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Abstract: This paper deals with the problem of signal source localization using a group of
autonomous robots by designing and analyzing a decision-control approach with an event-triggered
communication scheme. The proposed decision-control approach includes two levels: a decision level
and a control level. In the decision level, a particle filter is used to estimate the possible positions of
the signal source. The estimated position of the signal source gradually approaches the real position
of signal source with the movement of robots. In the control level, a consensus controller is proposed
to control multiple robots to seek a signal source based on the estimated signal source position.
At the same time, an event-triggered communication scheme is designed such that the burden of
communication can be lightened. Finally, simulation and experimental results show the effectiveness
of the proposed decision-control approach with the event-triggered communication scheme for the
problem of signal source localization.

Keywords: signal source localization; multi-robot system; event-triggered communication;
consensus control

1. Introduction

Signal source localization can be widely found in nature and society [1–7]. For example, some
bacteria are able to find chemical or light sources through the perception of the external environment [1].
Moreover, reproducing this kind of behavior in mobile robots can be used to perform some complex
missions such as monitoring environments [2,3,8,9], searching and rescuing victims [10], and so on.
How to deal with the problem of signal source localization has attracted increasing interest from
scientists and engineers and involves two aspects of study. One aspect is to estimate the possible
positions of signal sources, while the other aspect is to control robots to locate signal sources based on
the estimated positions [2,3]. For a single robot, some approaches have been proposed for the problem
of signal source localization. For example, in [11], the SPSA (Simultaneous Perturbation Stochastic
Approximation) method was designed to control the mobile robot to locate a signal source. In [12,13],
the extremum seeking technique, originally developed for adaptive control, was also applied in signal
source localization. In [14], a source probability estimation approach was proposed to control the robot
to locate the signal source by using the information on signal strength and direction angle. However,
the aforementioned approaches need the robot to take more time to collect measurements at different
locations. Moreover, some search trajectories generated by these approaches are usually unnecessary.
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Compared with the single robot, due to the wide detection range and simultaneous sampling,
multi-robot systems have received much attention for the problem of signal source localization
(see Figure 1) [15–21]. Usually, the integrated gradient estimation of the signal strength distribution is
a common method to estimate the possible position of the signal source, which means that multiple
robots simultaneously obtain the measurements at different locations and give the movement direction
such that some unnecessary trajectories are neglected [18,22,23]. For example, in [18], Nikolay
approximated the signal strength gradient at the formation centroid via a Finite-Difference (FD)
scheme and proposed distributed control strategies for localizing a noisy signal source. In [2],
Lu used a radial basis function network to model the search environment and guided the robots
to move toward the signal source based on gradient information provided by the environment model.
Correspondingly, some cooperative control approaches [2,3] have been developed in terms of consensus
control theory [23–26]. Moreover, the idea of cooperative control is further extended to deal with the
management of crisis situations [27]. For example, in [28], Garca-Magariño proposed a coordination
approach among citizens for locating the sources of problems by using peer-to-peer communication
and a global map.
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Figure 1. Search environment where the red point denotes the robot, and the red star is the signal
source. The colors of the background represent the signal strength and are also labeled by the numbers.

It should be pointed out that two issues may arise in the aforementioned approaches for
the problem of signal source localization. One issue is that the gradient estimation method is
easily influenced by noises so as to fall into local optima [29]. For this issue, a particle filter
approach can be employed to deal with the uncertainty problem raised by noises. The other issue
is that the communication resources in multi-robot systems are constrained, i.e., each robot has a
limited communication bandwidth. For this issue, an event-triggered scheme can be used to reduce
communication times for each robot. It is worth mentioning that there are some event-triggered rules
that have been proposed [2,30–32] for multi-robot systems. However, these kinds of event-triggered
rules only save computational resources. For multi-robot systems, continuous communication schemes
still need to be used to hold system stability. In order to reduce both computational resources and
communication burden, several event-triggered communication schemes have been designed [33–36]
such that communication resources can be saved. However, there is no result available for the problem
of signal source localization, which can combine the particle filter approach with the cooperative
control approach with an event-triggered communication scheme. One challenge is how to design
event-triggered communication rules based on the given cooperative control approach. The other
challenge is how to derive stability conditions for the multi-robot systems with the proposed
cooperative control approach using an event-triggered communication rule. Therefore, how to
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develop the decision-control approach for the problem of signal source localization in the face of
the aforementioned challenges motivates the present study.

The proposed decision-control approach has two advantages. One advantage is that the use
of the event-triggered communication scheme can effectively decrease the communication times
and lower the updating frequency of control input such that the communication and chip resources
are saved. The other advantage is that the detection information from the multi-robot system can
be well used to estimate the position of the signal source by the particle filter and cooperative
controller. The remainder of this paper is arranged as follows. In Section 2, we will briefly give the
preliminaries on the dynamics of mobile robots and communication topologies. In Section 3, we will
use a particle filter to estimate the position of the signal source and propose a cooperative control
approach with an event-triggered communication scheme to coordinate the mobile robots to locate
the signal source. In Sections 4 and 5, we will show the effectiveness of the proposed decision-control
approach with the event-triggered communication scheme by simulation and experimental results,
respectively. Finally, we will conclude this paper in Section 6.

2. Preliminaries

2.1. Dynamics of Mobile Robots

For mobile robots, such as Qbot in Figure 2, the dynamics can be described by:
ṙxi
ṙyi
θ̇i
ν̇i
ω̇i

 =


νicosθi
νisinθi

ωi
0
0

+


0 0
0 0
0 0
1

mi
0

0 1
Ji


(

Fi
τi

)
(1)

where ri = (rxi, ryi)
T is the position of the i−th robot; θi denotes the orientation; νi is the linear velocity;

ωi is the angular velocity; τi is the torque; Fi is the force; mi is the mass; and Ji is the moment of inertia.
Let yi = (ri, θi, νi, ωi)

T be the state of the i−th robot and Ii = (Fi, τi)
T be the control input.

Figure 2. The Qbot robot.
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Because the nonholonomic systems cannot be stabilized with continuous static state feedback,
we use the “hand position” instead of “center position” of the robot [37]. It should be pointed out that
“hand position” is a position and lies a fixed offset Li from the “center position”. The line between
between “hand position” and “center position” is perpendicular to the wheel axis (see [37]). Let (2) be
the dynamics of the “hand position” of the robot.{

ẋi = vi
v̇i = ui i ∈ {1, 2, . . . , n} (2)

where xi and vi, respectively, denote the position and the velocity for the robot i at the “hand position”
and n is the number of robots. The relationship between the “hand position” and the “center position”
can be described by:

xi = ri + Li

(
cosθi
sinθi

)
(3)

vi =

(
cosθi −Lisinθ

sinθi Licosθi

)(
νi
ωi

)
(4)

According to (3) and (4), we can obtain the position and the velocity of the “hand position” of the
robot and then calculate the control law ui for the double-integrator system (2). Finally, we can obtain
the control input (5) for the system (1) [37]:

Ii =

(
1

mi
cosθi − Li

Ji
sinθi

1
mi

sinθi
Li
Ji

cosθi

)−1 [
ui −

(
−νiωisinθi − Liω

2
i cosθi

νiωicosθi − Liω
2
i sinθi

)]
(5)

Usually, the applied torques for the left wheel and the right wheel can be calculated by:

τl =
Jwheel

b

(
Fi
mi
− τil

2Ji

)
(6)

τr =
Jwheel

b

(
Fi
mi

+
τil
2Ji

)
(7)

where b is the radius of the wheel; l denotes the axis length between two wheels; Jwheel is the moment of
inertia of the wheel; τl and τr refer to the applied torques for the left wheel and the right wheel, respectively.

Furthermore, the virtual leader is designed, and its dynamics is given as:

ẋ0(t) = v0(t) (8)

where v0(t) = v0 is a constant.

Remark 1. It should be pointed out that the virtual leader is introduced to help the robot reach velocity
consensus, and one can also control the final convergence velocity by setting v0.

2.2. Communication Topologies

Communication is very important for the coordination of multiple robots. The robots can receive
and send information by communication links. In order to describe the communication links at the
mathematical level, one can usually employ graph theory to model communication topologies where
the vertices denote the robot and the edges refer to communication links. The undirected and connected
graph Gn(X, E, A) is used to present the communication topology for mobile robots in this paper.
An undirected graph is a set of vertices and a collection of edges that each connect a pair of vertices.
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We suppose that Gn(X, E, A) is an undirected graph, which includes a set of nodes X = x1, x2, ..., xn,
a set of edges E ⊆ X × X and an adjacency matrix A = [aij]. It should be pointed out that, if there
exists an edge between the i−th node and the j−th node, then aij = 1; otherwise, aij = 0. In addition,
Gn+1=Gn ∪ x0 is an extension of graph Gn(X, E, A), where x0 is a fictitious node, which can represent a
virtual leader. When the virtual leader’s information can be provided to the robot, there exists an edge
between the virtual leader and the robot, i.e., ai0 = 1(i = 1, · · · , n); otherwise, ai0 = 0. The Laplacian
matrix of the graph Gn(X, E, A) is LGn = [lij] ∈ Rn×n, where lij is:

lij =

{
∑n

j=1,j 6=i aij, i = j
−aij, i 6= j

(9)

3. Decision-Control Approach with an Event-Triggered Communication Scheme

In this section, a particle filter is used to estimate the position of a signal source. Then, a cooperative
control approach with an event-triggered communication scheme is proposed to control robots to locate
the signal source. Finally, convergence analysis and velocity design of the virtual leader are given.

3.1. Decision-Making for the Position of the Signal Source

With the movement of robots, the real signal strength can be obtained by

or(i, t) = f (xi(t), r(t)) (10)

where or(i, t) denotes the real measured value for the i-th robot at t time; f (xi(t), r(t)) is the signal
transmission model depending on the position xi(t) of the i-th robot and the real position r(t) of the
signal source. It should be noted that or(i, t) can be directly detected by the robot based on the signal
measurement sensor.

In order to estimate the position of the signal source, a particle filter is used in terms of the real
signal strength or(i, t) and has the following steps.

(i) We first generate N particles, which are uniformly distributed in the search range.
(ii) According to Equation (10), the prediction signal strength om(i, t) (m = 1, . . . , N) of the m-th

particle for the i-th robot at time t can be described by:

om(i, t) = f (xi(t), pm(i, t)) +
√

R× rand (11)

where pm(i, t) is the position of the m-th particle for the i-th robot at time t; R represents the
variance of noise; rand is a random number in [0,1]; f (xi(t), pm(t)) can be obtained according to
the real signal transmission model.

(iii) In terms of (10) and (11), the weight of each particle can be calculated in (12).

wm(i, t) =
1√

2πR
exp(− (or(i, t)− om(i, t))2

2R
) (12)

Further, the normalizing weight is computed by:

w′m(i, t) =
wm(i, t)

N
∑

m=1
wm(i, t)

(13)
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(iv) Based on the normalizing weight w′m(i, t), we conduct a resampling process for particles, that is
we remove the low weight particles and copy the high weight particles. These resampled particles
p′m(i, t) represent the probability distribution of the real state. Hence, the possible position of the
signal source can be estimated by:

ps(i, t) =
N

∑
m=1

p′m(i, t)
N

(14)

where ps(i, t) is the position of the estimated signal source for the i-th robot at time t. Further,
considering the estimated positions from other robots, we have:

p′s(i, t) =

n
∑

j=1
aij ps(j, t)

n
∑

j=1
aij

(15)

where aij is the element of the adjacency matrix A and p′s(i, t) as the estimated position of signal
source is used in the following simulations and experiments.

3.2. Cooperative Control with an Event-Triggered Communication Scheme

An event-triggered communication scheme is proposed to lower the communication burden.
The event-triggered time sequence is generated iteratively by the following formula.

ti
s+1 = inf{t|t > ti

s, gi(t) > 0} (16)

where gi(t) is described by:

gi(t) = ‖M‖‖α(exi(t)) + β(evi(t))‖+ ai0‖α(exi0(t)) + β(evi0(t))‖ − γ(‖αyi(ti
s)‖+ ‖βzi(ti

s)‖) (17)

with:

exi(t) = xi(ti
s)− xi(t)

evi(t) = vi(ti
s)− vi(t)

exi0(t) = x0(ti
s)− x0(t)

exi0(t) = v0(ti
s)− v0(t)

yi(ti
s) =

n

∑
j=0

aij(xj(t
j
s)− xi(ti

s))

zi(ti
s) =

n

∑
j=0

aij(vj(t
j
s)− vj(ti

s))

where M = LGn + diag{a10, · · · , an0}; α > 0, β > 0, γ > 0 are the positive constants; Since yi(ti
s) and

zi(ti
s) only are calculated at the event-triggered time, the proposed event-triggered scheme can reduce

communication burdens. The event-triggered communication condition (16) has one main feature,
that is whether or not the states of robots should be transmitted is determined by the errors yi(ti

s), zi(ti
s)

between the states of its neighbors at the latest event time and the latest transmitted states and the
errors exi(t), evi(t), exi0(t), exi0(t) between the current states and the latest transmitted states.



Appl. Sci. 2018, 8, 977 7 of 23

Remark 2. It is worth mentioning that the control input is updated when gi(t) > 0, that is the condition
of the event triggering. At the same time, the new state of the i-th robot will be sent to the other robots that
have communication links with the i-th robot. Besides, if the above inequality does not hold, the i-th robot
does not need to send information to others while the values of yi(ti

s) and zi(ti
s) will not be changed. Hence,

the communication resources are saved.

According to the proposed event-triggered communication scheme, the controller of the i-th robot
is designed by:

ui(t) =
n

∑
j=0

aij(α(xj(t
j
s)− xi(ti

s)) + β(vj(t
j
s)− vi(ti

s))) (18)

where aij is the element of the adjacency matrix A; xi(ti
s) and xj(t

j
s) are the positions of the i-th and

the j-th robots at the event-triggering time, respectively; vi(ti
s) and vj(t

j
s) are the velocities of the i-th

and the j-th robots at the event-triggering time, respectively. It should be pointed out that the control
input in (18) is determined by the position errors and velocity errors between the j-th robot and the
i-th robot at the event-triggering time.

3.3. Convergence Analysis

In order to illustrate the position and velocity consensus for the multi-robot system (2) under
the controller (18) with the event-triggered communication scheme (16), we first transform the model
(2) in the following. Let x̄i(t) = xi(t)− x0(t) and v̄i(t) = vi(t)− v0(t). Then, the system (2) with the
controller (18) can be rewritten as:

˙̄xi(t) = v̄i(t)

˙̄vi(t) =
n
∑

j=0
aijα(x̄j(t)− x̄i(t))

+
n
∑

j=0
aijα(exj(t)− exi(t))

+
n
∑

j=0
aijβ(v̄j(t)− v̄i(t))

+
n
∑

j=0
aijβ(evj(t)− evi(t))

Furthermore, set:

yi(t) =
n
∑

j=0
aij((x̄j(t)− x̄i(t))

zi(t) =
n
∑

j=0
aij((v̄j(t)− v̄i(t))

ex
i (t) =

n
∑

j=0
aij(exj(t)− exi(t))

ev
i (t) =

n
∑

j=0
aij(evj(t)− evi(t))

Hence, the dynamics of a multi-robot system can be deduced as:
ẏ(t) = z(t)
ż(t) = −Mφ(t)
φ(t) = αy(t) + βz(t) + αex(t) + βev(t)

(19)
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where y(t) = [y1(t), y2(t), · · ·yn(t)]T and z(t), ex(t), ev(t) are similar. The following lemmas are given
in order to illustrate the convergence proof.

Lemma 1. For a multi-robot system (19) with an event-triggered communication scheme (16), the following
inequality is established.

‖M‖2‖α(ex(t)) + β(ev(t))‖2 + ‖B(αex0(t) + βev0(t))‖2 ≤ 2γ2

k1
‖φ(t)‖2 (20)

where B = diag{a10, ·san0} and k1 is a positive constant.

Proof. The event-triggered communication scheme (16) is listed as:

‖M‖‖αexi(t) + βevi(t)‖+ ai0‖αex0(t) + βev0(t)‖ ≤ γ(‖αyi(ti
s)‖+ ‖βzi(ti

s)‖) f or t ∈ [ti
s, ti

s+1) (21)

According to the inequalities a2
1 + b2

1 ≤ (a1 + b1)
2, a1 > 0, b1 > 0 and 2a2

1 + 2b2
1 ≥ (a1 + b1)

2,
the inequality (21) can be further changed as:

‖M‖2‖α(exi(t)) + β(evi(t))‖2 + ai0‖αex0(t) + βev0(t))‖2 ≤ 2γ2(‖αyi(ti
s)‖2 + ‖βzi(ti

s)‖2) (22)

Notice the definition of φi(t). The variable φi(t)2 is rewritten using a matrix-vector form.

φi(t)2 = [αyi(ti
s) βzi(ti

s)]Q[αyi(ti
s) βzi(ti

s)]
T

where Q =

[
1 1
1 1

]
which is a semi-positive definite matrix. We consider the sum of φi(t)2, i = 1, . . . , n.

n

∑
i=0

φi(t)2 =
n

∑
i=0

[αyi(ti
s) βzi(ti

s)]Q[αyi(ti
s) βzi(ti

s)]
T

= ε(t)T In ⊗Qε(t)

(23)

where ε(t) = [[αy1(t1
s ) βz1(t1

s )], · · · , [αyn(tn
s ) βzn(tn

s )]]. For the set U = {σ ∈ R2n : σTσ = 1},
which is bounded and closed, one can know ε(t)

‖ε(t)‖2
∈ U, and there exists a positive constant k1 > 0 for

( ε(t)
‖ε(t)‖2

)T In ⊗Q ε(t)
‖ε(t)‖2

.

k1 = min
ε(t)
‖ε(t)‖2

∈U

(
ε(t)
‖ε(t)‖2

)T

In ⊗Q
ε(t)
‖ε(t)‖2

Then, in terms of Equation (23) and the minimum value k1, the following inequality is established.

n

∑
i=0

φi(t)2 ≥ k1‖ε(t)‖2
2 = k1

n

∑
i=1

(‖αyi(ti
s)‖2 + ‖βzi(ti

s)‖2)) (24)

Finally, by combining (22) with (24), the inequality (25) holds.

‖M‖2‖α(ex(t)) + β(ev(t))‖2 + ‖D(αex0(t) + βev0(t))‖2 ≤ 2γ2

k1
‖φ(t)‖2 (25)
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Lemma 2. For a multi-robot system (19) with an event-triggered communication scheme (16), the following
inequality is established.

‖αex(t) + βev(t)‖ ≤

√
8γ2

k1 − 8γ2 ‖αy(t) + βz(t)‖

where k1 > 8γ2 and is constant.

Proof. From the definitions of ex, ev and M, the following inequalities are derived.

‖αex(t) + βev(t)‖ ≤ ‖M(αex(t) + βev(t))‖+ ‖B((αex0(t) + βev0(t))‖
≤ ‖M‖‖(αex(t) + βev(t))‖+ ‖B((αex0(t) + βev0(t))‖

(26)

Further, according to the definition of ‖φ(t)‖ in (19), we can establish a new inequality.

‖φ(t)‖2 =
n

∑
i=1

(αyi(t) + βzi(t) + αex
i (t) + βev

i (t))
2

≤
n

∑
i=1

(2(αyi(t) + βzi(t))2 + 2(αex
i (t) + βev

i (t))
2)

≤ 2‖αy(t) + βz(t)‖2 + 2‖αex(t) + βev(t))‖2

≤ 2‖αy(t) + βz(t)‖2 + 4(‖M‖2‖αex(t) + βev(t))‖2

+ ‖B(αex0(t) + βev0(t))‖2)

(27)

By Lemma 1 and the inequality (27), we obtain the inequality (28).

‖M‖2‖α(ex(t)) + β(ev(t))‖2 + ‖B(αex0(t) + βev0(t))‖2 ≤ 2γ2

k1
‖φ(t)‖2

≤ 4γ2

k1
‖αy(t) + βz(t)‖2 +

8γ2

k1
(‖M‖2‖αex(t) + βev(t))‖2

+ ‖B(αex0(t) + βev0(t))‖2)

(28)

Simplify the inequality (28) as:

‖M‖‖αex(t) + βev(t))‖+ ‖B(αex0(t) + βev0(t))‖

≤

√
8γ2

k1 − 8γ2 ‖αy(t) + βz(t)‖
(29)

Since k1 > 8γ2, in terms of (26) and (29), the following inequality holds.

‖αex(t) + βev(t)‖ ≤

√
8γ2

k1 − 8γ2 ‖αy(t) + βz(t)‖

Finally, we can give the following theorem for the multi-robot system (2) with the proposed
communication scheme and controller. In addition, Zeno-behaviors denote that there is an infinite
number of discrete transitions in a finite period of time in the multi-robot system. The following
theorem can guarantee that the multi-robot system (2) with the proposed communication scheme and
controller does not show Zeno-behaviors before consensus is achieved.
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Theorem 1. Consider the event-triggered communication scheme (16) and the cooperative controller (18) for
a multi-robot system (2). Suppose that the undirected communication topology Gn(W, E, A) is connected
with at least one ai0 not being zero. Let k = 1

2 (∑
n
j=1 aij − ∑n

j=1 aji) + ai0. The variable umin denotes the
minimum eigenvalue of M + MT . The positive constant k1 can be found in Lemma 1. If the inequalities

β >
√

α/umin, γ <
√

k1/8, δ < β2umin−α

2β2 where δ = ‖M‖
√

8γ2

k1−8γ2 hold, the cooperative controller (18) with

the event-triggered communication scheme (16) can guarantee that xi(t) → x0(t) and vi(t) → v0(t), ∀i ∈
1, · · · , n. In addition, the multi-robot system does not show Zeno-behaviors before consensus is achieved.

Proof. We have three steps to prove the theorem. First, it is proven that the following function V(t)
in (30) is a Lyapunov function. Second, it is proven that the system (2) with the event-triggered
communication scheme (16) and the cooperative controller (18) is asymptotically stable. Finally, it is
proven that the multi-robot system does not show Zeno-behaviors before consensus is reached.

We construct a Lyapunov functional as:

V(t) = 0.5ξ(t)T

(
αβ(M + MT) αI

αI βI

)
ξ(t) (30)

where ξ(t) = [y(t)T , z(t)T ] and I is a unit matrix of n order. Let:

Ω =

(
αβ(M + MT) αI

αI βI

)

where M + MT is a real symmetric matrix, and we can diagonalize it as β−1Λβ, where Λ = diag
{u1, u2, · · · , un} is a diagonal matrix and ui is the eigenvalue of M + MT . Thus, Ω can be written as:

Ω =

(
β 0
0 β

)−1

Ω̄

(
β 0
0 β

)

where:

Ω̄ =

(
αβΛ αI
αI βI

)

Then, we solve its eigenvalue by:

det(λI2n − Ω̄) = det

(
λI − αβΛ −αI
−αI λI − βI

)

The eigenvalues of Ω̄ are:

λi± =
β+αβui±

√
(β+αβui)2−4(αβ2ui−α2)

2

where λi+ and λi− are the eigenvalues of Ω̄, which are associated with ui. Thus, if the condition
β >

√
α/umin is satisfied, the matrix Ω is a positive definite matrix, that is the Lyapunov function

V(t) > 0. The derivative of V̇(t) is as:
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V̇(t) = y(t)Tαβ(M + MT)z(t) + z(t)TαIz(t)

+ y(t)TαIż(t) + z(t)T βIż(t)

= −z(t)T(β2M− αI)z(t)− y(t)Tα2My(t)

− (αy(t)T + βz(t)T)M(αez(t) + βev(t))

We can get the following inequality as:

V̇(t) ≤ −z(t)T(β2M− αI)z(t)− y(t)Tα2My(t)

+‖αy(t)T + βz(t)T‖‖M‖‖αez(t) + βev(t)‖
(31)

From Lemma 1 and (30), we can give the following result.

V̇(t) ≤ −z(t)T(β2M− αI)z(t)− y(t)Tα2My(t) + δ‖αy(t) + βz(t)‖2

≤ −z(t)T(β2M− αI − 2δβ2 I)z(t)− y(t)T(α2M− 2δα2 I)y(t)

where δ = ‖M‖
√

8γ2

k1−8γ2 . Since β >
√

α/umin, γ <
√

k1/8 and δ < β2umin−α

2β2 , the inequality V̇(t) ≤ 0

holds. It shows that the system (y(t), z(t)) will asymptotically converge to (0n, 0n).
It is assumed that the velocity and acceleration of the robot are bounded by sv and sa. The variable

exi(ti
s) is zero, and xi(ti

s) is constant for t ∈ [ti
s, ti

s+1). Then, the following inequality is established.

|exi(t)| ≤ |
∫ t

ti
s

ėxi(t)dτ| ≤
∫ t

ti
s

|ėxi(t)|dτ =
∫ t

ti
s

|ẋi(t)|dτ ≤ sv(t− ti
s), t ∈ [ti

s, ti
(s+1))

In the same way, the following inequality is established.

|evi(t)| ≤ sa(t− ti
s)

Moreover, we have ‖M‖ ∗ |α(exi(t)) + β(evi(t))| + ai0|α(x0(ti
s) − x0(t)) + β(v0(ti

s) − v0(t))| ≤
((‖M‖ + 1)αsv + (‖M‖ + 1)βsa)(t − ti

s). According to the event-triggered communication scheme,
we obtain ‖M‖ ∗ |α(exi(t)) + β(evi(t))| + ai0|α(x0(ti

s) − x0(t)) + β(v0(ti
s) − v0(t))| − γ(|αyi(ti

s)| +
|βzi(ti

s)|) > 0 at t = ti
s+1. Hence, we derive (ti

s+1 − ti
s) > γ(|αyi(ti

s)|+|βzi(ti
s)|)

(‖M‖+1)αsv+(‖M‖+1)βsa
> 0. We can draw

the conclusion that Zeno-behaviors are excluded for the multi-robot system before consensus
is reached.

3.4. Velocity Design of the Virtual Leader

According to Theorem 1, one can see that how to design the velocity v0(t) of the virtual leader
is important, since the velocity of the virtual leader has an impact on the movement direction of the
multi-robot system. Hence, the velocity of the virtual leader is as:

v0(t) = λ(p′s(0, t)− x0(t)) (32)

where λ is a positive constant as a step factor. If the virtual leader is installed in the i-th robot, we have
p′s(0, t) = p′s(i, t). Therefore, we design Algorithm 1 for signal source localization.
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Algorithm 1 Decision-control approach with an event-triggered communication scheme.

/*Initialization*/
Initialize the parameters of the particle filter N, R and wm(i, t), (m = 1, 2, . . . , N);
Initialize the parameters α, β and γ of the consensus control (18) and the event-triggered rule (16),
the position xi(0) and the velocity vi(0) of the i-th robot;
/*Main Body*/
repeat

Receive its neighbors’ information;
Detect the new signal strength or(i, t) at the position xi(t);
Calculate the prediction signal strength om(i, t) (m = 1, . . . , N) based on (11);
Give the normalizing weight in (13), and obtain the estimated position of signal source in terms

of (15);
Compute the event-triggered condition in (16) and (17);
if gi(t) > 0 then

Send the estimated position of signal source p′s(i, t), the position of the robot xi(t) and the
velocity of the robot vi(t) to its neighbors;

end if
if gi(t) ≤ 0 then

Calculate the control input in (18);
According to (5), obtain the force and torque Ii, and give the applied torques for the left wheel

τl and the right wheel τr in (6) and (7), respectively.
end if

until The termination condition is satisfied.

4. Simulation Results

In this section, we use two cases to show the effectiveness of the proposed decision-control
approach for signal source localization.

4.1. Simulation Environment

This subsection briefly describes the simulation environment where a static electromagnetic signal
field is used. Correspondingly, due to different noise errors, two cases are considered.

For Case 1, the electromagnetic signal field can be established by using the following function.

f1(x, r) = 10× log(0.001)− 1.96× log(‖x− r‖) +
√

5× rand (33)

where x is any position in the search environment; r is the position of the signal source; rand is
a random number in [0, 1].

For Case 2, a big noise is considered where the electromagnetic signal field can be established by
applying the following function.

f2(x, r) = 10× log(0.001)− 1.96× log(‖x− r‖) +
√

8× rand (34)

The simulation environment is built in MATLAB, where the search space is a square area with
30 m × 30 m, and other parameters can be found in Table 1.
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Table 1. Parameters of the simulation environment.

Parameters Values

Sampling time 0.001 s
Noise variance R 5, 8
Total run time 20 s for two cases
Communication distance 5 m
The number of robots n 3
The velocity range of robots [−3 m/s, 3 m/s]

4.2. Cooperative Control and Performance Metrics

In order to avoid collisions, we further extend the cooperative controller (18) as:

ui(t) =
n

∑
j=0

aij(α((xj(t
j
s)− dj)− (xi(ti

s)− di)) + β(vj(t
j
s)− vi(ti

s))) (35)

where di and dj are the given safety distances for the i-th and j-th robots, respectively. The controller
can effectively coordinate multiple robots and hold formation. The parameters of the proposed
decision-control approach can be found in Table 2. The position of signal source is [15 m, 15 m].
Moreover, the safety distances are:

d =

[
0 1 0
0 0 1

]T

and d0 = [1/3, 1/3]. The initial velocities of robots are:

v =

[
0.1 0.1 0.1
0.1 0.1 0.1

]T

Table 2. The parameters of the proposed decision-control approach.

Parameters Value

α 17
β 22
γ 0.1
λ 0.001
N 10,000

In order to evaluate the proposed decision-control approach, we use two performance metrics:
one is the communication frequency, while the other is the localization error.

The communication frequency is calculated by:

f rei = Event-Triggered Number
Total Sampling Number × 100% (36)

where f rei denotes the communication frequency of the i-th robot. “Event-Triggered Number”
refers to the communication times of the i-th robot. Note that if the event-triggered rule (16) is
violated, a new control input needs to be calculated; otherwise, the previous control input is
unchanged. “Total Sampling Number” stands for the total sampling times in a run. Hence, f rei is
a quantitative evaluation metric that is used to evaluate communication burden.

The localization error (LE) is computed by:

LEi = ‖p′s(i, t)− r(t)‖ (37)



Appl. Sci. 2018, 8, 977 14 of 23

where p′s(i, t) is the estimated position of the signal source for the i-th robot value at time t; r(t) is the
real position of the signal source. LEi can be utilized to evaluate the localization accuracy.

4.3. Case 1: The Variance of Noise R = 5

For Case 1, we consider the situation, i.e., the noise variance error R = 5. Figure 3a–f shows the
movement trajectories of robots in one run, from which one can see that the robots can locate the signal
source. Moreover, one can see that the red points denote the initial positions; the black lines are the
trajectories of three robots; the yellow small stars are the current positions; and the red big star refers
to the signal source. Correspondingly, the localization errors LE are illustrated in Figure 4, where one
can see that the localization errors LE gradually become small with the movement of robots. Finally,
the statistical results for communication frequencies f re and localization errors LE can be found in
Table 3, where 30 runs are conducted, and the corresponding results are small to reflect the effectiveness
of the proposed decision-control approach.

Table 3. Mean (standard deviation) results in communication frequency (%) and localization error (m)
based on 30 runs for Case 1.

Robots f rei LEi

Robot 1 1.81 (0.44) 0.22 (0.16)
Robot 2 8.50 (0.48) 0.25 (0.20)
Robot 3 7.52 (0.53) 0.64 (0.71)
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Figure 3. Movement trajectories of three robots for Case 1 where the red points denote the initial
positions, the black lines are the trajectories of three robots, the yellow small stars are the current
positions and the red big star refers to the signal source. The colors of the background represent the
signal strength and are also labeled by the numbers. The signal strength increases with the decrease of
the distance from the source. (a) t = 0 s; (b) t = 5 s; (c) t = 10 s; (d) t = 15 s; (e) t = 20 s; (f) t = 30 s.
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Figure 4. The curves for the localization errors for Case 1.

4.4. Case 2: The Variance of Noise R = 8

For Case 2, the noise variance error R = 8 is set in order to evaluate the noise influence on
the proposed decision-control approach. The movement trajectories of three robots in one run are
illustrated in Figure 5. From this figure, one can see that the three robots can coordinate their behaviors
and locate the signal source. Correspondingly, Figure 6 shows the localization errors LE, where one
can see that the localization errors LE quickly become small such that the signal source is found when
the search time approaches 30 s. Finally, we conduct 30 runs and obtain the statistical results for
communication frequencies f rei and localization errors LEi, shown in Table 4. From this table, one
can see that the communication frequencies and the localization errors are small, which means that
the communication burden is lightened and the proposed decision-control approach can predict the
position of signal source under big noise well.
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Figure 5. Movement trajectories of three robots for Case 2 where the red points denote the initial
positions, the black lines are the trajectories of three robots, the yellow small stars are the current
positions and the red big star refers to the signal source. The colors of the background represent the
signal strength and are also labeled by the numbers. The signal strength increases with the decrease of
the distance from the source. (a) t = 0 s; (b) t = 5 s; (c) t = 10 s; (d) t = 15 s; (e) t = 20 s; (f) t = 30 s.
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Figure 6. The curves for the localization errors for Case 2.

Table 4. Mean (standard deviation) results in communication frequency (%) and localization error (m)
based on 30 runs for Case 2.

Robots f rei LEi

Robot 1 1.37 (0.54) 1.07 (0.44)
Robot 2 8.55 (0.50) 1.69 (1.08)
Robot 3 8.07 (0.59) 0.70 (0.71)

5. Experimental Results

In this section, the proposed decision-control approach is validated by the real experiments where
the three Qbot robots are used to locate the signal source.

5.1. Experimental Setup

The real experimental environment is shown in Figure 7. Qbot is a differential drive wheeled
mobile robot, equipped with two motors, a wireless communication module, an infrared and sonar
sensor array and a Logitech Quickcam Pro 9000 USB camera. Moreover, the wireless modules use
the ZigBee communication protocol. An electromagnetic module is used as a signal source, shown in
Figure 8. At the same time, we employ the OptiTrack system to accurately locate the position of the
Qbot. For the robot communication, the Qbots can build a local area network to communicate with
each other and establish links with the computer host.

Figure 7. Experimental environment.
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Figure 8. An electromagnetic signal source.

The following function is used to predict the position of the electromagnetic signal source.

f (x, r) = 10× log(0.001)− 1.96× log(‖(x− r)‖) (38)

where r is the particle position for the particle filter. The parameters of Qbot robots are shown in
Table 5. The parameters of the proposed decision-control approach can be found in Table 2.

Table 5. The parameters of Qbot mobile robots.

mi (kg) Li (m) Ji (kg m2) b (m) l (m) Jwheel (kg m2)

2.92 0.126 0.05 0.03 0.252 0.002

5.2. Experimental Results

In this subsection, we control three robots to locate an electromagnetic signal source by employing
the proposed decision-control approach. The experiments are conducted 30 times. Figures 9 and 10
show movement trajectories and localization errors in one run, respectively. In Figure 9, one can
see that three robots can locate the electromagnetic signal source and hold a safe distance from each
other, where the different colors denote the different trajectories of robots. Moreover, in Figure 10,
the localization errors for three robots are shown, from which one can see that the localization errors are
small. Finally, the statistical results for performance metrics are given in Table 6, where communication
frequencies for three robots are low such that communication burden is well lightened. In addition,
the location errors in Table 6 are also small, which implies that the proposed particle filter can predict
the position of the electromagnetic signal source well and the proposed decision-control approach can
control three robots to keep formation to detect signals well.

Table 6. Mean (standard deviation) results in communication frequency (%) and localization error (m)
based on 30 runs.

Robots f rei LEi

Robot 1 6.21 (0.34) 0.30 (0.08)
Robot 2 12.56 (1.05) 0.46 (0.17)
Robot 3 11.64 (1.23) 0.27 (0.07)
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Figure 9. Movement trajectories of three robots where the red, blue and green lines denote the
trajectories of three robots. (a) t = 0 s; (b) t = 4 s; (c) t = 8 s; (d) t = 12 s; (e) t = 16 s; (f) t = 20 s.
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Figure 10. The curves for the localization errors.

6. Conclusions

We have proposed a decision-control approach with the event-triggered communication scheme
for the problem of signal source localization. This proposed decision-control approach includes two
levels. In the decision level, we have designed a particle filter approach, which is used to estimate
the position of signal source. The designed particle filter can guide the movement of robots well
under a search environment with big noises. At the control level, we have proposed a cooperative
control approach with an event-triggered communication scheme. The proposed event-triggered
communication scheme can save communication resources and lighten the communication burden.
The simulation and experimental results have illustrated the effectiveness of the proposed
decision-control approach.
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Nomenclature

νi Linear velocity
ωi Angular velocity
τi Torque
τl Applied torques for the left wheel
τr Applied torques for the right wheel
θi Orientation angle
A Adjacency matrix
aij Element of an adjacency matrix
b Radius of the wheel
e State error
ev Velocity error
ex Position error
F Force
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f Signal transmission model
f re Communication frequency
gi Condition of event triggered
Gn Undirected graph
Gn+1 Extension of graph Gn(X, E, A)

i Serial number of robot
Ii Control input of the i-th robot
J Moment of inertia
Jwheel Moment of inertia of the wheel
l Axis length between two wheels
Li Distance between the hand position and the center position
LGn Laplacian matrix of the graph
LE Localization error
m Mass
N Number of particles
n Number of robots
om The m-th particle
or Real measured value
p′s Final estimated position of signal source
pm Position of the m-th particle
ps Estimated position of signal source
R Variance of noise
r Real position of signal source
rT

i Position of the ith robot
rand Random number in [0,1]
ti
s+1 Event-triggered time sequence

ui Control law for the i-th robot
v0 “Hand velocity” of virtual leader
w′m Normalizing weight of the m-th particle
wm Weight of the m-th particle
vi “Hand velocity” of the i-th robot
x0 “Hand position” of virtual leader
xi “Hand position” of the i-th robot
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