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Abstract: To understand complex biological processes, scientists must gain insight into the function of
individual living cells. In contrast to the imaging of fixed cells, where a single snapshot of the cell’s life
is retrieved, live-cell imaging allows investigation of the dynamic processes underlying the function
and morphology of cells. Label-free imaging of living cells is advantageous since it is used without
fluorescent probes and maintains an appropriate environment for cellular behavior, otherwise leading
to phototoxicity and photo bleaching. Quantitative phase imaging (QPI) is an ideal method for studying
live cell dynamics by providing data from noninvasive monitoring over arbitrary time scales. The effect
of drugs on migration, proliferation, and apoptosis of cancer cells are emerging fields suitable for QPI
analysis. In this review, we provide a current insight into QPI applied to cancer research.

Keywords: microscopy; live cell imaging; quantitative phase imaging; digital holography; spatial
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1. Introduction

A number of techniques are known to qualitatively convert phase changes to observable amplitude
variations. Developed in the 1930s, the Phase Contrast (PC) microscope [1], uses a spatial filter
and a phase plate to translate phase into intensity modulation. Since then, PC microscopy and its
derivatives, Differential Interference Contrast (DIC) microscopy and Hoffman Modulation Contrast
(HMC) microscopy, have become widely adopted as techniques for cellular observation. DIC uses
two polarized light beams, which take slightly different paths through the microscopic sample. As
their optical path lengths differ and as the beams are recombined, they interfere and thereby create a
shadow effect at refractive index gradients [2]. HMC uses an off-axis slit plate and a spatial modulator
to alternately attenuate or enhance scattered light, thus creating a bright and dark shadowing effect at
refractive index gradients, whereas image areas of constant refractive index appear grey [3]. However, the
images are non-quantitative, neither optimized for visualizing cells nor for performing measurements.

Quantitative phase imaging (QPI) methods use interference techniques to convert the phase
information into pixel intensity, and in that way directly record the quantitative phase delay. Using QPI,
studies associated with both thickness and refractive index fluctuations can be performed [4]. Previous
work has been reviewed by Kemper et al., who described new ways of monitoring the cellular
morphology changes in response to drugs [5], and by Kim et al. who presented a review of digital
holography (DH), with emphasis on microscopy techniques and applications [6].

There are a number of different technical implementations of QPI; and, by convention, a variety
of names have been used to describe what is here collectively referred to as QPI. Terms differ even in
some cases for the same commercial product (Table 1). In this review, we use the term QPI to comprise
all, and we let other notations denote specific variations of hardware configuration.
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Table 1. Summary of type of material and treatment used to analyze cancer specimens with quantitative phase imaging (QPI).

Reference Cell Lines Organism Tissue Agent Investigated Vessel Type Technology Naming

Cellular Dry
Mass/Proliferation Cell Count Single Cell

Morphology
Cell

Cycle
Cell

Motility
Cell

Lineage

[7] KHOS Human Bone - X X X 6-well plate Quantitative Phase
Imaging

[8] U2OS Human Bone - X Cultivation
chamber

Spatial Light
Interference
Microscopy

[9] SH-SY5Y Human Bone
Marrow

Hypomagnetic,
Field X X X T25 flask Holographic Imaging

[10] U87 MG Human Brain Fatty acids,
Radiation X T25 Flask Holographic

Microscopy Imaging

[11]

U87 MG,
U-251 MG,

GBM1,
GBM2

Human Brain C-150 X T25 Flask Holographic
Microscopy Imaging

[12] JIMT-1 Human Breast DFMO,
PG-11047 X T25 Flask Digital Holography

[13] JIMT-1,
MCF-7 Human Breast Salinomycin X X X X Petri dish,

T25 flask
Digital Holographic

Microscopy

[14] L56Br-C1,
MDA-MB-231 Human Breast - X X T25 Flask Digital Holographic

Microscopy

[15] MCF-7 Human Breast Estrogen X
Glass

Chamber
Slide

Spatial Light
Interference
Microscopy

[15] MCF-7 Human Breast Estradiol,
Antiestrogen X X Chamber

slide

Spatial Light
Interference
Microscopy

[16]

MCF-7,
ZR-75-1,

MDA-MB-231,
SK-BR-3

Human Breast - X X Gel matrix Phase Holographic
Imaging

[17] MDA-MB-231 Human Breast Vimentin X unknown -

[18]
MDA-MB-231,
MDA-MB-468,

MCF-7
Human Breast - X unknown Digital Holographic

Microscopy

[19] MDA-MB-231,
MCF-7 Human Breast - X Microfluidic

channel
Digital Holographic

Microscopy
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Table 1. Cont.

Reference Cell Lines Organism Tissue Agent Investigated Vessel Type Technology Naming

Cellular Dry
Mass/Proliferation Cell Count Single Cell

Morphology
Cell

Cycle
Cell

Motility
Cell

Lineage

[21]
MCF-10A,

PC-3,
DU145

Human Breast,
Prostate - X T75 Flask Digital Holography

[22] JIMT-1,
SK-MEL-5 Human Breast,

Skin - X X 6-well plate Digital Holographic
Microscopy

[23] HeLa Human Cervix - X Petri dish
Spatial Light
Interference
Microscopy

[24] HeLa Human Cervix - X unknown White Light Diffraction
Phase Microscopy

[25] HeLa Human Cervix - X X X unknown
Wide-field

Interferometric Phase
Microscopy

[26] HeLa Human Cervix - X X X Slide Quantitative Phase
Imaging

[27] HeLa Human Cervix Doxorubicin X X X Glass Petri
dish

Quantitative Phase
Holographic Imaging

[28] HeLa Human Cervix Glucose X X Chamber
slide

Fourier Phase
Microscopy

[29] HeLa Human Cervix Polyalthia,
Longifolia X T25 flask Holographic Digital

Microscopy

[30] HeLa Human Cervix Epigalloca-Techingallate X X Perfusion
slide

Digital Holographic
Microscopy

[31] Primary Human Cervix - X Slide Digital Holographic
Microscopy

[32] HeLa,
MCF-7 Human Cervix,

Breast
Cyclotrichium,

Niveum X Perfusion
slide Holographic Imaging

[33]
HeLa,

A2780-ADR,
H69-AR

Human
Cervix,
Ovary,
Lung

C6 Ceramide,
Doxorubicin X Glass dish Phase Holographic

Imaging Microscopy

[34] DLD Human Colon HAMLET X Tissue culture
flask Holographic Imaging

[35] HT29 Human Colon
TNFa, smac

Mimetic,
Z-VAD

X Slide Quantitative Phase
Microscopy
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Table 1. Cont.

Reference Cell Lines Organism Tissue Agent Investigated Vessel Type Technology Naming

Cellular Dry
Mass/Proliferation Cell Count Single Cell

Morphology
Cell

Cycle
Cell

Motility
Cell

Lineage

[36] SW-480 Human Colon - X Flow Quantitative Phase
Imaging

[37] MVA12,
MVA41C Human Connective - X unknown Holographic

Time-lapse Imaging

[38] HT1080,
MCF-7 Human Connective,

Breast Doxorubicin X X Glass Petri
dish

Time-lapse
Holographic Imaging

Cytometry

[39] A549 Human Lung HAMLET X Perfusion
slide Holographic Imaging

[40] A549 Human Lung IL-6 X Cell culture
dish

Digital Holographic
Microscopy

[41] A549 Human Lung - X Glass dish Phase Correlation
Imaging

[42] A549,
H1975 Human Lung Curcuminoids X T25 flask Holographic

Microscopy Imaging

[43] A549, Jurkat Human
Lung,

Peripheral
Blood

HAMLET X Perfusion
slide Holographic Imaging

[44] SKOV3-TR,
HeyA8-MDR Human Ovary Pacitaxel X T25 Flask Holographic Imaging

Cytometry

[45] PaTu8988S,
PaTu8988T Human Pancreas E-cadherin X Tissue

Culture Plates
Digital Holographic

Microscopy

[46] PaTu8988S,
PaTu8988T Human Pancreas - X Petri dish Digital Holographic

Microscopy

[47] PANC-1 Human Pancreas/DuctOxaliplatin X Glass dish Digital Holographic
Microscopy

[48] Jurkat,
U2932 Human Peripheral,

Blood Etoposide X Slide Digital Holographic
Microscopy

[49] SACR2,
FaDu Human Pharynx - X X Perfusion

slide

Coherence Controlled
Holographic
Microscopy

[50] DU145 Human Prostate Etoposide X X T25 Flask Holographic
Microscopy

[51] DU145 Human Prostate Etoposide X X 6-well plate Digital Holographic
Microscopy

[52] PC-3 Human Prostate ISA-2011B X unknown Live Cell Imaging
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Table 1. Cont.

Reference Cell Lines Organism Tissue Agent Investigated Vessel Type Technology Naming

Cellular Dry
Mass/Proliferation Cell Count Single Cell

Morphology
Cell

Cycle
Cell

Motility
Cell

Lineage

[53] A2058,
HT168-M1 Human Skin Hydroxy-Anthraquinones X X Petri dish Holographic

Microscopy

[54]

Hs-895,
WM-115,

WM-266-4,
SW-480,
SW-620

Human Skin,
Colon - X Adhesive

chamber
Quantitative Phase

Microscopy

[55] A549,
HRTEC Human Lung,

Kidney HAMLET X Perfusion
slide

Phase Holographic
Imaging

[56] RKO, L1210 Human,
Mouse

Colon,
Skin - X Slide Synthetic phase

microscopy

[57] A375,
NuMuMg

Human,
Mouse

Skin,
Breast Various X X X X 6-well plate Digital Holographic

Imaging

[58] G3S2,
A337/311RP

Human,
rat

Breast,
Lung Starvation X Slide Digital Holographic

Microscopy

[59] Primary Mouse Lung - X X 6-well plate Phase Holographic
Microscopy

[60] B16F1,
B16F10 Mouse Skin - X X Microscope

slide
Digital Holographic

Microscopy

[61] B16F10 Mouse Skin Electro-Chemotherapy X Perfusion
slide

Digital Holographic
Microscopy

[62]

M229P,
M229R5,
M238P,

M238R1,
M249P,

M249R4

Human Melanoma Vemurafenib X X
24-well

glass-bottom
plate

High-speed live cell,
interferometry

[63]

RM-82,
CADO-ES-1,

VH-64,
STA-ET-1

Human Ewing
sarcoma

Birc5
knockdown X X X Slide Digital Holographic

Microscopy

[64]
Red blood

cells,
HT1080

Human Fibrosarcoma - X Digital Holographic
Microscopy

[65] MDA-MB-231,
MCF-7 Human Breast VE-cadherin X X X ibidi µDish

Petri dish
Digital Holographic

Microscopy

[66] HeLa Human Cervix - X Slide
Multimodal
Holographic
microscopy
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Optical methods are well suited for studying growth of both adherent single cells and cell
clusters [15]. The study of single cells over longer periods of time requires non-disturbing measurement
techniques, such as QPI [51]. QPI provides a quantitative measurement of intracellular structures
without the need for artificial dyes or markers. By using only low intensity illumination, it is possible
to perform imaging continuously and repeatedly at high capture frequency over the course of days or
even weeks. Consequently, biological processes and live cell dynamics, which may occur infrequently,
can still be captured at high sampling rate. If wide-field imaging methods are used, it is also possible
to capture data of a large number of cells simultaneously. When combined with the ability to segment
cell areas and perform temporal profiling of the image information of each cell, it is possible to monitor
a large number of living cells over time. Indeed, in vitro studies monitoring the effects of new drugs on
proliferation and migration of cancer cells are performed on a cell population level.

2. Technology

A complete description of the details of all possible technical setups of QPI is beyond the scope of
this review; see Popescu et al. [4], Lee et al. [67], and Majeed et al. [68] for an overview of the details
of commonly used technical setups, and Holden et al. [69] for an overview of available commercial
systems. Important to note is that the different setups come with slightly different benefits and
limitations, making them inherently well suited to a variety of purposes: High speed acquisition for
high temporal resolution of flow imaging [70], in situ imaging of growing adherent cells [21,37,56],
live cell tomography [71,72], or incubator monitoring [30,73].

Two of the most commonly used hardware configurations are DH in a separate path off-axis
Mach-Zender configuration [4] and Spatial Light Interference Microscopy (SLIM) [74]. In this review,
we refer to them as DH microscopy and SLIM, respectively.

Principles of QPI

Apart from a few early studies of biological imaging mounted on reflective surfaces, all QPI
set-ups for bio-imaging examine the sample using transmitted light (Table 1). Transmission QPI is
based on the interference between the light entering and exiting the sample. A separation between
refracted light of the sample (the object beam) and the reference light (the reference beam) can be
achieved using either spatial or temporal modulation. There are two types of spatial modulation:
In-line holography and off-axis methods. The first type is based on interference of a weakly scattered
beam from the object and an un-scattered incident beam [74]. For this optical instrument, the use of
heavy algorithms is necessary for image reconstruction, because interferometric information overlaps
with unwanted information.

In off-axis holography, the optical axis of the reference beam is slightly tilted with respect to
the object beam. Thus, unwanted information can be spatially separated [75]. DH is a common
off-axis holographic technique for the QPI of cells [31]. Here, a laser beam is spatially separated by
a dichroic mirror. The object beam is diffracted by the cells and interferes with the reference beam
at a slight angle at the recording sensor, where a fringe pattern characteristic of the object is created.
The intensity distribution depends on the phase difference ∆ϕ [4]. Temporal modulation, or phase
shifting interferometry, involves changing the phase of the reference beam with respect to the object
beam. An example of temporal modulation is SLIM [76].

The reconstruction of the phase and amplitude images from the recorded interferometric pattern
varies with the hardware set-up. Typically, it consists of one or several reconstruction stages using
Fourier Transforms and a focal selection stage, followed by one or more post-processing calculations
where modular phase recordings are unwrapped and edge effects removed [4]. The risk of introducing
image artefacts in the unwrapping stage is reduced if the sample phase shift is less than one wavelength,
or it can be avoided completely by imaging at several wavelengths, thus also allowing for imaging
thicker specimens [73,77,78]. All image reconstruction and manipulation stages can be performed after
capture, as the complete three-dimensional information of the sample is stored in the interferometric
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recording. The result is an image (Figure 1b) where pixel intensity is directly proportional to the
phase shift ∆Φ (Equation (1), with wavelength λ and refractive index in optical path direction n(z) as
parameters. The image is well suited for automated image analysis for two reasons. Firstly, the image
background can be used to offset the phase shift and allow comparison between images. Secondly,
the images themselves display intensity gradients at cellular boundaries, making it possible to segment
the image and extract information on each imaged cell separately (Figure 1c).
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Figure 1. Example of QPI image: (a) Interference pattern from digital holography (DH) recording
showing cells in transmission mode as seen by the sensor. An interference pattern between object and
reference wave has been disturbed by the refraction of cells in the object light path; (b) Reconstructed
phase image using a Fresnel approximation, numeric refocusing, and unwrapping. Image intensity is
proportional to optical path length through the cells; (c) Reconstructed phase image with segmented cell
areas. Cell regions (white) have been separated from background (grey) using a simple thresholding.
Scale: 200 × 175 µm2, human prostate DU145 cells in a T25 flask.

∆Φ =
2π

λ
·
∫

n(z)dz (1)

All image reconstruction and manipulation stages can be performed after capture, as the complete
three-dimensional information of the sample is stored in the interferometric recording. Despite these
appealing traits, several challenges persist. Thick cellular coverage may make it difficult to establish
image background, and the choice not to use dyes will also reduce the ability to artificially enhance
image contrast or specific image content, such as highlighting a specific molecule or intracellular
structure. As a consequence, QPI images of very thin cells or cell structures may be undetectable due
to noise. The phase delay measured is directly related to cellular dry mass and is the only physical
property measured. Using image analysis, it is possible to extract further information using the
recorded two-dimensional mass distribution within each cell. As the phase delay is a property not
always translatable to known biological properties, it can be difficult to compare QPI directly to
well-known legacy methods. Instead, QPI images provides a new way of looking at cells with its own
distinctive characteristics.

The phase delay measured is directly related to cellular dry mass (Equation (1) and is the only
physical property measured. However, using image analysis, it is possible to extract further information
using the recorded two-dimensional mass distribution within each cell. A number of studies have
compared the results of QPI analyses with other methods: QPI for tissue imaging and histological
analysis have been investigated using tissue from breast [68] and prostate [76,79]. The majority of QPI
for studies of cell cultures have focused on cell count and/or cellular morphology (Table 1). As dry mass
is independent of the intracellular water content, it can be a good indicator for cell growth. The ability
to measure cell count was validated for the first time in 2008 by Mölder et al. [21], using human breast
and prostate cancer cell lines, as well as a mouse fibroblast cell line. Measurement of cell growth
has been well documented for both adherent and non-adherent cells [8,9,15,25–28,47,49,56,59,61].
By segmentation of cellular outlines, morphology and motility can also be studied [7,50,51,57,80].
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Furthermore, differences in cell types can be detected if they display distinctly different morphologies
or migration patterns in response to cytotoxic drugs [30,81,82].

3. Cell Death Studies with QPI

The ability of QPI to differentiate between viable and non-viable cells without the use of
staining has been extensively studied [21,83]. The first DH microscopy images of tumor spheroids
were published in 2003 [84], and the first images of single cells one year after that [85]. Indeed,
DH microscopy has turned out to be a very useful technique for cell death studies [21,83]. Cells that
go into programmed cell death, or apoptosis, show a decreased cell phase shift as the first indication of
early apoptosis, but several morphological alterations take place, such as cell shrinkage, formation
of small blebs, nuclear fragmentation, chromatin condensation, chromosomal DNA fragmentation,
and breakdown into several apoptotic bodies [86]. Pavillon et al. showed that dead cells could be
identified within minutes through their DH phase signal, whereas with conventional trypan blue
staining the identification took several hours [87]. Also, DH microscopy was compared with electronic
cell sizing and atomic force microscopy [88]. DH was shown to be advantageous in terms of the
noninvasive labeling, the time resolution, and the possibility of measuring both single cells and
cell populations. Moreover, in a study by El-Schich et al., DH measurements revealed significant
differences in the average cell number, the confluence, cell volume, and cell area when comparing
untreated and etoposide-treated cells [50]. We have cultured T leukemia Jurkat cells in ibidi chambers
(ibidi GmbH, Martinsried, Germany) and treated the cells for 24 h with the cell death-inducing agent
etoposide, or left untreated as a negative control. After the incubation, the cells were analyzed with
DH microscopy. 3D holograms are shown for untreated cells (Figure 2A) and for the etoposide-treated
cells (Figure 2B).
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Figure 2. Jurkat cells cultured in ibidi chambers for 24 h: (A) Untreated cells; (B) Cells treated with
250 µM etoposide.

Interestingly, several DH parameters that were measured, including cell number, area, thickness,
and volume, were decreased after Etoposide treatment of the Jurkat cells (Table 2).

Table 2. Quantitative DH measurements of Jurkat cells treated with 250 µM etoposide for 24 h.

Number of
Cells

Confluence
(%)

Av. Cell
Area (µm2)

Av. Cell Optical
Thickness Avg (µm2)

Av. Cell Optical
Volume (µm3)

Control 226 ± 81 10.9 ± 3.8 143.4 ± 7.0 6.5 ± 0.4 1006.2 ± 121.1
Etoposide 114 ± 17 4.4 ± 0.5 115.0 ± 8.4 4.9 ± 0.2 584.0 ± 48.2
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Colomb et al. have shown details of the apoptotic process, where the apoptotic blebbing in
prostate cancer cells was clearly visualized by DH microscopy [81]. Interestingly, results presented
on the individual cellular level of prostate cancer cells and mouse fibroblast cells treated with cell
death-inducing drugs showed that these cell types behaved very differently [82]. Using rapid
profiling with high-speed live-cell interferometry, Huang and co-workers recently showed that the
proto-oncogene B-Raf (BRAF)-inhibitor sensitive melanoma cell lines differed in measurements of
optical cell biomass [62]. Interestingly, within 24 h, biomass kinetic signatures were obtained for three
pairs of sensitive or resistant melanoma cell lines, which showed a discrimination.

Cell death and cell proliferation are stringently controlled by the cell cycle, and studies have
shown the ability of QPI to identify the different phases of the cell life cycle, i.e., specific changes in
cell phase correlating to either a G1 or a G2/M arrest [13,25,38,44,57,89]. Kamlund et al. constructed
individual cell trees showing the way in which the drug salinomycin affects individual cells cultured
in normoxia or hypoxia, by monitoring the times to first and last division [13]. In this way, sensitivity
to different conditions could be analyzed. Moreover, several studies of cell cycle utilize the fact that
cells in mitotic arrest, G2/M, increase in cellular thickness and cell volume [44,89].

4. Choice of Cell Culture and Imaging Vessel

QPI measures the path-length shifts associated with the dry mass of the specimen [4–6,67,90,91].
The elimination of the contrast agent removes one cause of sample variability as the sample is observed
directly. However, there is no longer a possibility of artificially highlighting specific properties in
situ, a situation which introduces new challenges in evaluating the relationship between imaging
signal and cell pathology. As with all interferometric methods, QPI is highly sensitive to noise
and contamination in the light path. Consequently, the choice of imaging chamber, cell type and
physical growth conditions is of the utmost importance. QPI has optimal function on phase objects,
thin objects with little light attenuation, and small differences between the refractive index of sample
and background. The majority of studies have so far used a few common cell lines well suited to
produce QPI signal (Table 1). The choice of cell culture chamber is more varied, with both commercial
glass and plastic containers being used, as well as “homemade” chambers. Since the image is calculated
from an interference pattern in a Fourier domain, any contamination which can cause the light to
refract (other than the sample itself) will appear in the final image as an overall increase in noise levels,
and not only as a singular point of contamination. In particular, a separate path configuration, e.g.,
the Mach-Zender, is especially vulnerable, as contamination can corrupt each path separately.

The main benefit of QPI is its non-invasive characteristics, thus making it possible to perform
studies over long periods of time. Typically, some further restrictions are placed on the culture
chambers used, as normal cell culture at these time scales requires regular change of the cell culture
medium. Consequently, long term studies have used various kinds of perfusion chambers to be able to
replace the medium without disturbing the imaging view [30,32,39,43,49,55,61]. Several studies have
also used larger culture chambers with large enough volume to avoid changing the medium entirely,
such as by using a T25 cell culture flask (Table 1). Glass and plastic have been used in the majority of
cases, but studies have shown that thin films mounted on glass are acceptable from the perspective of
optical quality [92].

5. Automated Analysis and QPI

A promising potential for cellular imaging is the ability to use QPI to combine the non-invasive
full-field imaging at short imaging intervals with automated analysis of spatio-temporal cell signatures,
which enables the gathering of data from a large number of individual cells for long periods of time,
typically several cell cycles [93]. Given a stable segmentation of cell area and tracking of cell position,
it is possible to monitor morphological cell parameters over time, while at the same time recording
cell position and movement. When phase shift images are segmented, a large number of cellular
features related to morphology, density, texture, and motility can be calculated for each individual
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cell. The highly stochastic nature of cell phenotypes results in high variability between systems to
distinguish between different cell types and cell stages. Comparisons are often only possible using
population averages or large sample sets. Consequently, a successful analysis of individual cells will
require some degree of automation. Cellular and tissue dynamics were measured nearly ten years
ago by studying speckle fluctuations caused by cellular and sub-cellular motions [94,95], and several
studies have since investigated the characterization and separation of blood cells [96,97]. Abnormalities
of erythrocytes are important markers for disease. For example, Moon et al. used QPI obtained by
off-axis DH microscopy to automatically calculate many useful parameters of red blood cells, using
algorithms to provide joint statistical distributions of the cell properties [98]. Simple and fast methods
are needed urgently because morphology and functionality can differ quickly over time in a blood
sample. Go et al. used digital in-line holographic microscopy combined with machine learning
algorithms to classify different types of erythrocytes [51].

Recent advances in image analysis and machine learning classification algorithms applied to
various types of medical imaging [99] have only just started to be applied to QPI. A typical approach
for automated analysis consists of two major steps: The extraction of features from images, and the
classification of cells into groups on the basis of the features. Studies have shown the ability of QPI to
distinguish between cancer cell types in blood using relatively few basic features such as maximum
and average intensity, and cell diameter [20,100]. However, the majority of studies use more features.
The inline-DH microscopy method used by Singh et al. [19,20] to achieve large-scale fingerprinting
capabilities was useful for characterizing circulating tumor cells (CTC) in bulk flow. The authors
were able to characterize tumor cell lines with different metastatic potential, and to distinguish drug
resistant tumor cells from their normal counterparts.

The first studies of classification of adherent cells were published in 2017 for applications of
drug exposure [51] and cell cycle state [57], both relying on a few dozen simple features relating to
size and shape (e.g., area, eccentricity, average, and maximum phase shift) and texture (e.g., energy,
homogeneity, and entropy). Assigning a direct biological interpretation to QPI-derived features can be
difficult as intracellular fluctuations in phase shift could be due to variations in cell thickness, as well
as density or changes in internal organelle arrangement. Moreover, several features can be expected
to show high correlation because they are all collected from the phase shift profile, thus providing
redundant information. The clear benefit of studying adherent cells instead of cells in flow is the
ability to simultaneously gather information on cellular morphology, migration, and motion over time.
The time spent for each analysis will be limited by the expected speed of the analyzed process.

Hejna et al. [57] recently identified 26 digital features referred to as quantitative digital holographic
cytometry (DHC). When trained on these features, machine-learning algorithms achieve blind single
cell classification with up to 95% accuracy. Indeed, the choice of classification strategy is of vital
importance to the outcome of the analysis, as each strategy balances a tolerance for false positives
and negatives with computational complexity and speed. Classifiers can be binary, sorting cells into
distinct classes, or proportional, assigning a probability to a cell to belong to a specific class.

In supervised machine learning, a model classification algorithm is trained using a training
sample set consisting of training data labeled, classified, or annotated manually to provide a ground
truth. When training is complete, the obtained model is validated on test data of unknown class.
The more representative the training data is to the expected test data, the more accurate the classifier
In many real-world scenarios, test data may differ significantly from the training set. In the case of
building a model for clinical use, this means that each model must be possible to train on samples
from one set of patients with known cancer types, while still retaining its classification accuracy on
samples from other patients with unknown diagnosis. Achieving this robustness is crucial for any
use of machine learning outside of the lab, and although several studies have shown the potential
of various classification approaches to distinguish between cells of known types when trained on
cells from the same individual [54] or on known cell lines [51], few studies so far have explicitly
addressed this problem. Changes detected by image analysis were already visible on day 1 for 0.25 µM
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etoposide, whereas effects on viability, as detected with spectrophotometry assays, were detected only
on day 3 for 5 µM etoposide concentration, leading to the conclusion that the morphological changes
observed occur before and at lower concentrations than the reduction seen in cell metabolic activity
or viability assays [51]. Moreover, Roitshtain et al. used a low-coherence off-axis interferometric
phase microscopy setup, which allows a single-exposure acquisition mode, and thus is suitable for
quantitative imaging of dynamic cells during flow. After acquisition, the optical path delay maps of the
cells were extracted and then used to calculate 15 parameters derived from the cellular 3D morphology
and texture [54]. In a very recent study, activated macrophages were analyzed and information of
both cellular morphology and molecular content were collected with the help of the combination of
Quantitative Phase Microscopy (QPM), Raman spectroscopy, and auto fluorescence imaging [101].
Macrophages are immune cells, which are mostly analyzed with immunological methods. However,
here the activation state of macrophages could be detected, in comparison with the cytokine secretion
and intracellular expression of molecules related to the immune response.

6. Discussion

QPI applications including cell counting, migration, and morphology assays have become
increasingly popular, but several challenges still persist. The morphological label-free analysis ability
of QPI is a fast, automatic, and cost-efficient evaluation tool for analyzing quantitative parameters,
including cell area, thickness, volume, population confluence, and cell count. The need for QPI
applications in clinical cancer diagnostics and treatments is emerging. There is a demand for tools
to classify cells, and to determine cell morphology, differentiation, proliferation, morphological
changes of cells transfected with DNA or siRNA, cell death, and effects on cell movement—all in a
high-throughput manner. Since QPI is performed on live cells without any labeling, the cells can be
investigated with other methods—or the cells can be cultured for longer periods after the analysis.
However, extensive image analysis is required due to the richness of information in each image.
Analyzing blood samples or tumor biopsies containing small subpopulations of drug-resistant cancer
cells is also emerging with the increased need for individualized treatment. Interestingly, by using
QPI in combination with machine-learning, the features provide biologically independent information
across a variety of mammalian cell state transitions that can be used to standardize holograms for the
purpose of kinetic single cell cytometry. The training speed and computer resources can be limitations
in automated QPI using machine-learning. Also, it will be important in the near future to share data
and to develop algorithms.
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