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Abstract: A theoretical model of the nonlinear signal-to-noise interaction (NSNI) in a bi-directional
Raman amplified system with receiver-side digital back-propagation (DBP) or split-DBP is given,
which is helpful for the design of such a system. In the proposed model, the distributed Raman gain
and the spontaneous Raman scattering are taken into account. The results of the theoretical calculation
are compared with the results of transmission simulations, which indicates that the theoretical model
matches well with the results of simulations when the pre-compensation length is less than 100 km.
For the cases of pre-compensation lengths more than 100 km, the theoretical model has an error of
less than 0.1 dB compared with the simulations. By using the theoretical model, the efficiency of
the split-DBP is analyzed, and the results are compared with transmission simulations. Both the
results of theoretical calculation and simulations show that the split-DBP can effectively mitigate
the NSNI in such a system. By adopting split-DBP, with an appropriate pre-compensation length,
the signal-to-noise ratio (SNR) of the signal increases by about 1 dB. In addition, the impact of the
double Rayleigh scattering (DRB) is also analyzed using the proposed model, and the results show
that DRB has little impact on the system.

Keywords: optical fiber communications; digital back-propagation; Raman amplification; nonlinear
signal-to-noise interaction; nonlinearity mitigation

1. Introduction

In the last decade, the digital signal processing (DSP) algorithm has been developed and modern
DSP-based coherent receivers can fully compensate for the linear channel impairments. Consequently,
nonlinear impairments, which include mainly Kerr effects such as self-phase modulation (SPM),
cross-phase modulation (XPM), and four-wave mixing (FWM), limit the transmission performance [1–3].
The digital back-propagation (DBP) algorithm is now commonly acknowledged as one of the most
suitable candidates for joint linear and nonlinear impairments compensation [4–6]. In DBP, the received
electric signals propagate in a simulated virtual fiber that has opposite parameters to the practical
transmission fiber, and the dispersion and nonlinearity of the practical transmission fiber are eliminated.
However, for the traditional DBP algorithms, noise in the system, such as Amplified Spontaneous
Emission (ASE), double Rayleigh scattering (DRB), and transceiver noise, is not taken into account.

In practical optical fiber communication system, such noises in the fiber would interact with the
signal through the Kerr effect, which is called nonlinear signal-to-noise interaction (NSNI). As the noises
are not considered in the traditional DBP algorithm, the NSNI induced by the noises cannot be dealt
with. Recently, an algorithm called stochastic DBP was proposed, in which the complex probability
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method was adapted to compensate for the NSNI caused by the Erbium-doped fiber amplifiers (EDFAs)
in the link [7,8]. Moreover, once the DBP algorithm was applied to the system, the noise would continue
interacting with the signal during the DBP process, thus causing extra NSNI. There has been a study of
the impact of the transceiver noise on the performance of DBP, which indicated that the transceiver noise
would induce extra NSNI in the receiver-side DBP, thus limiting the performance of DBP [9]. To mitigate
the extra NSNI, a new approach called split-DBP was proposed and studied, which involves moving
a part of DBP from the receiver side to the transmitter side. By this means, part of the NSNI can be
avoided and the performance is improved [10,11]. In Reference [10], D. Lavery et al. demonstrated that
the split nonlinear compensation scheme is better than both post- and pre-compensation schemes in
EDFA amplified systems through simulation.

Now, distributed Raman amplification is regarded as a mature and promising amplification
scheme for next-generation fiber optical communication systems [12,13]. Actually, the DBP algorithm
has been applied in Raman amplified unrepeatered systems [14,15], but the NSNI caused by the
distributed Raman gain and the spontaneous Raman scattering is in these cases ignored as well.
Unlike in the EDFA amplified system, the gain in the Raman amplified systems is distributed along
the fiber; consequently, the noise, which includes ASE from EDFAs, spontaneous Raman scattering,
and double Rayleigh scattering, is amplified along the fiber. As a result, the NSNI in a Raman amplified
system is worse than that in EDFA amplified systems.

In this paper, we theoretically deduced the NSNI in a bi-directional Raman amplified unrepeatered
system with receiver-side DBP and split-DBP, considering the effects of the distributed Raman gain,
transceiver noise, DRB, and the spontaneous Raman scattering along the fiber. The origin of the extra
NSNI in the system was studied. Theoretical analysis indicated that the extra NSNI can be effectively
mitigated by adopting split-DBP. Then the performance of the split-DBP was investigated through
the theoretical model and simulations, using a bi-directional Raman amplified system with 32 GBd
16QAM modulation. The impact of the DRB on the system was also studied.

2. Theoretical Model

Consider an unrepeatered system with bi-directional Raman amplification and receiver-side DBP,
as shown in Figure 1. Assuming that the nonlinear signal-to-signal (S-S) interaction is perfectly
compensated by receiver-side DBP, the effective receiver signal-to-noise ratio (SNR) can be described as:

SNR ≈ Ps

PASE + PS−N
, (1)

where Ps is the average power of the signal; PASE is the average power of the ASE noise, including
the ASE noise from EDFAs and spontaneous Raman estimation; and PS-N is the power of NSNI.
In the Raman amplified system, the spontaneous Raman scattering noise is generated along the fiber.
Considering the spontaneous Raman scattering generated at position z, denoted by EspRs(z), it will
propagate along the fiber with a length of L-z and interact with the signal, where L is the length of the
whole fiber. After virtual transmission in DBP with a length of L-z, the interaction of the noise and the
signal in the practical fiber is eliminated. However, the noise continues to propagate and interact with
the signal in the residual virtual fiber of length z, causing the extra NSNI. The field of the extra NSNI
can be described as a four-wave mixing (FWM) process [16]:

ENSNI(z, ωq) = γρ(2L− z, 2L)Es(z, ωi)Es(z, ωj)E∗spRs(z, ωk)

+2γρ(2L− z, 2L)Es(z, ωi)E∗s (z, ωk)EspRs(z, ωj)
, (2)
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where the ENSNI(z, ωq) is the field of NSNI at angular frequency ωq = ωi + ωj −ωk, γ is the nonlinear
coefficient, Es is the signal field, and ρ(2L − z, 2L) is the FWM efficiency from position 2L-z to 2L.
The latter can be written as:

ρ(2L− z, 2L) =
2Lw

2L−z

P(ξ)e−i∆βdξ, (3)

where P(ξ) is the normalized power profile in the fiber, ∆β = βi + β j − βk − βg is the phase mismatch,
and βi,j,k,g represents the propagation constants for angular frequencies ωi,j,k,g. Note that in Equation (2)
the FWM of two noise frequencies and a signal frequency is neglected because the power of the signal
is much greater than the noise.
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Figure 1. Nonlinear signal-to-noise interaction (NSNI) in a bi-directional Raman system with
receiver-side digital back-propagation (DBP).

Integrating Equation (2) within the band of the signal, we can get the NSNI field at ωg:

ES−N(z, ωg) =
x

ωi,j,g∈[− B
2 , B

2 ]

ENSNI(z, ωg)dωidωj, (4)

where B is the signal bandwidth. Assuming that the noise and the signal are independent random
variables, the powers of the two terms in Equation (2) can be handled independently, and we can
obtain the power of NSNI:

PS−N(z) =
∫ s

ωi,j,g∈[− B
2 , B

2 ]

3γ2|ρ(2L− z, 2L)|2Ps(ωi)Ps(ωj)PspRs(ωi + ωj −ωg)dωidωjdωg

≈ 3γ2η(z)P2
s PspRs

, (5)

where Ps,spRs(ω) is the power of the signal and spontaneous Raman scattering at angular frequency ω,
Ps,spRs is the average power of the signal and spontaneous Raman scattering, and η(z) is the nonlinear
interaction coefficient, which can be written as [15]:

η(2L− z, 2L) =
x

ωi,j,g∈[− B
2 , B

2 ]

|ρ(2L− z, 2L)|
2
dωidωj, (6)

Integrating Equation (5) along the fiber, we can obtain the total NSNI power at the end of the DBP:

PS−N =
Lw

0

3γ2η(2L− z, 2L)P2
s (z)PspRs(z)dz, (7)

Note that in Equation (7), the transceiver noise can be added into PspRs(z) at positions 0 and L,
for transmitter noise and receiver noise, respectively.
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Because of the amplification of the forward Raman amplifier, the signal power in the front part of
the fiber is very high, and in the DBP the high-power region is at the end. As in the preceding analysis,
most of the overcompensation parts are in the high-power region. Thus, the overcompensation parts
will produce intense extra NSNI and impair the performance of the signal. Split-DBP can effectively
reduce the extra NSNI caused by DBP. When split-DBP is applied in the system, as shown in Figure 2,
the NSNI includes two parts. Part one is the same as the case of the receiver-side DBP, which is caused
by the overcompensation of the receiver-side DBP. Part two occurs because the NSNI in the fiber near
the transmitter side is not compensated. In the same way, we can determine the total power of NSNI
at the end of the receiver-side DBP by the following:

PS−N =
lr

0
3γ2η(z, l)P2

s (z)PspRs(z)dz

+
Lr

l
3γ2η(2L− z, 2L− l)P2

s (z)PspRs(z)dz
, (8)

where l is the pre-compensation length of the transmitter-side DBP. By substituting
Equations (7), (8) to (1), the final SNR of the signal can be calculated. In the practical calculations, by
dividing the fiber into several blocks, the integral in Equations (7) and (8) can be simplified to the
summation of the divided fiber blocks.
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Figure 2. NSNI in a bi-directional Raman amplified system with split-DBP.

3. Simulation Setup

Numerical simulations were carried out with a bi-directional Raman amplified system, as shown
in Figure 3. In the transmitter, a laser with a linewidth of 100 kHz and an ideal IQ modulator were
assumed to generate the signal. A 32 Gbaud 16QAM signal was generated with a pseudo-random
binary sequence of length 215-1. The signal was sampled at eight samples/symbol and filtered by a
Gaussian low-pass filter for pulse shaping. Two EDFAs, each with a noise figure of 4 dB, were deployed
as the booster amplifier and pre-amplifier before the transmission link and before the coherent receiver.
The transmission link was a 300-km long fiber, with attenuation coefficients of 0.2 dB/km for the
signal and 0.26 dB/km for the pump, dispersion coefficient 17 ps·nm−1·km−1 and nonlinear coefficient
1.1 W−1·km−1. The signal propagation in the fiber was simulated by solving the modified nonlinear
Schrödinger equation using the split-step Fourier method (SSFM) [17].
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The wavelengths of the signal and pump were 1550 nm and 1455 nm, and the distributed Raman
gain was calculated by solving the power coupled equations of the distributed Raman amplifier ([17],
Equations (8.1.2)–(8.1.3)). In the simulation, the forward Raman pump power was set at 450 mW,
and the backward Raman pump power was set at 600 mW. The relative intensity noise (RIN) transfer
from the Raman pump to the signal was simulated by a time variation of the distributed Raman gain.
The time variation was produced by multiplying the RIN of the pump laser and the RIN transfer
function (TF) from the pump to the signal [18]. The RIN of the pump laser was set at −120 dBc·Hz−1.
The step size of the SSFM was 0.01 km and in each step spontaneous Raman scattering was added to the
signal. After transmission, an optical band-pass filter (OBPF) was deployed with a central wavelength
of 1550 nm and a bandwidth of 100 GHz. In the coherent receiver a laser with the same parameters as
those in the transmitter was used as local oscillator. The photodetectors in the receiver were modeled
with ideal response properties, and thermal noise and shot noise were considered. The thermal noise
was modeled as white noise in the spectrum with 10−12 A·Hz−1/2. Then the received signal was
down-sampled to two samples/symbol for subsequent DSP.

In the receiver, DSP carrier recovery was applied to compensate for the phase shift of the laser.
Two nonlinear compensation methods were applied in the simulation: receiver-side DBP and split-DBP.
To fairly compare the performance of the transmitter-side DBP and split-DBP, in the split-DBP scheme,
the signal was processed by the transmitter-side DBP at two samples/symbol, and then the processed
signal was up-sampled to eight samples/symbol for fiber transmission. The electrical SNR of the
signal was calculated after the DSP.

4. Results and Discussion

4.1. Accuracy of the Theoretical Model

In Section 2 we gave the expression of the final SNR of the signal in a bi-directional Raman
amplified system with receiver-side DBP or split-DBP. In this section, we will verify the accuracy of
the model through simulation and demonstrate the efficiency of split-DBP.

First, to find the optimal pre-compensation length, different pre-compensation lengths were
applied, and the SNRs of the signals were calculated using Equations (7) and (8) with different
incident powers. Correspondingly, the transmission simulations were carried out with the same
parameters. The SNRs of the signals in the transmission simulations were calculated using the error
vector magnitude (EVM). As shown in Figure 4a, after calculating the average amplitude of each
point of the signal constellation and the standard deviation of the noise, the EVM of the signal can be
calculated, then the SNR of the signal can be calculated by SNR = 1/EVM2. The simulation results
were compared with the theoretical results, and both are shown in Figure 4b.
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In Figure 4b, the black lines are the theoretical calculation results, the colorful marks are the results
of simulations, and the different curves denote different incident powers. Comparing the results of
theory and simulations, it can be found that the results of the theoretical calculation fit well with the
simulations when the pre-compensation length was less than 100 km. When the pre-compensation
length was more than 100 km, the SNR of the theoretical calculation was larger than the simulation,
which we attributed to the influence of the up-sampling and the low-pass filter, which brings error to
the transmitter-side DBP.

As we can see, when the pre-compensation was 0, representing the receiver-side DBP, with the
incident power increasing from 6 dBm to 8 dBm, the SNR of the signal decreased. This indicates that
the NSNI caused by the DBP affects the performance of the signal. When split-DBP was applied,
the SNR of the signal increased first and then remained at a high level, with the pre-compensation
length increasing. For different incident powers, the optimal pre-compensation lengths were all
round 50 km, but had small differences, and the trend was that the optimal pre-compensation length
decreased with an increase in incident power.

Then, to determine the efficiency of the split-DBP, the pre-compensation length was set to
0 and 50 km, and the SNRs of the signals were calculated with different incident powers, as well
as simulations. The results are shown in Figure 5. Similarly, in this figure the black lines denote
the results of the theoretical calculation and the colorful marks denote the results of the simulations.
Because the pre-compensation length was less than 100 km, the results of the theoretical calculation
matched well with the simulations. And we can see, by adopting split-DBP, the optimal incident power
increased from 6 dBm to 8 dBm, and the maximum SNR increased by about 1 dB. This demonstrates the
efficiency of NSNI mitigation of the split-DBP in the bi-directional Raman amplified system. However,
we can see that when the incident power was over 8 dBm, the SNR of the signal still decreased quickly,
which indicates there are other complicated nonlinear effects that impact the signal.
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4.2. Impact of Double Rayleigh Backscattering

In the theoretical analysis and the simulation above, the DRB in the system was neglected. In this
section we take the DRB into consideration, and analyze the impact of the DRB on the system. In the
proposed theoretical model, we calculate the NSNI caused by the transceiver noise and spontaneous
Raman scattering. These two kinds of noise can be treated as “dot” noise, which means that the noise
is generated within a very small distance. However, the DRB in the system cannot be treated as the
same way. It is obvious that the DRB at a point is relevant to the Raman gain and the signal power
in the whole following fiber. To include the DRB to the proposed model, the DRB noise should be
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converted into “dot” noise. For simplicity, we firstly calculate the average power distribution of the
DRB along the fiber [19]:

PDRB(z) =
Lw

z
Ps(z′)ζ2 exp

 zw

z′
[−αs + gRPp(z′′ )]dz′′

dz′ (9)

where PDRB is the power of the DRB, ζ is the Rayleigh backscattering coefficient, αs is the fiber
attenuation at the wavelength of the signal, gR is the Raman gain coefficient, and Pp is the Raman
pump power. Note that in Equation (9) the consumption of the pump due to the DRB is ignored.
Then the DRB noise can be generated at each point in the fiber according to its statistical distribution.
In the theoretical model and simulation the DRB is treated as Gaussian additive noise. Although the
exact statistical characteristic of the DRB is not very clear yet, according to the central limit theorem,
the Gaussian approximation of the DRB in a small section of the fiber is acceptable.

After obtaining the power profiles of the signal and the pumps, the power profile of the DRB can
be calculated using Equation (9). With the same parameters as the simulation above, we calculated the
power profile of the DRB, which is shown in Figure 6. For comparison, the power profiles of the signal
and the spontaneous Raman scattering are plotted in Figure 6 as well. As we can see from the figure,
compared to the spontaneous Raman scattering, the DRB has higher power in the near-transmitter
section, but lower power in the near-receiver section of the fiber. Because the signal power in the
near-transmitter section of the fiber is much higher than that in the near-receiver section, the noise in
the near-receiver side section has more severe impact on the optical signal-to-noise ratio (OSNR) of the
signal. That means that the spontaneous Raman scattering is a more important noise source than the
DRB. Figure 7 plots the OSNR degradation of the signal along the fiber. When only the spontaneous
Raman was considered, in the near-transmitter section the OSNR of the signal decreased slowly, but in
the near-receiver section of the fiber the OSNR of the signal exhibited a sharp decrease. On the other
hand, in the case with only DRB, the OSNR of the signal exhibited a small drop in the near-transmitter
section and decreased slowly in the rest section of the fiber. And at the end of the fiber, the OSNR
of the case in which only spontaneous Raman scattering was considered is lower than the OSNR of
the case with only DRB. This indicates that spontaneous Raman scattering has higher impact on the
system than the DRB.
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Next, we take the NSNI into consideration. According the analysis above, when the receiver-side
DBP is applied, the noise in the near-receiver section causes more severe NSNI, because the noise in the
near-receiver section is amplified in the DBP process. Thus, the NSNI caused by spontaneous Raman
scattering is also higher than the NSNI caused by the DRB. To demonstrate this point, the SNRs of the
signals were calculated using the proposed theoretical model with the DRB included, and the results
were compared with the case in which only spontaneous Raman scattering was considered, as shown
in Figure 8. From Figure 8, we can see that when the DRB was considered, the proposed model had
good accuracy. When the pre-compensation length was less than 60 km, the two curves were almost
coincident. With the pre-compensation length increasing over 60 km, a difference appeared and the
SNR of the signal including DRB was lower than the SNR of the signal without DRB. This is because
the NSNI caused by the DRB in the near-transmitter section increased. Still, the difference is small,
which illustrates that the DRB has a much smaller influence on the performance of the system than
spontaneous Raman scattering.
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5. Conclusions

In this paper, we theoretically deduced the NSNI in a bi-directional Raman amplified unrepeatered
system with receiver-side DBP and split-DBP, considering the effects of the distributed Raman gain,
the spontaneous Raman scattering, and DRB. The results of the theoretical calculation were compared
with the results of transmission simulations, which indicated that the theoretical model has good
accuracy when the pre-compensation length is less than 100 km. Both the results of the theoretical
calculation and simulations showed that the split-DBP can effectively mitigate the NSNI in such a
system. By adopting split-DBP, with an appropriate pre-compensation length, the SNR of the signal
increased by about 1 dB. According to the theoretical analysis, the DRB has much a smaller influence
on the system than spontaneous Raman scattering. The theoretical model given in this paper is helpful
in the design of a bi-directional Raman amplified system.
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