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Featured Application: This work presents a supervised reinforcement learning (SRL)-based
framework for longitudinal vehicle dynamics’ control of the cooperative adaptive cruise control
(CACC) system. By incorporating a supervised network trained by real driving data into the
actor-critic framework, the training success rate is improved, and the driver characteristics can be
learned by the actor to achieve a human-like CACC controller.

Abstract: This paper presents a supervised reinforcement learning (SRL)-based framework for
longitudinal vehicle dynamics control of cooperative adaptive cruise control (CACC) system.
A supervisor network trained by real driving data is incorporated into the actor-critic reinforcement
learning approach. In the SRL training process, the actor and critic network are updated under the
guidance of the supervisor and the gain scheduler. As a result, the training success rate is improved,
and the driver characteristics can be learned by the actor to achieve a human-like CACC controller.
The SRL-based control policy is compared with a linear controller in typical driving situations through
simulation, and the control policies trained by drivers with different driving styles are compared
using a real driving cycle. Furthermore, the proposed control strategy is demonstrated by a real
vehicle-following experiment with different time headways. The simulation and experimental results
not only validate the effectiveness and adaptability of the SRL-based CACC system, but also show
that it can provide natural following performance like human driving.

Keywords: cooperative adaptive cruise control; driving behavior; longitudinal dynamics control;
supervised reinforcement learning; vehicle following control

1. Introduction

With the growing demand for transportation in modern society, concern about road safety and
traffic congestion is increasing [1,2]. Intelligent transportation systems are regarded as a promising
solution to these challenges due to their potential to significantly increase road capacity, enhance
safety, and reduce fuel consumption [3,4]. As a representative application for intelligent transportation,
adaptive cruise control (ACC) systems have been extensively studied by academia and industry and
are commercially available in a wide range of passenger vehicles. ACC utilizes a range sensor (camera
and/or radar) to measure the inter-vehicle range, and the relative velocity and controls the longitudinal
motion of the host vehicle to maintain a safe distance from the preceding vehicle [5]. As a result,
the driver is free from frequent acceleration and deceleration operation, and driving comfort and
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safety are improved. In recent years, the development of vehicle-to-vehicle (V2V) communication
technologies, such as DSRC and LTE-V [6,7], has provided an opportunity for the host vehicle to
exchange information with its surrounding vehicles. The resulting functionality, named cooperative
adaptive cruise control (CACC), utilizes information on the forward vehicle or vehicles via V2V, as well
as the inter-vehicle distance and relative velocity. Compared with conventional ACC, the wireless
communication devices for CACC system increase cost of on-board hardwares. The control strategy
becomes more complicated due to additional system state variables and the topological variety for
platoons, which are even more critical when considering time delay, packet loss, and quantization error
in the communications [8,9]. In [10], it is demonstrated that the string stability domains shrink when
the packet drop ratio or the sampling time of communication increases and above a critical limit string
stability cannot be achieved. In [11], an optimal control strategy is employed to develop a synthesis
strategy for both distributed controllers and the communication topology that guarantees string
stability. In another hand, CACC is more attractive than conventional autonomous ACC, because the
system behavior is more responsive to changes in the preceding vehicle speed, thereby enabling shorter
following gaps and enhancing traffic throughput, fuel economy, and road safety [12]. Simulation
results revealed that the freeway capacity increases quadratically as the CACC market penetration
increases, with a maximum value of 3080 veh/h/lane at 100% market penetration, which is roughly
63% higher than at 0% market penetration [13,14].

The earliest research on CACC dates to the PATH program [15] in the US, which was followed by
the SARTRE project [16,17] in Europe and the Energy ITS project [18] in Japan. Another demonstration
of CACC is the Grand Cooperative Driving Challenge (GCDC), which has been held twice in 2011
and 2016 in the Netherlands. In GCDC, several vehicles cooperated in both urban and highway
driving scenarios to facilitate the deployment and research of cooperative driving systems based on
a combination of communication and state-of-the-art sensor fusion and control [19,20]. Most research
on CACC has focused on vehicle dynamics control in the longitudinal direction to achieve stable
following and coordination of the platoon. Linear feedforward and feedback controllers are widely
used due to their advantages of simple structure and convenience in hardware implementation [21–23].
In this approach, the controller uses the acceleration of the preceding vehicle and tracking errors as
the feedforward and feedback signals, respectively, to determine the desired acceleration of the host
vehicle. However, due to the nonlinearity of vehicle dynamics and uncertainty of the environment, sets
of controller parameters need to be tuned manually, and it is difficult for controllers to be adaptive and
robust to unknown disturbances. Model predictive control (MPC) has also been introduced for CACC
by forecasting system dynamics and explicitly handling actuator and state constraints to generate
an optimal control command [19,24–27]. By solving the optimal control problem over a finite horizon
in a receding manner, multi control objectives, such as tracking accuracy, driver comfort, and fuel
economy can be balanced with the cost function. MPC is also superior in terms of constraint satisfaction.
However, the MPC design involves more parameters and thus requires more time to adjust [19,25].
In addition, a detailed system dynamics model with high fidelity is needed to predict system states
accurately, and solving the nonlinear optimization problem causes relatively high computational cost,
which impedes real-time implementation with a short control sampling time [27]. Moreover, due to
CACC’s characteristics of a shorter inter-vehicle gap and quicker response, some researchers have
pointed out that it is necessary to consider driver psychology and driving habits in the controller
design to gain better human acceptance [9,28]. In [29], a human-aware autonomous control scheme
for CACC is proposed by blending a data-driven self-learning algorithm with MPC. The simulation
results showed that vehicle jerk can be reduced while maintaining a safe following distance.

As an important approach for solving complex sequential decision or control problems,
reinforcement learning (RL) has been widely studied in the community of artificial intelligence and
machine learning [30–32]. Recently, RL has been increasingly used in vehicle dynamics control to
derive near-optimal or suboptimal control policies. In [33], an RL-based real-time and robust energy
management approach is proposed for reducing the fuel consumption of a hybrid vehicle. The power
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request is modeled as a Markov chain, and the Q-learning algorithm is applied to calculate a discrete,
near-optimal policy table. In [34], RL is used to design a full-range ACC system, in which the inducing
region technique is introduced to guide the learning process for fast convergence. In [35], a novel
actor-critic approach that uses a PD controller to pre-train the actor at each step is proposed, and
it is proved that the estimation error is uniformly ultimate bounded. Charles et al. use function
approximation along with gradient-descent learning algorithms as a means of directly modifying
a control policy for CACC [36]. The simulation results showed that this approach can result in
an efficient policy, but the oscillatory behavior of the control policy must be further addressed by
using continuous actions. In [37], a parameterized batch RL algorithm for near-optimal longitudinal
velocity tracking is proposed, in which parameterized feature vectors based on kernels are learned
from collected samples to approximate the value functions and policies, and the effectiveness of the
controller is validated on an autonomous vehicle platform.

In this paper, we propose a supervised reinforcement learning (SRL) algorithm for the CACC
problem, in which an actor-critic architecture is adopted, because it can map continuous state space
to the control command and the policy can be updated directly by standard supervised learning
methods [38]. The main contributions of this study are the following:

(1) A supervisor network trained by collected driving samples of the human-driver is combined
with the actor-critic algorithm to guide the reinforcement learning process.

(2) The composite output of the supervisor and the actor is applied to the system, and the proportion
between supervised learning and reinforcement learning is adjusted by the gain scheduler during
the training process. Using this method, the success rate of the training process is improved, and
the driver characteristics are incorporated into the obtained control policy to achieve a human-like
CACC controller.

(3) The CACC test platform is developed based on two electric vehicles (EV) and a rapid control
prototyping system. The performance and learning ability of the SRL-based control policy are
effectively validated by simulations and real vehicle-following experiments.

The rest of the paper is organized as follows. Section 2 describes the control framework and
the test platform. Section 3 presents the SRL-based control approach for solving the CACC problem.
The simulation and experimental results for a real vehicle following control are illustrated in Section 4.
Section 5 concludes the paper.

2. Control Framework and Test Platform

2.1. Control Framework for CACC

The fundamental functionality of the CACC system is to regulate the acceleration of the host
vehicle, such that the relative velocity between the host vehicle and its nearest preceding vehicle,
and the error between the inter-vehicle distance and the desired distance, converge to zero. In this
study, the control framework is designed based on a fully control-by-wire EV. Figure 1 illustrates this
framework by showing that the CACC system has two separate layers. The upper level controller
generates the desired acceleration ad by using input signals, including the inter-vehicle distance dr and
relative velocity vr measured by radar, the acceleration of the preceding vehicle ap transmitted via V2V
communication, and the velocity and acceleration of the host vehicle measured by the on-board sensor.
The lower-level controller manipulates the motor output torque or the braking pressure so that the
acceleration of the vehicle tracks the desired acceleration. The accelerator pedal signal α and braking
pressure Pb are determined by a motor torque map and a braking look-up table, respectively, which
are obtained from driving tests. An incremental PID controller and the acceleration/deceleration
switching logic are also included in the lower-level module, although they are not shown in the figure.
A similar two-layer control framework for ACC can be found in [5].
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Figure 1. Control framework for the CACC system.

2.2. Hardware Implementation for the Test Platform

As shown in Figure 2, the experimental platforms are built based on two electric passenger
vehicles as the host vehicle and the preceding vehicle. The host vehicle, produced by the BAIC
company, is front-wheel drive and equipped with a 100-kW driving motor, a single-speed gearbox,
and a 41.4-kWh lithium battery pack.

A Cohda Wireless MK5 OBU (On-Board Unit), which supports the SAE J2735 DSRC standard,
is used to transmit information from the preceding vehicle to the host vehicle. The data receiving
and sending program, “BSM-Shell”, is run in the embedded Linux system of the OBUs. Both vehicles
are equipped with the NAV-982 inertial navigation system (INS) combined with a Global Positioning
System (GPS) to measure acceleration and record the position of the vehicle. On the preceding vehicle,
a Raspberry Pi with extended RS232 and CAN interfaces serves as the bridge between NAV-982 and
OBU for parsing the raw data from NAV-982. A Delphi 77-GHz millimeter-wave radar is installed
on the front of the host vehicle to measure the distance and relative velocity of the preceding vehicle.
A rapid control prototyping system is used to test the control strategy. The control algorithm is
programmed in the MATLAB/Simulink environment and run in the dSPACE Autobox controller,
equipped with a DS1007 processor board and a DS2202 I/O board. The control signals for acceleration
and braking are sent to the lower-level control units through CAN bus. In addition, INS data parsing,
radar signal processing, and the target tracking algorithm are fulfilled by the dSPACE. System states
are monitored on the host PC through Ethernet. The sampling time of the system is 50 ms.
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3. The SRL-Based Control Strategy for CACC

The principle of RL is learning an optimal policy, i.e., a mapping from states to actions that
optimizes some performance criterion. Relying on RL alone, the learner is not told which actions to
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take but instead must discover which actions yield the greatest reward by trial and error [30]. Some
researchers have proposed that the use of supervisory information can effectively make a learning
problem easier to solve [38]. For a vehicle dynamics control problem, the richness of the human driver’s
operation data can be employed to supervise the learning process of RL. In this section, an SRL-based
control algorithm for CACC is proposed, as shown in Figure 3. The actor-critic architecture is used to
establish the continuous relationships between states and actions and the relationships among states,
actions, and the control performance [39,40]. The supervisor provides the actor with hints about which
action may or may not be promising for a specific state, and the composite action blending the actions
from the supervisor and the actor by the gain scheduler is sent to the system. The system responds
to the input action with a transition from the current state to the next state and gives a reward to the
action. More details about each module are described as follows.
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3.1. System Dynamics

The primary control objective is to make the host vehicle follow the preceding vehicle at a desired
distance dd(t). The constant time headway spacing policy, which is the most commonly used,
is adopted here [22–24]. The desired inter-vehicle distance is proportional to velocity:

dd(t) = d0 + hvh(t) (1)

in which d0 is the desired safe distance at standstill, h is the time headway, and vh(t) is the velocity of
the host vehicle.

The longitudinal dynamics model for the host vehicle must consider the powertrain, braking
system, aerodynamic drag, longitudinal tire forces, and rolling resistances, etc. The following
assumptions are made to obtain a suitable control-oriented model: (1) The tire longitudinal slip
is negligible, and the lower level dynamics are lumped into a first order inertial system; (2) The vehicle
body is rigid; (3) The influence of pitch and yaw motions is neglected. Then, the nonlinear longitudinal
dynamics can be described as

.
sh(t) = vh(t)

.
vh(t) = 1

m

(
η

T(t)
r −

CD A
21.15 v2

h(t)−mg f
)

τ
.
T(t) + T(t) = Tdes(t)

(2)

in which sh(t) is the position of the host vehicle; m is the vehicle mass; η is the efficiency of the driveline;
T(t) and Tdes(t) are the actual and desired driving/braking torque, respectively; r is the wheel radius;
CD is the aerodynamic coefficient; A is the frontal area; g is the acceleration of gravity; f is the rolling
resistance coefficient; and τ is the inertial delay of vehicle longitudinal dynamics.

With the exact feedback linearization technique [41], the nonlinear model (2) is converted to

Tdes(t) =
r
η

(
CD A
21.15

v(t)(2τ
.
vh(t) + vh(t)) + mg f + mu(t)

)
(3)
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in which u(t) is the control input after linearization, i.e., the desired acceleration, and we have

u(t) = τ
.
ah(t) + ah(t) (4)

in which ah(t) =
.
vh(t) denotes the acceleration of the host vehicle. The third-order state space model

for the vehicle’s longitudinal dynamics is derived as
.
sh(t).
vh(t).
ah(t)

 =

 0 1 0
0 0 1
0 0 −1/τ


 sh(t)

vh(t)
ah(t)

+

 0
0

1/τ

u(t) (5)

Using the Euler discretization approach, the state equation of continuous system (5) is discretized
with a fixed sampling time ∆t as follows:

sh(t + 1) = sh(t) + vh(t)∆t
vh(t + 1) = vh(t) + ah(t)∆t

ah(t + 1) = ah(t)− ∆t
τ ah(t) + ∆t

τ u(t)
(6)

Considering the vehicle following system of CACC, we define the system state variables as
x(t) = [ed(t), vr(t), ar(t)]. ed(t), vr(t), and ar(t) are the inter-vehicle distance error, relative velocity,
and relative acceleration, respectively, denoted as

ed(t) = sp(t)− sh(t)− dd(t)
vr(t) = vp(t)− vh(t)
ar(t) = ap(t)− ah(t)

(7)

in which sp(t), vp(t), and ap(t) are the position, velocity, and acceleration of the preceding
vehicle, respectively.

After taking the action u(t) in state x(t), the system will go to the next state x(t + 1) according to
the following transition equations:

ed(t + 1) = ed(t) + vr(t)∆t− hah(t)∆t
vr(t + 1) = vr(t) + (ap(t)− ah(t))∆t

ar(t + 1) = ap(t + 1)− ah(t) + ∆t
τ ah(t)− ∆t

τ u(t)
(8)

3.2. The SRL Control Algorithm

There are three neural networks in the proposed SRL control algorithm: the actor, the critic, and
the supervisor. The actor network is responsible for generating the control command according to the
states. The critic network is used to approximate the discounted total reward-to-go and evaluate the
performance of the control signal. The supervisor is used to model a human driver’s behavior and
provide the predicted control signal of the driver to guide the training process of the actor and critic.

3.2.1. The Actor Network

The input of the actor network is the system state x(t) = [ed(t), vr(t), ar(t)], and the output is the
optimal action. A simple three-layered feed-forward neural network is adopted for both the actor and
critic according to [39]. The output of the actor network is depicted as

ua(t) = f

(
Nha

∑
i=1

ω
(2)
ai (t) fi

(
n

∑
j=1

ω
(1)
ai,j (t)x(a)

j (t)

))
(9)
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in which f (·) is the hyperbolic tangent activation function; f (z) = (1− e−z)/(1 + e−z), x(a)
j denote

the inputs of the actor network; ω
(1)
ai,j represent the weights connecting the input layer to the hidden

layer; ω
(2)
ai represent the weights connecting the hidden layer to the output layer; Nha is the number of

neurons in the hidden layer of the actor network; and n is the number of state variables.

3.2.2. The Critic Network

The inputs of the critic network are the system state x(t) and the composite action u(t). The output
of the critic, the J function, approximates the future accumulative reward-to-go value R(t) at time t.
Specifically, R(t) is defined as

R(t) =
T

∑
k=0

αkr(t + k + 1) (10)

in which α is the discount factor for the infinite-horizon problem (0 < α < 1). The discount factor
determines the present value of future rewards: a reward received k time steps in the future is worth
αk−1 times what it would be worth if it were received immediately [30]. T is the final time step. r(t) is
the reward provided from the environment given by

r(t) = −(k1e2
d(t) + k2v2

r (t) + k3(ah(t)− ah(t− 1))2) (11)

in which k1, k2, and k3 are positive weighting factors. For the sake of control accuracy and driving
comfort, r(t) is formulated as the negative weighted sum of the quadratic forms of the distance error,
the relative velocity, and the fluctuation of the host vehicle’s acceleration. Thus, a higher accumulative
reward-to-go value R(t) indicates the better performance of the action.

In the critic network, the hyperbolic tangent and linear-type activation function are used in the
hidden layer and the output layer, respectively. The output J(t) has the following form:

uc(t) =
Nhc

∑
i=1

ω
(2)
ci (t) fi

(
n+1

∑
j=1

ω
(1)
ci,j (t)x(c)j (t)

)
(12)

in which x(c)j denote the inputs of the critic network, ω
(1)
ci,j represent the weights connecting the input

layer to the hidden layer, ω
(2)
ci represent the weights connecting the hidden layer to the output layer,

and Nhc is the number of neurons in the hidden layer of the actor network.

3.2.3. The Supervisor

Driver behavior can be modeled with parametric models, such as the SUMO model and the
Intelligent Driver Model, and non-parametric models, such as the Gaussian Mixture Regression model
and artificial neural network model [42]. In [43,44], a neural network-based approach for modelling
driver behavior is investigated. In this part, the driver behavior is modeled by a feed-forward
neural network with the same structure as the actor network. The driver’s operation data in a real
vehicle-following scenario can be collected to form a dataset D = {ed(t), vr(t), ar(t), ades(t)}. Note
that here we use the desired acceleration ades(t) as the driver’s command instead of the accelerator
pedal signal α and braking pressure Pb. The supervisor network can be trained with dataset D to
predict the driver’s command ades(t) according to a given state [ed(t), vr(t), ar(t)]. The weights are
updated by prediction error back-propagation, and the Levenberg-Marquardt method is employed to
train the network until the weights converge.
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3.2.4. The Gain Scheduler

As mentioned above, the actor network, the supervisor network, and the gain scheduler generate
a composite action to the host vehicle. The gain scheduler computes a weighted sum of the actions
from the supervisor and the actor as follows:

u(t) = ksuE(t) + (1− ks)us(t) (13)

in which us(t) is the output of the supervisor, i.e., the prediction of the driver’s desired acceleration
with regard to the current state. us(t) is normalized within the range [−1, 1] m/s2. uE(t) is the
exploratory action of the actor, uE(t) = ua(t) + N(0, σ). N(0, σ) denotes a random noise with zero
mean and variance σ. The parameter ks weights the control proportion between the actor and the
supervisor, 0 ≤ ks ≤ 1. This parameter is important for the supervised learning process, because it
determines the autonomy level of the actor or the guidance intensity of the supervisor. Generally,
the value of ks varies with the state. It can be adjusted by the actor, the supervisor, or a third party.
Considering the control requirement and comfort of the driver and passengers, the range of u(t), which
is within the range [−1, 1], is transformed into the range [−2, 2] m/s2 before applying to the system.

3.2.5. SRL Learning

During the learning process, the weights of the actor and critic are updated with error
back-propagation at each time step. After taking the composite action u(t), the system transits
to the next state x(t + 1) and gives a reward r(t). For the critic network, the prediction error has the
same expression with the temporal difference (TD) error as follows:

ec(t) = αJ(t)− (J(t− 1)− r(t)) (14)

The squared error objective function is calculated as

Ec(t) =
1
2

e2
c (t) (15)

The objective function is minimized by the gradient descent approach as

ωc(t + 1) = ωc(t) + ∆ωc(t) (16)

∆ωc(t) = lc(t)
(
− ∂Ec(t)

∂ωc(t)

)
= −lc(t)

∂Ec(t)
∂J(t)

∂J(t)
∂ωc(t)

(17)

in which lc(t) is the learning rate of the critic network at time t, 0 < lc(t) < 1.
The adaptation of the actor network is regulated by the gain scheduler. The weights of the actor

are updated according to the following rule as

ωa(t + 1) = ωa(t) + ks∆ωRL
a (t) + (1− ks)∆ωSL

a (t) (18)

in which ∆ωRL
a (t) and ∆ωSL

a (t) are the updates based on RL and the supervised learning, respectively.
The error and objective function of RL are defined as

eRL
a (t) = J(t)−Uc(t) (19)

ERL
a (t) =

1
2

(
eRL

a (t)
)2

(20)

in which Uc(t) is the desired control objective. Here, Uc(t) is set to 0, because the reward tends to zero
if optimal actions are being taken.
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The supervisory error and its objective function are calculated as

eSL
a (t) = us(t)− ua(t) (21)

ESL
a (t) =

1
2

(
eSL

a (t)
)2

(22)

The RL and supervisory objective functions are minimized by the gradient descent approach, and
thus the reinforcement-based update and the supervisory update are calculated as

∆ωRL
a (t) = la(t)

(
−∂ERL

a (t)
∂ωa(t)

)
= −la(t)

∂ERL
a (t)

∂J(t)
∂J(t)
∂u(t)

∂u(t)
∂ωa(t)

(23)

∆ωSL
a (t) = la(t)

(
−∂ESL

a (t)
∂ωa(t)

)
= −la(t)

∂ESL
a (t)

∂ua(t)
∂ua(t)
∂ωa(t)

(24)

in which la(t) is the learning rate of the actor network at time t, 0 < la(t) < 1.
The complete SRL algorithm is described in detail with the pseudocode as Algorithm 1.

Algorithm 1. Supervised Reinforcement Learning algorithm.

1: Collect driving samples D = {ed(t), vr(t), ar(t), ades(t)} from a human driver in an infinite time horizon
2: Train the supervisor network with D using the Levenberg-Marquardt method
3: Input the actor and critic learning rate la, lc; the discount factor α; the exploration size σ; and the
interpolation parameter ks

4: Initialize the weights of the actor and critic ωa, ωc randomly
5: Repeat for each trial
6: x(t)← initial state of the trial
7: repeat for each step of the trial
8: us(t)←action given by the supervisor
9: ua(t)←action given by the actor
10: uE(t)←ua(t) + N(0, σ)

11: ks ← interpolation parameter from the gain scheduler
12: u(t)← ksuE(t) + (1− ks)us(t)
13: execute action u(t) and observe the reward r(t) and new state x(t + 1)
14: ec(t)← αJ(t)− (J(t− 1)− r(t))
15: update the weights of the critic by (16) and (17)
16: eRL

a (t)← J(t)−Uc(t)
17: eSL

a (t)← us(t)− ua(t)
18: update the weights of the actor by (18), (23) and (24)
19: x(t)← x(t + 1)
20: until x(t) is terminal

4. Experiment Results and Discussion

4.1. Vehicle Model Validation

As described in Section 3.1, the longitudinal dynamics of the vehicle are treated as a first-order
inertial system for simplicity. The inertial delay τ is identified by the step-response approach. In the
driving test on a flat road, the step acceleration and braking commands are given to the lower-level
controller, and the actual acceleration response is measured. The model parameters for acceleration and
braking are estimated using a least-squares method as follows: τacc = 0.15, τbrake = 0.52. The validation
results for the identified vehicle model, as shown in Figure 4, indicate that the simulation output
of the model corresponds well with the measured actual acceleration curve. Thus, the vehicle
model adequately describes the longitudinal vehicle dynamics. Notably, the shorter inertial delay
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for acceleration is highly contributed to by the fast response of the pure electric powertrain of the
test vehicle.
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4.2. Training Process

First, the human driver’s manual driving data are collected with our test platform in the vehicle-
following scenario. Two of our colleagues are selected to drive the host vehicle. They both have proficient
driving skills but different driving styles. The first driver (Driver 1) is aggressive and tends to use large
acceleration and deceleration, whereas the second driver (Driver 2) is non-aggressive, with smoother
driving. The data collection for each driver lasts approximately 10 min, with a sampling time of 50 ms.
The drivers commanded the vehicle with their driving habits respectively. Then, the supervisor networks
with three layers and ten hidden neurons are trained by the collected samples with the MATLAB Neural
Network Toolbox. The maximum number of iteration steps, performance goal, and learning rate are set
as 1000, 0.001, and 0.01, respectively. Two supervisor networks with different driving styles are obtained
from Driver 1 and Driver 2 for the next step.

In the SRL stage, Algorithm 1 is performed for the CACC control. It should be mentioned that the
convergence analysis of the actor-critic reinforcement learning algorithm has been given in [45]. It is
shown that the estimation error and the weights in the action and critic networks remain uniformly
ultimately boundedness (UUB) under the given conditions. Here, the training parameters are selected
on basis of UUB conditions provided by [45]. Both the actor and critic networks have three layers
and ten hidden neurons. The initial learning rate of the critic and actor networks is set as 0.3 to
accelerate the convergence and decreases by 0.05 at each time step until it reaches 0.003. The discount
factor is 0.9. The variance σ for action exploration is 0.05. For the gain scheduler, we expect that at
the beginning of the training process, the actor network is updated dominantly by the supervisor.
The weight of the reinforcement update then increases gradually, such that a near-optimal policy can
finally be obtained. Thus, the initial interpolation parameter ks is set as 0.2 and increases with 0.004 at
each time step until it reaches 0.8. A typical driving profile is constructed as the training cycle [34,36].
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In our case, the preceding vehicle starts driving at a constant velocity of 50 km/h for 50 s. Then,
two step acceleration signals, 0.42 m/s2 and 0.83 m/s2, and two step deceleration signals, −0.42 m/s2

and −0.83 m/s2, are successively given; each signal lasts 20 s. At 140 s, two periods of sine wave
acceleration signals are given with a 40-s period and a 1 m/s2 amplitude; then, the preceding vehicle
drives at a constant velocity until the terminal time of 200 s. The initial velocity of the host vehicle is
60 km/h, and the initial inter-vehicle distance is 20 m. The host vehicle learns to follow the preceding
vehicle while keeping a specific desired following range of 1 s time headway. The training step size is
set as 1 s [34].

In this study, an experiment consists of a maximum of 1000 consecutive trials of the training cycle.
The experiment is considered successful if the host vehicle can follow the preceding vehicle with the
desired range in a steady state at the end of a trial (trial number less than 1000). For comparison,
the actor-critic RL algorithm without the supervisor is also adopted for the same training process as
SRL, and 100 experiments are performed for each. The training results summarized in Table 1 show
that with the proposed SRL algorithm, the training process is always successful, and fewer trials are
needed than with RL.

Table 1. Training results of SRL and RL.

Algorithm Number of Experiments Success Rate Average Number of Trials

SRL 100 100% 128
RL 100 34% 724

4.3. Simulation Results

The performance of the obtained control policy for CACC based on SRL is investigated via
simulation with two ideal driving cycles, including the step acceleration cycle and the sinusoidal
velocity cycle, and a collected real driving cycle. In [22], a linear feedforward and feedback control
algorithm for CACC is proposed and tested on a vehicle. Here, the linear controller is also adopted for
comparison. With the first two ideal cycles, the SRL control policy trained by samples of Driver 1 is
compared with the linear control algorithm. With the real driving cycle, the SRL control policies trained
by samples of Driver 1 and Driver 2 are compared to evaluate the learning ability of SRL and validate
the effect of the supervisor. The time headway is set as 1 s, and the safe distance at standstill is 2 m.

Figure 5 presents the simulation results with the cycle of step accelerating and decelerating
commands, followed by the maximum, average, and variance of the inter-vehicle distance error listed
in Table 2. The initial distance, the initial velocity of the preceding vehicle, and the host vehicle are
7 m, 36 km/h, and 18 km/h, respectively. Note that for a fair comparison, the desired distance curve
is calculated using the velocity of the preceding vehicle in this and following figures in this section.
With the SRL-based control policy, the host vehicle tracks the velocity of the preceding vehicle well
while maintaining the desired inter-vehicle distance. The velocity error and distance error of the SRL
control policy damp more quickly compared with the linear control. More specifically, at the beginning
of the simulation and the rising/falling edge of the step command, the SRL policy tends to generate
a larger acceleration to achieve a faster response and more accurate inter-vehicle distance control.
The maximum, average, and variance of the distance error of the SRL control policy are less than that
of the linear controller, which indicates that the SRL control policy achieves a better following accuracy.

Figure 6 shows the simulation results of the sinusoidal velocity cycle. The corresponding
maximum, average, and variance of the inter-vehicle distance error are listed in Table 3. At the
beginning of the simulation, the SRL policy provides a larger acceleration than the linear controller
to pursue the velocity of the preceding vehicle in a short period of time. After that, the SRL policy
performs as well as the linear controller in velocity tracking. As shown in Figure 6c, the proposed
SRL policy exceeds the linear controller in maintaining the desired distance. The distance error of SRL
policy is less than the linear controller as shown in Table 3.
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Table 2. Maximum, average, and variance of distance error, with the cycle of step acceleration
and deceleration.

Control Policy Maximum (m) Average (m) Variance

SRL control 7.50 0.48 2.05
Linear control 9.86 0.52 4.57

Table 3. Maximum, average, and variance of distance error, with the cycle of sinusoidal velocity.

Control Policy Maximum (m) Average (m) Variance

SRL control 2.84 0.23 0.31
Linear control 5.07 0.43 1.83
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Moreover, the performance of the SRL control policies trained by different drivers are compared
using a real driving cycle collected on an urban road in Beijing. The driving samples of Driver 1
and Driver 2 are used to train two supervisor networks, and then these two supervisors are adopted
for the SRL training process to obtain two different SRL control policies. Recall that Driver 1 has
an aggressive driving style, whereas Driver 2 is non-aggressive. As shown in Figure 7, both SRL
policies can control the host vehicle to follow the preceding vehicle stably and accurately, and the
distance error and relative velocity are regulated in a small range. The variance of distance error of the
policy trained by Driver 2 (SRL-Driver2) is larger than SRL-Driver1, as listed in Table 4. The velocity
curve and the acceleration curve of SRL-Driver2 are smoother than SRL-Driver1. The fluctuation
range of the acceleration for SRL-Driver 1 is also larger than that of SRL-Driver 2, especially at 20 s
to 40 s and 60 s to 80 s. The acceleration distribution for the data samples and simulation results are
depicted in Figure 8a,b, respectively. From the acceleration distribution of the collected driving data
for the two human drivers shown in Figure 8a, it can be seen that for driver 2, whose driving style is
non-aggressive, the acceleration distribution is more concentrated in the areas around zero. For driver
1, the distribution probability when the absolute value of acceleration is larger than 0.5 is greater than
that of driver 2. This means driver 1 tends to give larger acceleration or braking command, whereas
driver 2 tends to give smaller and smoother acceleration or braking command. The distribution shapes
for the data samples and the simulations results of the two drivers are clearly similar. In detail, the SRL
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control policy trained by Driver 2, which inherits the acceleration characteristics from the data samples
of Driver 2, is more likely than SRL-Driver 1 to give small acceleration commands. It can be concluded
that the SRL-based control policy learns the driving style from the samples of the human driver while
guaranteeing control performance.
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4.4. Test Results

Figure 9 shows the test scenario for the evaluation of the SRL-based CACC system. The host
vehicle uses a millimeter-wave radar to measure the relative velocity and inter-vehicle distance.
The acceleration of the preceding vehicle is sent to the host vehicle via V2V communication.
Vehicle-following tests in low-speed driving situations were conducted on a flat, straight road on our
campus. To validate the adaptability of the proposed control strategy, time headways of 0.8 s, 1.0 s,
and 1.2 s are tested. The safe distance at standstill is set as 5 m.
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The test results with different time headways for the SRL-based CACC system are shown in
Figures 10–12. The corresponding maximum, average, and variance of the inter-vehicle distance error
are listed in Table 5. Although the velocity of the preceding vehicle fluctuates between 15 and 30 km/h,
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the host vehicle can always follow the velocity of the preceding vehicle accurately. The inter-vehicle
distance changes according to the desired distance. Distance error occurs when the velocity of the
preceding vehicle fluctuates but remains in an acceptable range. Normally, the actual distance is larger
than the desired distance when the preceding vehicle accelerates and smaller than the desired value
when the preceding vehicle decelerates due to the slight hysteresis of the change of the host vehicle’s
velocity. The distance error and its variance decrease when a larger time headway is used, as listed
in Table 5. In addition, the acceleration of the host vehicle is manipulated by the SRL controller to
fluctuate closely with respect to that of the preceding vehicle. In conclusion, the effectiveness of the
SRL-based CACC system is validated by vehicle-following tests with satisfactory performance.

Table 5. Maximum, average, and variance of distance error, with the real driving cycle.

Time Headway (s) Maximum (m) Average (m) Variance

0.8 3.41 −0.43 2.01
1.0 2.54 −0.12 1.24
1.2 2.50 −0.10 0.95
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5. Conclusions

In this study, we propose an SRL-based framework for the longitudinal vehicle dynamics control
of a CACC system. A supervisor trained by driving data from a human driver is introduced to guide
the reinforcement learning process. During the learning process, the composite action of the supervisor
network and the actor network is sent to the system, and the actor network is updated with the error
provided by the supervisor and the critic network simultaneously. The gain scheduler adjusts the
weighting between supervisor and actor to improve the learning efficiency and obtain a near-optimal
control policy. The simulation results show that the performance of the proposed control strategy
is superior to that of the linear controller, and the human driver’s acceleration characteristics can
be successfully mimicked by the SRL-based strategy, resulting in an improving driver comfort and
acceptance of the CACC system. In addition, the proposed framework is demonstrated on CACC test
vehicles, and the effectiveness is validated by vehicle-following tests with satisfactory performance.
Notably, the SRL algorithm can be implemented in a real-time way, such that the driver’s driving data
are collected for online updating of the actor network to provide a human-like control policy. In the
next step, the string stability for vehicle platooning will be considered in the SRL approach to reduce
the impact of the trained control policy on traffic flow.
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