieve spectral and spatial information. Compared with NIR spectroscopy,
the superiority of HSI exists in the visualization of prediction results, which is generated by
employing multivariate analysis models to each pixel of the images. HSI allows chemical imaging for
food inspection to graphically reflect the distribution of compositions or variation of proportions
in the spatial dimension, which cannot be accomplished by using the naked eye or common
industrial cameras [8,9].

The HSI technique has become one of the effective rapid detection methods to predict quality
attributes non-destructively, and build chemical images to display the distribution of ingredients of
various food products, including monitoring the ripeness of nectarine [10], identifying the browning
development of button mushrooms [11], monitoring the total volatile basic nitrogen (TVB-N) values
of cured meat [12], and predicting the protein content in single wheat kernels [13]. Furthermore,
some studies also demonstrated the successful application of HSI in the quantitative detection of
foreign material contamination or adulteration in powdery food products, involving discrimination
for milk powders from diverse plants and of different functional qualities [14], detecting melamine
adulterated in milk powders [15], the detection of sorghum, oat, and corn flour adulterated in wheat
flour [16], and the inspection of common cassava flour, corn flour, and wheat flour adulterated in
organic Avatar wheat [17].

The purpose of the study was to assess the potential of using NIR HSI techniques to inspect the
contamination of peanut and walnut powders in whole wheat flour. Peanut and walnut powders,
as well as the whole wheat flour used in our study, were of the similar small particle sizes. The mixture
samples were homogeneous. The specific objectives were to (1) analyze and compare the spectra
of pure peanut, walnut powders, and flour in order to extract the distinct spectral features between
whole wheat flour and the contaminants; (2) select feature wavelengths and develop the multispectral
model to quantify peanut and walnut contaminants in flour; (3) develop an individual identification
model for peanut and walnut contaminants in flour, as well as a general model for combined samples
of the two; and (4) generate a chemical distribution map to graphically display the contamination
concentration variation in the spatial dimension.
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2. Materials and Methods

2.1. Sample Preparation and Hyperspectral Image Collection

The commercial whole wheat flour (JIN FEIXUE QUAN MAI FEN, FEI XUE LIANG YOU SHI
PIN Co. Ltd., Dongying, China) was obtained from a local supermarket, and was made of winter
wheat harvested in Shandong province, China. Cooked peanut and walnut powders were procured
from a commercial food-processing factory (Wotelaisi Biological Technology Co. Ltd., Lanzhou, China).
The particle sizes of the three types of powders—flour, cooked peanut and walnut powders—were
all less than 180 um. Peanut powder and walnut powder were mixed into flour, respectively,
with contaminant levels of 0.01%, 0.05%, 0.1%, 0.5%, 1%, 3%, 5%, and 10% (w/w). The samples
were fully mixed to be homogeneous. Pure flour, peanut, and walnut powder samples were also
prepared. Mixed flour of each proportion filled up three plastic square Petri dishes (100 mm width,
100 mm length, and 15 mm height) as three replicates. The hyperspectral images were collected via a
pushbroom HSI system (SPECIM SisuCHEMA, Spectra Imaging Ltd., Oulu, Finland) with a spectral
range of 936–1720 nm and spectral resolution of 3.45 nm. The hyperspectral camera (SPECIM FX 17,
Spectra Imaging Ltd., Finland) combined with indium gallium arsenide (InGaAs) detector acquired
hyperspectral images by scanning line by line, yielding the three-dimensional hypercube data with
dimensions of 640 (pixels) × 972 (lines) ×224 (bands). Each hyperspectral image comprised the
three plastic square Petri dishes filled up with powder of the same mixed proportion. In total,
19hyperspectral images (eight for peanut–flour mixtures with different contamination proportions,
eight for walnut–flour mixtures, as well as each for pure flour, peanut powder, and walnut powder)
were collected. The image resolution was about 0.32 mm/pixel.

2.2. Hyperspectral Image Calibration and Region of Interest (ROI) Extraction

To minimize the signal noises due to the disturbance of instrument structure and detector
sensitivity, the raw hyperspectral reflectance images were normalized into relative hyperspectral
reflectance images using white reference and dark reference images, referring to the following
formula [18]:

R =
R0 − RD
RW − RD

(1)

where R is the relative reflectance image, R0 is the raw reflectance image, and RW and RD are the
white and dark reference images, respectively. Before image collection, the white reference images
were acquired by collecting the hyperspectral image of a uniform and stable white calibration plate,
and the dark reference image was collected when the camera lens was shut off.

To promote the signal-to-noise ratio (S/N), data at the beginning and end of the spectral bands
were removed; that is, only the remaining region from 950 nm to 1700 nm (213 bands) was used.
To remove the background and edge of the Petri dish, three sub-images (284 × 284 pixels) of the
powder area in the three Petri dishes were cut off manually from each relative reflectance image. Then,
each sub-image was divided equally into nine regions of interest (ROIs). The spectra of all of the
pixels in each ROI were averaged to a spectrum. Hence, 513 spectra in total (27 spectra per image
× 19 images) were used for the following analysis. Among these, 243 spectra (27 spectra per image
× nine images (eight mixtures and pure flour)) were separated by a ratio of 2:1 into a calibration set
(162 spectra) and a prediction set (81 spectra) for the development and validation of the corresponding
PLSR models, respectively. A calibration set was also used to perform five-fold cross-validation.

2.3. Spectral Preprocessing

The average reflectance spectra calculated from ROIs were first transformed to absorbance
(log (1/reflectance)). Then, in order to eliminate the undesired impact, such as random noise,
light scattering, and baseline shifts [18], three spectral preprocessing techniques, including standard
normal variate (SNV), Savitzky–Golay first derivative (1st Der) (with a second-order polynomial
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and a five-point window), de-trending (Det) (with a second-order polynomial), two combinations
of SNV with 1st Der (SNV + 1st Der) and SNV with Det (SNV + Det), were separately adopted and
compared to deal with the absorption spectra prior to the model establishment. SNV is normally
applied to remove scatter effect. First derivative (1st Der) removes the baseline shift and amplifies
small spectral features [19]. Det is used to eliminate the effects of baseline shift and curvilinearity [20].
The combination of SNV and Det is often used to remove the curvilinearity and absorbance offset from
NIR spectra and reveal key information under processes of investigation [21–23].

2.4. Model Development Based on Full Spectra

In this work, partial least squares regression (PLSR) models were established for correlating
the hyperspectral absorbance spectra data with the contamination levels of peanut or walnut in the
whole wheat flour. PLSR is considered one of the most reliable and robust multivariate statistical
analysis methods for modeling, so long as the input variables are numerous and highly correlated.
PLS regression transforms raw predictors (wavelengths) to a reduced number of new variables called
latent variables (LVs), which are statistically independent and carry useful information that is relevant,
with reference values leading to better predictive capability [24]. The optimal number of LVs for the
PLSR model was determined on the basis of the rule of the lowest prediction error in cross-validation
carried out on the data of the calibration set. The evaluation of the PLSR model performance was
examined by determination coefficient as well as root mean square error of calibration (Rc

2, RMSEC),
cross-validation (Rcv

2, RMSECV) and prediction (Rp
2, RMSEP). The best model should have higher

values of Rc
2, Rcv

2, and Rp
2, and lower values of RMSEC, RMSECV, and RMSEP.

2.5. Optimal Wavelength Extraction and Multispectral Model Development

The PLSR models employing the full spectra of the hyperspectral data do not always yield
good results due to the high dimensionality, multicollinearity, and redundancy among contiguous
wavelengths, which also causes a lower processing speed and higher cost for hardware setup.
Variable selection methods can be used to screen out useful wavelength variables, which can
simplify the model development, improve model’s performance and/or robustness, and benefit
the development of online or portable instruments. In this study, two variable selection methods,
i.e., uninformative variable elimination (UVE) and successive projection algorithm (SPA) were
compared. UVE is one of the most prevalent variable selection methods that is widely used in
analytical chemistry [25]; it is able to remove the variables that are not more informative than noise for
modeling, and thus increase the model’s predictive accuracy [26]. SPA is also a common method to
select variables in multivariate modeling, and has been more favorable than the genetic algorithm [27].
SPA is an iterative forward selection method that adopts projection operations to choose variables of
collinearity minimum.

2.6. Visualization and Post-Processingof Predicted Results

In order to intuitively display the contamination proportion information in a spatial domain,
a visualization map of detection results is generated by transferring a multivariate analysis model
to each pixel’s spectra of the image. Specifically, the hyperspectral image was transformed into a
two-dimensional matrix, and then the matrix was multiplied with the regression coefficients from the
best PLSR model. The resultant vector of predicted values was refolded to form a two-dimensional
color image [28]. In this study, the hyperspectral image data that was used for visualization for each
type of samples was a sub-image, which was cut out from the raw calibrated hyperspectral images
with the size of 150 × 150 pixels at selected wavelengths, and then processed with SNV.
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Additionally, in order to obtain a more precise prediction map, a post-processing method
was applied on the prediction values of all of the pixels before forming the visualization map.
The post-processing method was shown by the following equations:

Yp = Y0.95−, if Y ≤ Y0.95−

Yp = Y, if Y0.95− < Y ≤ Y0.95+

Yp = Y0.95+, if Y0.95+ < Y

Y0.95− = µ− 1.96× σ÷
√

n

Y0.95+ = µ + 1.96× σ÷
√

n (2)

where the Yp values were the predicted values of the pixels after they were post-processed, Y were the
predicted values of the pixels, Y0.95− and Y0.95+ were the values of the endpoints of 95% confidence
interval of the mean of Y, µ was the mean of Y, σ was the standard deviation of Y, and n was the
number of Y.

2.7. Software

The calibration and extraction of ROIs of the hyperspectral image were realized in ENVI
(Exelis Visual Information Solutions, Boulder, CO, USA). All of the spectral preprocessing and PLSR
analysis were conducted in Unscrambler X (version 10.1, CAMO software AS, Oslo, Norway, 2010).
UVE, SPA, visualization, and post-processing of the predicted results were carried out in MATLAB
(version 2013b, The Mathworks Inc., Natick, MA, USA).

3. Results and Discussion

3.1. Spectral Features of Pure Whole Wheat Flour, Peanut Powder, and Walnut Powder

The average absorbance spectral curves of pure flour, peanut powder, and walnut powder were
shown in Figure 1. The most obvious difference among the three types of powders was observed in
the spectral range from 950 nm to 1100 nm, with a low and remarkable absorption peak at 995 nm,
which might be related to a N–H second overtone of peptides and proteins [29]. Flour had the lowest
absorbance value among the three powders at this region. In the region after 1150 nm, the general
trends of the three spectra curves were similar, and were only different in the value of absorbance.
Other significant variations of the three spectral profiles were presented at the absorption peak of
1200 nm and spectral region after 1450 nm (shown in Figure 1). The peak at 1200 nm was associated
with C–H stretch (methylene and methyl) second overtones of lipids, starches, and/or proteins.
The large absorption at 1465 nm was related to the first overtone of the O–H stretch of water [29].
These differences in absorbance values were primarily due to different chemical compositions of the
three powers. As a whole, the difference between walnut and flour is greater than that between peanut
and flour. Generally, the trends of the three spectra curves were similar, and taking into account both
particle size of samples (less than 0.180 mm) and image resolution (0.32 mm/pixel), the identification
of the location of peanut and walnut particles seemed impossible in current study.
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Figure 1. Average absorbance spectra of pure whole wheat flour, peanut powder, and walnut powder.

3.2. Comparison of Preprocessed Methods and Full Spectra Modeling

The performances of different PLSR models that were developed based on raw and the five
preprocessed spectra for predicting peanut or walnut contaminants in flour are summarized in Table 1.
Compared to the raw spectra, the preprocessing methods offered a significant improvement in the
model performance for peanut contamination, which indicated that the preprocessing methods were
effective to attenuate the scatter effect and random noise. As shown in Table 1, the PLSR model with
a combined preprocessed method of SNV + 1st Der performed the best. Regarding the model of
walnut contamination, although not all of the preprocessing methods improved the performance of the
PLSR models, the combination method of SNV + 1st Der performed the best. Moreover, performance
of PLSR models for walnut powder was better than the model for peanut powder, which was in
accordance with the more distinct difference between walnut and flour than that between peanut and
flour, as indicated in Section 3.1 and Figure 1.

Table 1. Partial least squares regression (PLSR) models for the detection of peanut-contaminated
flour and walnut-contaminated flour based on full spectra. SNV: standard normal variate; 1st Der:
Savitzky–Golay first derivative; Det: de-trending.

Contaminant Preprocessing
Method

LVs
Calibration Cross-Validation Prediction

Rc
2 RMSEC

(%) Rcv
2 RMSECV

(%) Rp
2 RMSEP

(%)

Peanut

None 11 0.989 0.342 0.986 0.386 0.985 0.398
SNV 12 0.996 0.208 0.992 0.282 0.992 0.287

1st Der 10 0.994 0.259 0.991 0.298 0.991 0.307
Det 13 0.995 0.225 0.992 0.293 0.993 0.267

SNV + 1st Der 12 0.997 0.183 0.994 0.253 0.993 0.272
SNV + Det 12 0.996 0.195 0.992 0.285 0.994 0.251

Walnut

None 8 0.998 0.145 0.998 0.159 0.997 0.180
SNV 6 0.998 0.142 0.998 0.153 0.997 0.168

1st Der 8 0.998 0.159 0.997 0.175 0.998 0.161
Det 9 0.998 0.154 0.997 0.184 0.996 0.198

SNV + 1st Der 8 0.999 0.125 0.998 0.144 0.998 0.153
SNV + Det 10 0.999 0.119 0.998 0.145 0.998 0.153

The plot of measured versus predicted values of the prediction set for peanut and walnut
contamination were shown in Figure 2a,b, respectively. Normally, contaminants with larger
concentration gradients are relatively easy to be predicted; thus, the minimum limit of detection
is the critical point of the problem. As shown in Figure 2a for peanut contamination, all of the samples
with a concentration equal and greater than 1% were predicted to be above 0, while for samples
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with a concentration of 0.5%, except for one sample, all of the other samples’ predicted values were
above 0. These indicated that the lowest detection limit of peanut contamination in flour was close
to 0.5%, although variation did exist. The results for walnut were better, and all of the samples with
concentrations equal to and greater than 0.5% could be well predicted, and as shown in Figure 2b,
the lowest detection limit of walnut contamination in flour reached 0.5%.
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Figure 2. Performance of the best PLSR models for (a) peanut-contaminated flour and
(b) walnut-contaminated flour applied on prediction sets based on full spectra (an enlarged view
of the green circle part was shown in the green pane).

3.3. Selection of Optimal Wavelengths and Multispectral Model Development

UVE and SPA were applied on the preprocessed spectra of peanut and walnut contamination
samples respectively to select the feature wavelengths from the full spectral range (213 wavelength
variables). Furthermore, for the development of a general model for predicting peanut or walnut
contamination, UVE and SPA were also applied on the spectra data of the combination of
peanut-contaminated and walnut-contaminated flour samples. Multispectral PLSR models for
predicting contaminants in flour were then developed using the corresponding feature wavelengths,
and the main statistical parameters of the models are presented in Table 2. The number of optimal
wavelengths selected by UVE was more than that by SPA, and the models based on UVE possessed
better performance than those by SPA. This could be because SPA reduced the number of wavelength
variables to a great extent in order to solve the collinearity problem, which leads to a decrease in the
accuracy of the model. This was consistent with the conclusions of Ye, Wang, and Min [26], Li et al. [30]
and Cheng, Sun, and Pu [31]. Multispectral PLSR models based on UVE showed good results to
predict contaminants in three cases (as shown in Table 2). Accuracies of the best multispectral models
to individually predict walnut or peanut contaminants were the same or even better than the models
based on raw full spectra without being preprocessed. The general multispectral model for predicting
a contaminant concentration value of both peanut-contaminated flour and walnut-contaminated flour
performed worse than the models for peanut or walnut contaminant individually, but the performance
was still promising with Rc

2 of 0.988, RMSEC of 0.345%, Rcv
2 of 0.987, RMSECV of 0.360%, Rp

2 of 0.987,
and RMSEP of 0.373%. The plot of measured versus predicted values of a prediction set for predicting
peanut contamination, walnut contamination, and a combination of the two were presented in Figure 3.
For the former two models, the contaminated samples with concentrations above 0.5% could be well
predicted, while for the general model for both peanut and walnut, samples with concentrations above
1% could be predicted correctly as contaminated flour. These indicated that for the two individual
models, the limit of detection was 0.5%, while for the general model, the limit of detection was
1%. Mishra et al. [3,32,33] studied the feasibility of the NIR HSI technique combined with principal
component analysis (PCA), spectral band math, or independent component analysis (ICA) to detect
peanut, hazelnut, and walnut particles (particle size of 1000–500 um) in wheat flour (particle size
of 125–100 um and 212–160 um). The results of their studies indicated that the combined technique
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can detect the spatial locations of peanut particles with contamination concentrations of 0.01% in
the wheat flour. However, in their study, the particle sizes of the nuts were greater than that of the
flour, and the situation of peanut and nut contaminants with smaller particle sizes similar to powdery
food products has not been investigated. For some unintentional contamination situations, the results
of the developed models in the study were not good enough; however, the models had practical
application significance in the situations of nut powder as a food ingredient that was deliberately
added in commercial wheat products without a clear statement.

Table 2. Multispectral PLSR detection models for peanut-contaminated flour, walnut-contaminated
flour and combination of them based on the corresponding selected wavelengths. RMSEC: root
mean square error of calibration; RMSECV: root mean square error of cross-validation; RMSEP:
root mean square error of prediction; SPA: successive projection algorithm; UVE: uninformative
variable elimination.

Contaminant Selection
Method

Number of
Wavelengths LVs

Calibration Cross-Validation Prediction

Rc
2 RMSEC

(%) Rcv
2 RMSECV

(%) Rp
2 RMSEP

(%)

Peanut
UVE 16 12 0.991 0.312 0.989 0.340 0.988 0.348
SPA 10 9 0.983 0.422 0.981 0.447 0.981 0.465

Walnut
UVE 14 6 0.998 0.147 0.998 0.157 0.997 0.170
SPA 9 8 0.992 0.295 0.991 0.312 0.990 0.324

Peanut + walnut
UVE 17 10 0.988 0.345 0.987 0.360 0.987 0.373
SPA 11 8 0.964 0.608 0.961 0.635 0.960 0.645
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Figure 3. Performance of the best multispectral PLSR models for (a) peanut-contaminated
flour; (b) walnut-contaminated flour; and (c) combination of both peanut-contaminated flour and
walnut-contaminated flour applied on prediction sets based on the corresponding selected feature
wavelengths (an enlarged view of the green circle part was shown in the green pane).

The distributions of selected wavelengths were plotted on the corresponding spectra profile
of pure powders needed to be distinguished (as shown in Figure 4). As illustrated in Figure 4a,b
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for peanut-contaminated flour samples, the feature wavelengths selected by UVE and SPA were
distributed similarly in the wavelengths regions such as 950–1050 nm, around 1200 nm, 1450–1600 nm,
as well as 1350–1400 nm. As discussed in the Section 3.1, the former three regions presented the
distinction between peanut and flour. For the region of 1350–1400 nm, there appeared to be an inflection
point of the absorbance values between peanut and flour. While for Figure 4c,d, the distribution of
wavelengths selected by UVE and SPA for walnut-contaminated samples seemed much more different
from each other. The majority of the feature wavelengths selected by the UVE were among the
region of 995–1150 nm, while wavelengths selected by SPA were among the whole wavelength range.
The reason might be that SPA is based on criterion of the minimum of collinearity. As shown in
Figure 4e,f, the distributions of wavelengths selected by UVE and SPA for combined samples of peanut
and walnut contamination were also similar to each other; the distribution regions were in accordance
with those discussed in peanut or walnut contamination cases, respectively. In general, UVE selected
more feature wavelengths and had more accurate prediction models than SPA. SPA had the advantage
in streamlining the wavelength variables, but also resulted in the decrease of the accuracy of the model.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 14 

distributed similarly in the wavelengths regions such as 950–1050 nm, around 1200 nm, 1450–1600 
nm, as well as 1350–1400 nm. As discussed in the Section 3.1, the former three regions presented the 
distinction between peanut and flour. For the region of 1350–1400 nm, there appeared to be an 
inflection point of the absorbance values between peanut and flour. While for Figure 4c,d, the 
distribution of wavelengths selected by UVE and SPA for walnut-contaminated samples seemed 
much more different from each other. The majority of the feature wavelengths selected by the UVE 
were among the region of 995–1150 nm, while wavelengths selected by SPA were among the whole 
wavelength range. The reason might be that SPA is based on criterion of the minimum of collinearity. 
As shown in Figure 4e,f, the distributions of wavelengths selected by UVE and SPA for combined 
samples of peanut and walnut contamination were also similar to each other; the distribution regions 
were in accordance with those discussed in peanut or walnut contamination cases, respectively. In 
general, UVE selected more feature wavelengths and had more accurate prediction models than SPA. 
SPA had the advantage in streamlining the wavelength variables, but also resulted in the decrease of 
the accuracy of the model. 

 
(a) 

 
(b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Distribution of feature wavelengths on average spectra curves of pure whole wheat flour as 
well as (a,b) peanut powder, (c,d) walnut powder, and combination of (e,f) both peanut and walnut 
powders samples (the wavelengths marked by the vertical green line were selected by UVE (a,c,e), 
while wavelengths marked by the vertical blue line were selected by SPA (b,d,f)). 

Furthermore, the number of feature wavelengths for peanut was greater than that for walnut, 
and the number for combined samples of peanut and walnut was the highest (shown in Table 3). 
Among all of the selected wavelengths, the wavelengths of 1109 nm, 1127 nm, 1203 nm, 1207 nm, 

Figure 4. Distribution of feature wavelengths on average spectra curves of pure whole wheat flour as
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powders samples (the wavelengths marked by the vertical green line were selected by UVE (a,c,e),
while wavelengths marked by the vertical blue line were selected by SPA (b,d,f)).
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Furthermore, the number of feature wavelengths for peanut was greater than that for walnut,
and the number for combined samples of peanut and walnut was the highest (shown in Table 3).
Among all of the selected wavelengths, the wavelengths of 1109 nm, 1127 nm, 1203 nm, 1207 nm,
1249 nm, 1252 nm, 1256 nm, 1368 nm, 1464 nm, and 1606 nm were selected more than once by UVE or
SPA for individual peanut or walnut contamination, or a combination of contaminated samples by
peanut or walnut. A wavelength of 1127 nm was attributed to O–H stretch from carboxylacids [34],
a wavelength of 1200 nm was attributed to the C–H stretch (methylene and methyl) second overtone
of lipids, starches, and/or proteins [29], 1210 nm was related to the second overtone of a C–H
stretch of lipid [35], and 1465 nm was associated with the first overtone of the O–H stretch of
water. These wavelengths were respectively close to the selected wavelengths of 1203 nm, 1207 nm,
and 1464 nm, which indicated that the feature wavelengths contained the information for the main
chemical composition (protein, starch, lipid, moisture) of peanut, walnut, and flours.

Table 3. Selected feature wavelengths for the peanut-contaminated flour, walnut-contaminated flour,
and a combination of both, based on UVE and SPA selection methods, respectively.

Contaminant Selection
Method

Number of
Wavelengths Wavelengths

Peanut
UVE 16 994, 1022, 1057, 1151, 1182, 1196, 1200, 1203, 1207, 1249, 1368,

1386, 1421, 1485, 1521, 1545
SPA 10 988, 998, 1012, 1154, 1203, 1214, 1368, 1457, 1489, 1588

Walnut
UVE 14 1005, 1036, 1085, 1102, 1109, 1113, 1127, 1140, 1144, 1245, 1249,

1252, 1256, 1330
SPA 9 1109, 1179, 1337, 1368, 1464, 1581, 1599, 1667, 1674

Peanut + walnut
UVE 17 1022, 1186, 1193, 1196, 1200, 1203, 1207, 1210, 1231, 1249, 1252,

1256 1372, 1390, 1606, 1613, 1638
SPA 11 1064, 1127, 1203, 1365, 1368, 1464, 1574, 1581, 1585, 1606, 1624

3.4. Post-Processingand Visualization of Prediction Results

The histogram of frequency of predicted concentrations of the pixels of samples with peanut
contaminant in concentrations of 0%, 3%, and 10% is presented in Figure 5. As shown in Figure 5, the
predicted concentration values of pixels within one sample had large deviations, which were greater
than the tested concentration gradients, and led to the poor visualization results. This was considered
to be caused by the noise and because the models that were used were developed based on the average
spectra of ROIs. However, as shown in Figure 5, the mean of predicted values (shown in white values
and white vertical lines) were near to the actual concentrations. Hence, considering the homogeneity
of the samples, the lower and upper thresholds defined as 95% confidence interval of the mean of the
predicted values were used to correct the predicted values.

Visualization results of the corrected predicted values based on different multispectral PLSR
models were shown in Figure 6. All of the visualization results demonstrated clear discrimination
among samples with contamination concentrations of 1%, 3%, 5% and 10%, although the corrected
predicted values were not very accurate. As shown in Figure 6b, the visual map of the PLSR model
based on the 14 wavelengths for predicting walnut contaminant showed the best discrimination
results, where even samples with concentrations of 0.5% and pure flour could also be identified.
For the other visual maps (shown in Figure 6a,c,d), the prediction results of pure flour samples showed
relatively large prediction errors, and the predicted concentration values showed false positives.
For all of the multispectral PLSR models, the samples with walnut contaminants were predicted more
accurately than those with peanut contaminants. Overall, visual prediction maps graphically displayed
the contamination concentration variation between samples and even within one sample, which is
impossible for the naked eye and common industrial cameras. Moreover, the visualization results
demonstrated the main advantage of HSI over the conventional spectroscopy for not only chemical
composition, but also for the spatial contaminant detection of peanut and walnut powders in whole
wheat flour.
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4. Conclusions

This study demonstrated the feasibility of the NIR HSI technique for the quantitative detection
and contamination visualization analysis of peanut and walnut powders in whole wheat flour. At first,
different preprocessing methods were examined to promote the signal-to-noise ratio of the original
spectra. After comparison, the preprocessed spectra by SNV combined with 1st Der were adopted to
develop the PLSR model based on full spectra. UVE selected more feature wavelengths and had more
accurate prediction models than SPA. SPA had the advantage of streamlining the wavelength variables
based on a minimum of collinearity, but resulted in a decrease in the accuracy of the model. The general
multispectral model for predicting a contaminant concentration of both peanut-contaminated flour
and walnut-contaminated flour performed worse than the individual identification model for either
peanut or walnut contaminant, but the performance was still promising with Rc

2 of 0.988, RMSEC of
0.345%, Rcv

2 of 0.987, RMSECV of 0.360%, Rp
2 of 0.987, and RMSEP of 0.373%. For the individual

identification models for peanut and walnut powders in flour, the samples of prediction set with
concentrations above 0.5% could be predicted correctly as contaminated flour, while for the general
model for combined samples of the two, the limit of detection was 1%. In particular, for all of
the models, the walnut contaminant was detected more accurately than the peanut contaminant.
Although for some unintentional contamination situations the results of the models were not good
enough, the models had practical application significance in the situations of nut powder as a food
ingredient deliberately added in commercial wheat products.

Visual maps based on different multispectral PLSR models indicated the ability to display the
concentration variation of peanut or walnut contamination in spatial terms, which is impossible for
the naked eye and common industrial cameras. The study confirmed that the NIR HSI technique has
the potential to inspect peanut and walnut powders in whole wheat flour for rapid quality control,
and demonstrated the prospect of practical application. The methodology proposed in this study
could also be used to detect other foreign contamination or adulteration in whole wheat flour. In the
current study, taking into account similar trends of spectral curves among pure samples, the small
particle size of samples (less than 0.180 mm), and the insufficient image resolution (0.32 mm/pixel),
the identification of the location of peanut and walnut particles seemed impossible. Further research
can focus on the feasibility of employing NIR HSI to identify the location of contaminant particles in
the sample surface under situations of different image resolutions and particle sizes of samples.
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