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Featured Application: This work can be applied to track mobile users, manage indoor
navigations, provide alarms in secured areas, such as unacceptable hospital areas, military
systems and mass rapid transit (MRT) inside enclosed areas. In general, this work is applicable
to inside enclosed areas where the specific location is mandatory.

Abstract: In the Internet of Things (IoT) era, indoor localization plays a vital role in academia
and industry. Wi-Fi is a promising scheme for indoor localization as it is easy and free of charge,
even for private networks. However, Wi-Fi has signal fluctuation problems because of dynamic
changes of environments and shadowing effects. In this paper, we propose to use a deep neural
network (DNN) to achieve accurate localization in Wi-Fi environments. In the localization process,
we primarily construct a database having all reachable received signal strengths (RSSs), and basic
service set identifiers (BSSIDs). Secondly, we fill the missed RSS values using regression, and then
apply linear discriminant analysis (LDA) to reduce features. Thirdly, the 5-BSSIDs having the
strongest RSS values are appended with reduced RSS vector. Finally, a DNN is applied for localizing
Wi-Fi users. The proposed system is evaluated in the classification and regression schemes using
the python programming language. The results show that 99.15% of the localization accuracy is
correctly classified. Moreover, the coordinate-based localization provides 50%, 75%, and 93.10%
accuracies for errors less than 0.50 m, 0.75 m, and 0.90 m respectively. The proposed method is
compared with other algorithms, and our method provides motivated results. The simulation results
also show that the proposed method can robustly localize Wi-Fi users in hierarchical and complex
wireless environments.

Keywords: deep neural network; Internet of Things; linear discriminant analysis; Wi-Fi based
indoor localization

1. Introduction

Currently, human daily life is becoming highly integrated with the Internet of Things (IoT),
as the Internet attracts much attention with respect to the outlook of future life and rapidly increasing
communication networks. One of the key technologies of IoT is localization, as it is a means to
develop keen environments and situation-awake services [1,2]. Additionally, the rapid developments
of technologies have demands to increase localization services. According to [3], localization plays

Appl. Sci. 2018, 8, 1062; doi:10.3390/app8071062 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7649-9739
https://orcid.org/0000-0003-4575-516X
https://orcid.org/0000-0002-5501-9871
http://www.mdpi.com/2076-3417/8/7/1062?type=check_update&version=1
http://dx.doi.org/10.3390/app8071062
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 1062 2 of 14

important roles by providing information about the position of mobile users. Location mindfulness is
one of the empowering tools for the coming smart and green cities, by notifying people of occupied
places and times. Moreover, localizations add value and offer various services, such as healthcare
monitoring, emergency management, personal tracking, context-dependent information services, and
advertisements. Localization can be applied to different areas, such as universities, military systems,
and hospitals. Therefore, an accurate location scheme is a key issue for realizing the localization
applications in various areas.

In indoor environments; Global Positioning System (GPS), Global Navigation Satellite System
(GLONASS), and Galileo are not practical because they lack line of sight (LoS) between the satellites
and the receivers, which is easily affected by the physical layout of equipment and is sensitive to
occlusion [3–5]. Therefore, indoor localization becomes common in indoor environments to offer
convenient services. According to [2,5], one of the enabling key factors for the future IoT archetype is
applying accurate indoor localization. As pointed out in [6], indoor localization can be applied for
robotics, ambient assisted living, health applications, location-based services (LBS), and to address
challenges in 5G networks. Hence, indoor localization should be applied carefully to provide high
accuracy, low complexity, and short operational time.

Based on the dependency of range measurements, indoor localization can be classified as
range-based and range-free localization schemes [7]. Range-based localization uses the measured
distance or angle to estimate the location. Under these schemes, received signal strength (RSS),
time-of-arrival (ToA), time-difference-of-arrival (TDoA), or angle-of-arrival (AoA) are common
approaches. On the other hand, the range-free schemes use connectivity or pattern matching
methods to estimate one’s location. Range-free schemes include the centroid algorithm, the Distance
Vector Hope (DV-hop) algorithm, the Multi-dimensional Scaling-MAP (MDS-MAP) algorithm,
and convex programming approaches. Generally, range-based schemes are more accurate [8], simple,
and low-cost [7] than range free schemes.

In wireless communication, indoor localization can be applied using technologies such as wireless
local area network (WLAN) or Wi-Fi, infrared (IR), radio frequency identification (RFID), ultrasound,
Bluetooth, or a combination of these technologies [3]. Wi-Fi is predominantly used for indoor location
because it can be installed in different areas without any new infrastructure. It is also easy to measure
the required data from cheap Wi-Fi devices like Access Points (APs) [9]. Wi-Fi-based localization
is required for location awareness services in places such as large shopping malls and university
campuses. Such complex and hierarchical environments require mountable system designs for
indoor localization.

Wi-Fi based localization is commonly adopted based on RSS, ToA, TDoA, and AoA. RSS-based
indoor localization in a Wi-Fi environment is characterized by minimum cost, less complexity
for the localization system, and ease of characterizing and mapping the indoor environment into
distinguishable areas [9]. Additionally, almost every Android mobile is equipped with a Wi-Fi adapter,
so it is easy to find required information from APs. Thus, it is possible to obtain basic localization
information to provide specific position estimations without additional costs of expensive sensors.

Based on discussions in [10], there are two methods to estimate Wi-Fi-based localization: Wi-Fi
ranging and Wi-Fi fingerprinting. In Wi-Fi ranging, estimation is done directly with the distance
towards the APs, which is impractical inside buildings due to multiple signal occlusions, wall
reflections, and the overall influence of people. On the other hand, Wi-Fi fingerprinting methods
focus on efficiently comparing achieved Wi-Fi scans to the prerecorded database. However, Wi-Fi
fingerprinting still has problem as it is difficult to tune in the case of hierarchical buildings, floors,
and rooms, since it requires a larger number of available datasets. Continuous Wi-Fi signal fluctuations
are another problem to tackle for accurate localization using Wi-Fi fingerprinting approaches.

To alleviate localization problems of fingerprinting approaches, machine-learning methods were
proposed [1,5,8,11,12]. In [1], a radial basis function network was used to estimate location, and a
particle filter was used to track the user’s path in an indoor environment. RFID and IR were used as the
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source of data from sensors, which creates a high cost as it requires additional hardware and requires
offensive calibration processes. In [5], support vector regression (SVR) and an artificial neural network
(ANN) were used for indoor localization. The data was generated by propagation model in 2 GHz
band. This work focused on locating APs in indoor environments, rather than localizing mobile users.

In [11], authors used an ANN algorithm for indoor localization using ToA and AoA as data
sources. However, this type of approach has operational complexity and is difficult to accurately
localize because of lacks of LoS. In [13], K-nearest neighbors (KNN) was used to estimate the current
position of a mobile user. They used historical data to estimate the current position of mobile users.
Here, the time dependency of RSS values was not considered. In [12], KNN and a Kalman filter were
used for localization performance using APs and other sensors. The accuracy was evaluated using
mean square error. This work required extra hardware for data collection, and did not show system
performances at different testing points.

In this paper, we propose to use a deep neural network (DNN) with linear discriminate analysis
(LDA) to accurately localize by cleaning noise and utilizing the benefits of a large number of datasets.
In DNN, we focused on classification- and regression-based indoor localization schemes using real
data collected from three buildings. In this particular work, we used the multilayer perceptron (MLP)
algorithm using a rectified linear activation function in four hidden layers. Before applying localization
in both schemes, we apply regression to fill the missed RSS values and LDA for dimensionality
reduction. The proposed system is evaluated in different scenarios at both schemes. The performances
of our proposed method are also compared with other algorithms in each scenario to validate our
proposed approach. The proposed system is evaluated at extinctive datasets collected from 802.11
standards in our own institution.

The main contribution of this paper is to apply integrations of LDA and MLP algorithms to
improve localization accuracies and computational complexities. Moreover, to collect large and
heterogeneous datasets from hierarchical and complex environments. We prepare class-independent
projected vector to convert any complex features into smaller features without affecting information
contents. Additionally, we practice the parallel implementation of classification and regression schemes
in Graphical Processing Unit (GPU), which helps to improve performance rates in Wi-Fi environments.
This helps to provide both bounded and specific positioning of Wi-Fi users in hierarchical and complex
environments at the same instance.

The integration of LDA and MLP has benefits of the usage of larger datasets and more accurate
localization. It also improves computational times by reducing from complex into simpler features.
To the best of authors’ knowledge, this article is the first to present the integration of LDA and MLP
algorithms to localize Wi-Fi users in complex and hierarchical environments.

The rest of this paper is organized as follows: In Section 2, we describe relevant works to show
the gap of our contributions. In Section 3, the working environment and experimental data collection
approaches are discussed. Details of the proposed technique are described in Section 4. Section 5
presents the results and discussion. Finally, conclusions of the work and possible future directions are
given in Section 6.

2. Related Works

It is difficult to use traditional learning approaches for scalable localization in different complex
and hierarchical environments because shallow learning has limitations of localization accuracy
due to data size and the learning performance of the algorithms. It is highly affected by different
environmental factors, such as multipath fading and the attenuation of objects.

Currently, DNN is applied to handle shallow learning problems by avoiding the needs of hand
engineering for extracting feature representations, and easily learning high-level features from a
large set of noise samples. As discussed in [9], DNN shows immunity against signal fluctuations,
noise effects, device dependency, and the elimination of time-consuming manual parameter tuning.
According to [10,14], DNN helps to lower the workforce burden of localization. DNN can provide
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accurate Wi-Fi-based indoor localization due to the ability to learn signal fluctuations through time and
environmental dynamicity because of its deeper functions that map the input to the output [4,9,10,15,16].
In [4], a stacked denoising auto-encoder (SDA) was used to reduce the dimensions, and then the
hidden Markov model (HMM) was applied to refine the localization. The root mean square (RMS)
was compared with respect to different sample sizes, and shows that using SDA and HMM has better
accuracy than using DNN and HMM alone. They showed that it is possible to boost the localization time
complexity using SDA and HMM. However, scholars evaluate their system in different data samples
rather than comparing their proposed system with other algorithms. In [9], DNN was used for building
and floor label positioning using RSS values. The classification accuracy is only 92% for floor-level
localization. The proposed system was evaluated in terms of various epoch sizes.

In [10], a DNN system was used for building and floor classification on the publicly-available
UJIIndoorLoc dataset. This work used a stacked auto-encoder for feature reduction. Researchers
reached the conclusion that the deep learning paradigm can provide a global location recognition
solution from Wi-Fi data at a significantly reduced effort in hierarchical problem types. Nevertheless,
the work did not consider localization accuracy evaluation at each testing point. In [15], channel state
information was used for indoor localization. Researchers compared the accuracy of the proposed
system performance in laboratories and living rooms and found that the system performs differently,
even in environments which are nearly the same. This work has no way to determine the performance
of the system in different scenarios and testing points.

In [16], a feedforward neural network (FFNN) classifier was used for multi-building and multi-floor
indoor localization, and could achieve 99.82% and 91.27% accuracy, respectively. The experimental
scenario was performed in a building, while their system was evaluated through a simulation in a
multi-building setting. However, in real world situations, it is very difficult to evaluate a system
through datasets collected from different environments in different approaches. In [17], building-level
classification was done by selecting the strongest RSS values from the measured fingerprints. Here,
it is difficult for the system to discriminate buildings whenever there is similar signal strength. In [18],
a deep-learning-based indoor fingerprinting system using channel state information (CSI) was used for
indoor localization. In this technique, the system performance was evaluated through clustering, which
has a lack of target values making it difficult to evaluate the system performance.

In [19], MLP was used for indoor localization using the mitigation of the ground reflection
effect for position estimation. This work was done through the aid of a wireless sensor networks.
The localization has been done through AoA data sources that have LoS problems. The work focused
on locating the position of each AP no matter the position of the Wi-Fi users in the environment.
It describes the relationship between the RSSI signals sent by the APs and the distance between such
an AP and a set of mobile device users. In [20], scholars used an artificial synaptic network, an MLP
network, and a generalized radial basis function network through ToA measurements to localize
sensors rather than localizing Wi-Fi users. MLP was applied to effectively reduce the uncertainty in
the location estimation system [21]. Authors suggest that MLP is a commonly applicable method for
pattern recognition in deep learning technologies. However, the work was implemented in only eight
APs and 42 target locations in a building. In [22], MLP and KNN were compared using data collected
from a 17 × 10 m2 area of the environment. The system performance was evaluated as a range-free
approach in each mobile node by comparing the system performance at each RSS value obtained.

From revised works, the integration of LDA, and MLP in classification and regression schemes
was not adapted to accurately localization in the Wi-Fi environments. In this article, we propose to use
LDA and MLP to enhance the localization accuracy, and improve computational time complexity in
Wi-Fi environments.

3. Experimental Data Acquisition

For this paper, we used real data collected from National Taipei University of Technology
(NTUT), found at 25◦02′51.94” N latitude and121◦31′54.66” E longitude. The working environment’s
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internal structures are illustrated in Figure 1. Data sources are assessed from three buildings:
the second teaching building (building-1), the complex building (building-2), and the academic
building (building-3) during working times. In the first building, we used four lecture rooms and one
lecture hall on the third floor. In building-2, we used two floors (floor 2 and floor 3) having laboratories,
meeting halls, and offices. In building-3, lecture rooms and a training room are considered. Each
floor has a corridor, gates, and/or exits. The RSS and BSSID values are measured from each AP and
stored in the computer, which has the following specifications: ASUS Intel® core i7-6700 Duo CPU
@ 3.40 GHz with 16.0 GB RAM. We used the graphical processing unit (GPU) card to handle large
numbers of datasets for parallel implementation of the classification and regression schemes.

For data collection, we divide the working environment into 1 m × 1 m grids for manageability
of the collected datasets. We also select a 1 m distance between grids to collect more Wi-Fi signals
and to make the proposed system adapt easily signal fluctuations through distance. The majority of
the experimental works for data collection in indoor environments are done between 1 m × 1 m to
2.5 m × 2.5 m grids. In [1], authors compared the performance of their proposed method at 1 m × 1 m,
1 m × 2 m, 1 m × 1.5 m, 2 m × 2 m, and 2 m × 2.5 m grids. They assured that data collected from 1 m
× 1 m grids helps to achieve better localization accuracy with errors less than 1 m compared to others.
Authors of [4] used 1.8 m × 1.8 m grids to collect required data. In [5], authors used 2.5 m × 2.5 m
grids. In [6], 1 m × 1 m grids were used for data collection, and accurate results were found. In [23],
data was collected in 1.7 m × 1.7 m grids experimentally.
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The datasets are collected through experiment in a real-world environment. From each grid,
we collected 35 RSS values through 5-s intervals, periodically. Discussions in [24,25] showed that
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using numerous signal values at each grid helps to make the machine easily adapt to the Wi-Fi signal
fluctuations. During RSS collections, we also record BSSIDs, which help to identify the RSS values
uniquely. BSSID is the Media Access Control (MAC) address of the AP. A total of 36,660 RSS values
and 36,660 BSSIDs are recorded from 1047 grids. In the data collection stage, the APs are not moved or
changed from their original locations. We used smartphones for data collection in each grid, because it
is easy and more available.

Since the working environment consists of multiple buildings, and each building has different
services, users in different rooms can use both private and public Wi-Fi network services. Public AP
locations are determined by the university. There are also private APs that are controlled by individuals
in offices or laboratories. Usually the private APs are placed in the room, while the public APs are placed
in corridors for laboratories and offices. In the lecture halls and lecture rooms, we observed that the APs
are seated inside, as well as outside, the room. The use of numbers of APs is because of the complexity of
the building and numbers of users. For this work, we used all reachable APs for data collection purposes
to make the system is inclusive. Additionally, we used our own APs deployed in selected locations as
shown in Figure 1. Wi-Fi users in different rooms or classes are not restricted as the nature of Wi-Fi is
unlimited, except for assigning the private password to protect Wi-Fi usage from the APs.

In the data collection stage, we use seven APs from predefined locations, and the other reachable
APs are used from unknown locations because, in real-world situations, specifically in complex
and hierarchical buildings, it is difficult to know all of the APs’ location. However, signals from
unknown locations may be important. During data collection, we have seen that there are up to
53 reachable APs. Hence, considering APs from unknown locations is very important to obtain
important information. The RSS values and BSSIDs are the collected features, and the X-Y coordinates
are Wi-Fi users’ locations that are recorded during data collection. Table 1 indicates the structure of
the recorded database containing the ranges of RSS values and the corresponding BSSIDs, and the
position of the collecting grids.

Table 1. Dataset structure.

RSS Vector Values BSSID (APs MAC Address)
Targets of WiFi Users

X-Y Coordinate

(RSS1
1, . . . . . . . . . .RSSp

1 ) BSSID1
1 . . . . . . . . . . . . . . . ..BSSIDp

1 X1
1 Y1

1
(RSS1

k, . . . . . . . . . . RSSp
k) BSSID1

k . . . . . . . . . . . . . . . ..BSSIDp
k Xa

i Ya
j

(RSS1
N , . . . . . . . . . .RSSp

N) BSSID1
N . . . . . . . . . . . . . . . . . . BSSIDp

N XN
n YN

m

At the beginning, the scanned database is recorded in the form of [(RSS1
k, . . . . . . . . . . RSSp

k),
(BSSID1

k . . . . . . . . . . . . . . . ..BSSIDp
k), (Xa

i ,Ya
j )], where (RSS1

k, . . . . . . . . . . RSSp
k) indicates the RSS

values from AP1 to APp at record k ≤ N, (BSSID1
k . . . . . . . . . . . . . . . ..BSSIDp

k) are the recorded
BSSIDs from AP1 to APp at record k ≤ N, (Xa

i ,Ya
j ) are the locations of where RSSs and the BSSIDs are

scanned, p is the number of reachable APs, k indicates the number of records, and i and j indicate
the X-coordinate and the Y-coordinate of mobile users. In the experiment, we have seen that p ranges
up to 53, and k runs from 1 to 36,660. For each observation, both RSS values and BSSID vectors are
recorded from reachable APs in the same orders in each recording. Whenever an AP is unable to reach
to the smartphone, the corresponding recording space will be empty. Hence, we preprocessed the
data to obtain a complete vector before proceeding with other processes like dimensional reductions
and localizing.

4. Proposed System

In this paper, we proposed to use DNN; more specifically, a multilayer perceptron (MLP) algorithm
for Wi-Fi-based indoor localization using RSSs and BSSIDs as data sources. The majority of the collected
RSS values after the 26th AP have the same value (−100 dBm), and there are large numbers of missing
RSS values. Therefore, for this work, we used the first 26 reachable features only. In [26,27], missed
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values were filled using average values. However, it is unrealistic to represent all missed APs with
similar values when there will be more than one missed AP. In [28], the authors used selective APs
for localization. However, in this type of approach, it is very difficult to implement whenever larger
numbers of APs are missed. Therefore, in our case, we filled the missed RSS values using regression,
and then applied LDA for dimensional reductions.

As discussed in [29,30], high dimensionality has problems, such as requiring a large amount
of time, high space complexity, and high over-fitting problems. Through appropriate application of
dimensionality reduction techniques, it is possible to project a set of high-dimensional vector samples
into much lower dimensionality while preserving the relevant global structure information of the
data [31]. This also makes it easy to visualize and manipulate the intrinsic structure of the projected
samples. According to [30], LDA is used for supervised approaches of dimensional reductions.
The main goal of the dimensionality reduction techniques is to reduce the redundant and dependent
features by transforming the higher dimensional feature space, which may lead to the curse of
dimensionality problem, to a space with lower dimensions. Discussions in [32] suggest that LDA
has been used to extract the most discriminative location features by maximizing the between-class
scatter under the constraint of keeping within-class scatter value. LDA is fast training approach for
dimension reduction, so that it helps to improve computational complexity [31]. According to [30,31],
there are two types of LDA technique: class-dependent and class-independent. In class-dependent
types, the lower dimensional space is calculated for each class to project its data on it. In this type, there
will be a number of projections depending on the numbers of classes, because both eigenvalues and
eigenvectors are calculated for each transformation matrix separately. However, class-independent
LDA operations are performed by considering each class as a separate class against the other classes
in the whole projection. In this type, there will only be one lower dimensional space for all classes.
Due to the computational simplicity, we prefer to use the class-independent LDA method.

For the simplicity of our work, we coded the datasets into classes based on different parameters,
such as LoS, geographical settlements, and reference point with related RSS samples. For example,
a room is considered as one class. A corridor found on a floor having the same structure and same LoS
is coded as a class. Therefore, before applying LDA, we divide the datasets into 15 classes. In class
representations, each class will be considered as a distinct class alongside the other classes. We used
LDA as a preprocessor stage, as it is more appropriate to our datasets and helps to optimize by
maximizing the between-class separations, and minimizing within-class variability [29,30]. In the LDA
technique, we have calculated the mean of each class, the total mean of the datasets, the between-class
matrix, and the within-class matrix step by step, and then we constructed the lower dimensional
spaces as a final step. Then, any data can be projected with the final lower dimensional space to find
the reduced and simpler vector. We applied LDA according to Equations (1)–(6) to reduce N to M
features where M ≤ N. Let the collected RSS values be denoted as Dnxm, where n is the total number
of records, and N is the number of features.

1. Separate the RSS values to each class Cc. From larger datasets, we assign each vector to the
corresponding class:

Cc= MrxN (1)

where r is numbers of records in class Cc, c is the class number (in our case c ε [1,15] and r ≤ n).
2. Calculate the mean of each class. This is used to show the effect of features in each class. The

computation is done from the assigned data to each class and then, finally, we obtained a 1 ×M
matrix, where M is the total number of classes. In our case, we have a total of 1× 15 mean vectors:

µc =
1
nc

n

∑
Di £ Cc

Di, (2)

where Di, is the matrix in class i ε c, µc is the mean of class c.
3. Compute the global mean (µ) of all data (Di,). This is calculated from all datasets:
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µ =
1
n

n

∑
i=1

Di, (3)

4. Calculate variances of the between-class matrix. This is calculated through computing the distance
between the individual class mean and the global mean. This mainly uses lower-dimensional
space and maximizes the between-class variance:

Sb =
15

∑
c=1

nc (µc − µ)(µc − µ)T (4)

5. Calculate the variances of the within-class matrix. This is conducted by minimizing the difference
between the projected mean and the projected samples of each class, as shown in Equation (5):

Sw=
15

∑
c=1

nc

∑
i=1

(Di,c − µc)(Di,c − µc)
T (5)

where Di,c is the ith sample in the cth class.
6. Construct a transformed matrix by combining Equations (4) and (5):

W = Sw
−1Sb (6)

7. Calculate the eigenvalues and eigenvectors of the transformed matrix (W), and then sort the
eigenvectors in descending order based on the eigenvalues to select M eigenvectors. M is the
number of dimensions of the new feature space (M≤ N). Feature selections are handled as shown
in Figure 2, where the larger variance ratio indicates the more important feature to represent the
whole of the features. According to [33], the selected features should contain greater than 90%
of the original data content. In our case, the selected features comprise the first top six features,
which cover more than 95% of the information of the total features. Hence, our LDA application
does not affect the information content of the original data.

8. Transform the original data, Dnxm, through the lower M-dimensional space. The result will
be the selected features that can represent the whole data to apply the proposed system in
indoor localizations.
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In addition to reduced RSS features, we used 5-BSSIDs having maximum RSS values, because we
observed that 5-APs giving the strongest RSS values in a grid are also continuing in a class. Moreover,
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each BSSID is unique for each AP, and the strength of the RSS values in different classes varies for APs.
Hence, the selected BSSIDs help our prediction be more precise.

To evaluate the system performances, the preprocessed data has been divided into training and
testing sets through random selection. From the total working locations, 889 grids are used for training,
and 158 grids are used for testing in both classification and regression schemes. In each dataset,
the corresponding BSSIDs were appended as illustrated in Figure 3. The proposed system, MLP, has an
I_365_365_365_365_On structure, where I indicates the input vector, and On refers estimated numbers
of outputs. Training and testing are operated after LDA-based dimensional reduction is accomplished,
and then 5-BSSID values are appended to them.

In the classification scheme, we compared MLP with Support Vector Machine (SVM) and KNN
algorithms to evaluate our proposed system’s performance. The comparisons are done in three
scenarios: using original datasets (Scenario 1), reduced features only (Scenario 2), and reduced data
having appended BSSIDs (Scenario 3). To carry out the proposed system, we used the Python 3.6
programming language with the Tensorflow framework because of the ease of use of the language for
the researchers.
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For coordinate-based localizations, errors are computed as root mean square errors (RMSE), and
error distributions in each testing point are also shown graphically. The RMSE is mathematically
calculated by Equation (7):

RMSE =

√√√√ k

∑
i=1

(Xrl
i − Xest

i )
2

k
(7)

where Xrl
i and Xest

i are the real and estimated distance at the ith testing point, respectively, and k is
the number of tested points. The error at each distinct testing point is evaluated in terms of position
estimation errors by Equation (8):

PEEi =
√
(Xai − Xei)

2 +
(
Yaj −Yej

)2 (8)

where PEEi is proposed system’s estimated error, Xai and Xei are the ith actual and estimated
X-coordinates, and Yaj and Yej are the corresponding jth actual and estimated Y-coordinates,
respectively. The test results and extensive explanations are given in Section 5.
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5. Results and Discussions

In this section, we conduct simulations in both classification and regression schemes to analyze
the performance of the proposed algorithm. The simulation is done using real data collected from
a wireless environment. In the classification scheme, we compared MLP performances with SVM
and KNN algorithms in different scenarios; more specifically, we used original datasets (Scenario 1),
reduced feature only (Scenario 2), and reduced data having appended 5-BSSID features (Scenario 3).
In the regression scheme, testing is performed in similar scenarios to prove the effectiveness of the
proposed approach.

Table 2 shows the localization performance in the classification scheme at different scenarios.
The result shows that localization accuracies in Scenario 1 are 82.10%, 90.11%, and 93.67% using KNN,
SVM-polynomial (SVM-poly), and MLP classifiers, respectively. The localization accuracies in Scenario
2 are 92.17%, 95.63%, and 98.00% using KNN, SVM-poly, and MLP, respectively. The whole algorithms’
localization accuracies are improved in Scenario 2 than in Scenario 1, since LDA resolved outliers
and removed noise to localize accurately. In Scenario 3, the localization accuracy of MLP is highly
improved, with splendid accuracy. MLP offers 99.15% localization accuracy. Thus, the location errors
are improved on the projected data vector with appended BSSIDs. The performance of SVM-poly
is also improved, while it is lower compared to MLP. The reason MLP outperforms in each scenario
is due to the high learning endurances in large and complex datasets than others. Moreover, MLP
outperforms with better localization accuracy than KNN and SVM-poly because it has a nonlinear
activation function to easily operate and understand nonlinear datasets.

Table 2. Localization performance through classification.

Classifier Algorithms
Accuracy Using Reduced Data and BSSID

Scenario 1 Scenario 2 Scenario 3

1 KNN 82.10% 92.17% 92.17%
2 SVM-poly 90.11% 95.63% 98.96%
3 MLP 93.67% 98.00% 99.15%

Therefore, the results in Table 2 show that the proposed approach has better localization accuracy,
as it integrates reduced data and selected BSSIDs since LDA helps to remove noise and other irrelevant
information, and makes the complex datasets simpler to operate. Additionally, BSSIDs give additional
information about each class to enhance the localization accuracy. BSSIDs help to easily differentiate
each class whenever there will be similar signal distribution in different locations. Generally, MLP offers
maximum accuracy compared to KNN and SVM-poly in the proposed data types, because MLP is
more flexible with respect to accurate localization of datasets with complex natures.

Table 3 shows the computational complexity comparisons of classier algorithms in different
scenarios. The results clearly show that it is possible to improve computational time complexity of
MLP using the LDA algorithm. The computational times of MLP in each scenario are better than
other algorithms, since the data nature is not linear, so that computing localization using KNN and
SVM-poly is more difficult than using the MLP algorithm. After LDA is applied, the computational
times are improved in each algorithm.

In Table 4, the MLP performances in three scenarios are presented. The MLP performance shows
that there are variations of accuracies in various scenarios. The accuracies are evaluated in the range
performances at each scenario. The MLP achieves 51.00%, 59.72%, and 93.10% for errors less than
0.90 m in Scenario 1, Scenario 2, and Scenario 3, respectively. Their localization accuracies also achieve
48.61%, 38.89, and 75% for errors less than 0.75 m in Scenario 1, Scenario 2, and Scenario 3, respectively.
For errors less than 0.5 m, the proposed system localizes 23.61% in Scenario 1, 19.44% in Scenario 2, and
50% in Scenario 3. MLP performs 2.75% in Scenario 1, 11.11% in Scenario 2, and 29.17% in Scenario 3
for estimation errors less than 0.25 m. These differences in the results show that the system learning
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rates highly depend on the quality of the input features. From each scenario, MLP provides better
localization accuracy at Scenario 3 in each localization range. The RMSE also indicates that MLP
performs better in Scenario 3 than in the other scenarios.

Table 3. Classification-based computational complexities.

Classifier Algorithms
Testing Times in Each Scenario (s)

Scenario 1 Scenario 2 Scenario 3

1 KNN 1.87 0.47 0.51
2 SVM-poly 5.33 1.45 1.49
3 MLP 1.11 0.35 0.21

Table 4. Regression-based localization accuracies.

MLP Accuracy in the
Three Scenarios

Range of Estimation Errors
RMSE in Meters

≤0.90 m ≤0.75 m ≤0.50 m ≤0.25 m

Scenario 1 51% 48.61% 23.61% 2.75% 0.75
Scenario 2 59.72% 38.89% 19.44% 11.11% 0.77
Scenario 3 93.1% 75%% 50% 29.17% 0.55

Figure 4 presents the mean, maximum, and minimum estimation error of MLP in three scenarios.
The maximum errors of the proposed method are 1.29 m, 1.22 m, and 0.98 m in Scenario 1, Scenario 2,
and Scenario 3, respectively. Moreover, the minimum localization error is 0.12 m for the first two
scenarios, while it is 0.01 m in the third scenario. The error mean of the proposed algorithm in Scenario
3 is lower than in Scenario 1 and Scenario 2, as illustrated in Figure 4. The majority of the error
distributions in the first two scenarios are also much greater than the mean values of the proposed
method in Scenario 3. However, the majority of localization errors of the proposed method in Scenario
3 are lower than 0.7 m, which is a motivated performance compared to other scenarios. The errors
also changed slowly in the third scenario, because most of the errors range between 0.2 and 0.7 m.
The RMSE and the mean of estimation errors are also smaller in Scenario 3 than in Scenario 1 and
Scenario 2.
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As shown in Table 5, the computational time of MLP in Scenario 2 and Scenario 3 are better than
Scenario 1, since LDA reduced complex features into simpler features. Additionally, the appended
BSSIDs help to provide extra information without affecting computational time. In general, the training
stage of regression scheme required high computational time, while the testing stage needs very little
computational time, and is relatively straightforward.

Table 5. Regression-based computational complexity.

Algorithm
Testing Times of MLP in Different Scenarios (s)

Scenario 1 Scenario 2 Scenario 3

MLP 1.16 0.39 0.24

The proposed method shows that it can be applied in indoor environments to provide better and
steady localization accuracy. Applying LDA for feature reduction and the appended BSSIDs having
the five strongest RSS values help the proposed algorithm achieve the best localization accuracies.
Additionally, collecting numbers of signal values from a 1 m by 1 m grid helps the proposed system
adapt to the environment easily for better localization. Filling the missed RSS values using regression
is also used to improve localization performances, rather than filling them manually.

Above all, the MLP network outperforms with respect to indoor localization accuracy because
of tuning with back-propagation, which helps to update the widespread, and control overfitting
problems. MLP has several parameters or features that could be updated according to the nature of
the data [34]. MLP also has good performance in pattern recognition in deep and complex studies.
The projected data from complex to lower dimensions can be more easily understood by MLP than
KNN and SVM-poly because MLP has a nonlinear activation function over the others. Therefore,
MLP can distinguish data that is not linearly separable, easily using its nonlinear activation function.
Moreover, MLPs are fully connected so that each node in one layer connects with the following nodes
with a certain weight wi,j, which allows MLP to learn better.

Generally, the simulation result shows that the proposed technique can provide accurate indoor
localization in complex and hierarchical environments. The results also indicate that the location
estimation errors changed very calmly between consecutive tested points, due to the superior
robustness of MLPs in uncertain, as well as complex, situations.

6. Conclusions and Future Works

In this paper, DNN-based indoor localization schemes are presented. We use LDA for
preprocessing the RSS data sources, and then BSSIDs having the five strongest RSS values were
appended with filtered RSS values for training and testing. The proposed system is evaluated
with respect to classification- and regression-based indoor localization. Our proposed method is
also compared with KNN and SVM-Poly in different scenarios to evaluate its localization accuracy.
The proposed system has 99.15% localization accuracy with respect to the classification scheme.
For regression-based localization, 100% of the estimation accuracy has an error less than 0.98 m in the
proposed approach. Additionally, our method was performed with lower error mean and variance,
which implies the error distributions in each set of testing points are low and slow. The computational
time complexities are also improved in the proposed method, compared to other algorithms, in each
scenario. Thus, the integration of MLP and LDA gives state-of-the-art performance on indoor
localization in hierarchical and multi-buildings environments. For indoor localization, LDA jointly
working with kernel methods is proposed as a future work, since the datasets transformed into a
projection function may not be always linear. The application of a DNN for indoor-outdoor localization
using an unmanned aerial vehicle in urban areas is also a potential future work.
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