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Abstract: For an autonomous ship to navigate safely and avoid collisions with other ships, reliably
detecting and classifying nearby ships under various maritime meteorological environments is
essential. In this paper, a novel probabilistic ship detection and classification system based on
deep learning is proposed. The proposed method aims to detect and classify nearby ships from
a sequence of images. The method considers the confidence of a deep learning detector as a
probability; the probabilities from the consecutive images are combined over time by Bayesian
fusion. The proposed ship detection system involves three steps. In the first step, ships are detected
in each image using Faster region-based convolutional neural network (Faster R-CNN). In the
second step, the detected ships are gathered over time and the missed ships are recovered using
the Intersection over Union of the bounding boxes between consecutive frames. In the third step,
the probabilities from the Faster R-CNN are combined over time and the classes of the ships are
determined by Bayesian fusion. To train and evaluate the proposed system, we collected thousands
of ship images from Google image search and created our own ship dataset. The proposed method
was tested with the collected videos and the mean average precision increased by 89.38 to 93.92% in
experimental results.

Keywords: ship detection; ship classification; ship dataset; deep learning; Faster R-CNN; autonomous
ship; Intersection over Union (IoU) tracking; Bayesian fusion

1. Introduction

Accurate detection and reliable classification of nearby moving ships are essential functions of
an autonomous ship, being closely linked to safe navigation [1,2]. When a ship navigates, the chance
of collision with other ships is possible in various directions, such as those that overtake, approach
head-on, or cross the autonomous ship. The International Regulations for Preventing Collisions at Sea
(COLREGs) defines several rules to prevent collisions [3]. In particular, overtaking (rule 13), head-on
(rule 14), and crossing (rule 15) situations are considered potential collision scenarios. Autonomous
ships mainly collect information related to moving obstacles through non-visual sensors such as
radar [4] and automatic identification systems (AIS) [5]. However, recognizing the nearby ships
reliably is difficult if only using information collected from non-visual sensors to determine whether
these are dangerous obstacles. Therefore, autonomous ships must recognize dangerous obstacles using
a visual camera. This problem is similar to the detection of cars, pedestrians, lane, or traffic signs using
a camera in autonomous vehicles.

Hitherto, some research concerning ship detection and classification has been reported.
For example, seashore ship surveillance and ship detection from spaceborne optical images have
been achieved [6–9]. Synthetic aperture radar (SAR) imagery was used to detect ships and objects on
the surface of the earth [7,8]. Hwang et al. used artificial neural networks (ANN) for ship detection
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with X-band Kompsat-5 SAR imagery [9]. Unfortunately, most of the existing research focused only on
ship detection based on spaceborne optical images, such as SAR imagery. Furthermore, these studies
focused on visual ship detection based only on a single image. All previous works on ship detection
and classification were based on a still image. To the best of our knowledge, no studies exist for the
detection of ships using an image sequence or a video.

In this study, we propose a novel probabilistic ship detection and classification method using
deep learning. This method considers the confidence from a deep learning detector as a probability
and the probabilities from consecutive images are combined over time via Bayesian fusion. To the
best of our knowledge, no research work has used the confidence from a deep learning detector in
a Bayesian framework. The proposed ship detection system involves three steps. In the first step,
ships are detected for each frame using Faster R-CNN [10]. In the second step, the detected ships are
gathered over time and the missed ships are recovered using the Intersection over Union (IoU) of the
bounding boxes between consecutive frames. The corresponding detection confidence is updated
and the recovery compensates for the misdetection confidence over a few frames. This approach
ensures robust ship detection and minimizes misdetection. In the third step, the probabilities from the
Faster R-CNN are combined over time and the classes of the ships are determined by Bayesian fusion.
The use of Bayesian fusion was supported by its reported use in prior studies [11,12].

To use a deep learning framework in ship detection, a ship dataset was needed to train the
Faster R-CNN. Well-known image datasets, such as ImageNet [13], PASCAL visual object classes
(VOC) challenge [14], and Microsoft common objects in context (MS COCO) [15], include ship images
but the number of ship images is limited and the various classes of ships are not labeled. Popular
intelligent transportation system (ITS) datasets, such as the Karlsruhe Institute of Technology and
Toyota Technological Institute (KITTI) dataset [16], also does not include ship images. Because no
public dataset exists for ship detection in the sea environment, we manually collected thousands of
ship images from Google image search and built our own ship dataset.

The contributions of this paper can be summarized as follows. (1) This was the first attempt to
detect and classify various classes of ships in a deep learning framework. (2) The confidence from a
deep learning detector was considered as a probability and their values from the consecutive images
were combined over time via Bayesian fusion. (3) Missed ships were recovered using the IoU of the
bounding boxes between consecutive frames. (4) Large-scale ship detection dataset has been built by
collecting ship images from google image search and annotating ground-truth bounding boxes.

The remainder of this paper is organized as follows: in Section 2, the background for the Faster
R-CNN and the basic idea underlying this paper are outlined. In Sections 3 and 4, the details about the
proposed method are explained. In Section 5, the experimental results, performance, and discussion
are presented. Finally, the conclusions drawn from this study are presented in Section 6.

2. Ship Detection and Classification from an Image

In this study, ships were detected in each frame using Faster R-CNN [10], as in our previous
work [17]. The Faster R-CNN is a representative region-based object detection model based on deep
learning. As shown by Huang et al. [18], Faster R-CNN outperforms the other models [19,20] in general
object detection problem. Although R-CNN [21] and the Fast R-CNN [22] use Selective Search [23]
to generate possible object locations, Faster R-CNN introduced the region proposal network (RPN),
which outputs region proposals from shared full-image convolutional features, thereby improving
speed performance. Faster R-CNN combines RPN and Fast R-CNN into a single network for object
detection by sharing their convolutional features, as shown in Figure 1.
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Figure 1. Structures of (a) Faster region-based convolution neural network (Faster R-CNN) and
(b) region proposal network (RPN).

When an image is used as input data, the convolutional neural network (CNN) generates the
convolutional features. Then, the fully-convolutional RPN predicts the bounding box and object scores
at each position of the convolutional features, as shown in Figure 1b. Thus, the RPN tells the Fast
R-CNN where to look and classify. In our experiments, we used the Zeiler and Fergus model (ZF
net) [24] that five shareable convolutional layers.

The Faster R-CNN is trained with a four-step training algorithm to learn shared features via
alternative optimization. In the first step, the RPN is initialized with a pre-trained model and then
fine-tuned end-to-end to propose regions. In the second step, the Fast R-CNN is trained using the
region proposals generated by the first-step RPN not sharing convolutional layers. In the third step,
the shared convolutional layers are fixed and the unique layers of RPN are fine-tuned. Finally, the layers
unique to Fast R-CNN are fine-tuned while maintaining the shared convolutional layers. The detailed
alternating algorithm for training the Faster R-CNN is found in Ren et al. [10].

The Faster R-CNN detection result for a single image can be expressed as a bounding box
represented by:

B = (vx, vy, vw, vh), (1)

where B denotes the four values of the bounding box: coordinates (vx,vy), width (vw), and height (vh),
as shown in Figure 1b. The class confidence of the bounding box predicted by the Faster R-CNN can
be represented by:

p(ω = k|B) , pk, where
C

∑
k=1

pk = 1, (2)

where ω denotes the class of ship, k ∈ {1, 2, 3, · · · , C} is one of the possible values that ω can take, B
is the bounding box predicted by the Faster R-CNN, and C is the number of classes in the ship dataset
created in this study.

We used seven different classes of ships in this study; thus, C was set to eight, including the
background. The class index is summarized in Table 1. The class of the detected bounding box is
predicted by:

class(B) = argmax
k=1,...,C

pk. (3)
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Table 1. Classes in the ship dataset.

k 1 2 3 4 5 6 7 8

Label Aircraft carrier Destroyer Submarine Bulk carrier Container ship Cruise ship Tugboat Back-ground

As shown in Equation (3), the determined class of the predicted bounding box is the class with the
highest confidence. Our method considers the class and detection confidence from the Faster R-CNN
as the probability and exploits it using Bayesian fusion.

3. Building a Sequence of Bounding Boxes

In this section, we build a sequence for the bounding boxes using the boxes returned from the
Faster R-CNN over time. In building the bounding box sequence, two practical issues had to be
considered. The first issue was which bounding box to select at each time to create a reasonable
sequence. The second issue involved how to handle the situation in which all the bounding boxes
at time t did not make sense and when the target ship has apparently not been detected. To address
these issues, we used the intersection over union (IoU) of the target bounding box and the predicted
bounding boxes. Figure 2 illustrates two bounding boxes with IoU of 0.3, 0.4, and 0.9. For the two
given bounding boxes B1 and B2, IoU computes the intersection of two boxes divided by the area of
their union as follows:

IoU(B1, B2) =
area(B1 ∩ B2)

area(B1 ∪ B2)
(4)
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Concerning the first issue, we assumed that the target ships do not move rapidly at sea. Therefore,
when the Faster R-CNN returns R bounding boxes from a given image in the tth frame, the bounding
box with the largest IoU with the bounding box Bt−1 in the previous frame is used as the bounding
box Bt in the current frame:

Bt = argmax
Bt

r∈{Bt
1,...,Bt

R}
IoU(Bt

r, Bt−1) (5)

where Bt
r denotes the rth predicted bounding boxes returned by Faster R-CNN in the tth frame.

Concerning the second issue, when the detector in the current frame did not predict the position
of the ship correctly and max

Bt
r∈{Bt

1,...,Bt
R}

IoU(Bt
r, Bt−1) < εthd, the target ship is likely to be missed. In this

case, we enlarged Bt slightly from Bt−1 by adding an offset to avoid missing ship detection, where εthd
denotes a threshold. This can be represented by:

Bt = Bt−1 + δB
= (vt−1

x , vt−1
y , vt−1

w , vt−1
h ) + (δvx, δvy, δvw, δvh)

= (vt−1
x + δvx, vt−1

y + δvy, vt−1
w + δvw, vt−1

h + δvh),
(6)
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where δB =
(
δvx, δvy, δvw, δvh

)
denotes an offset added to the bounding box. Figure 3 shows the

update of the target ship-bounding box based on IoU.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 17 
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Figure 3. IoU tracking. (a) IoU is equal to or larger than the threshold and (b) IoU is less than the
threshold. If IoU is less than the threshold, the bounding box in frame t− 1 increases slightly and is
updated as the target ship-bounding box to avoid missing ship detection.

If R bounding boxes are predicted in the first frame, the initial bounding box was selected as the
one with the highest detection confidence busing:

B1 = argmax
B1

r ∈ {B1
1, . . . , B1

R}
k = 1, · · · , C− 1

p(ω = k|B1
r ). (7)

For example, Faster R-CNN predicts four bounding boxes with class confidence in the first frame,
as shown in Figure 4. Since the determined class of the predicted bounding box is the class with the
highest confidence, the classes of the detected boxes from 1© to 4© are an aircraft carrier (0.34), bulk
carrier (0.895), bulk carrier (0.668), and a destroyer (0.422), respectively. In this case, from Equation (7),
we selected bounding box 2© as the initial bounding box in the video.
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4. Probabilistic Ship Detection and Classification in a Sequence of Images

In this section, B1:T =
{

B1, B2, . . . , Bt, . . . , BT} is a sequence of the bounding boxes predicted by
the Faster R-CNN, where Bt is the bounding box detected at time t. We determine the class of the
bounding box sequence B1:T using maximum a posteriori (MAP). That is, the class of the sequence of
the bounding boxes is predicted by:

class(B1:T) = argmax
k=1,..,C

p(ω = k|B1:T) (8)

Assuming that t denotes the current time, we can rewrite Equation (8) as:

p
(

ω = k|B1:t
)
= p(ω = k|Bt, B1:t−1), (9)

where B1:t is divided into the current measurement Bt and all the previous measurements are B1:t−1.
Using the Bayes rule, Equation (9) can be rewritten as:

p
(

ω = k|B1:t
)
= p(ω = k|Bt, B1:t−1) =

p
(

Bt|ω = k, B1:t−1)p
(
ω = k|B1:t−1)

p(Bt|B1:t−1)
. (10)

Since the current measurement Bt is not affected by previous measurements B1:t−1 conditioned
on ω = k, we obtain p

(
Bt|ω = k, B1:t−1) = p

(
Bt|ω = k

)
, and Equation (10) can be simplified as:

p
(

ω = k|B1:t
)
=

p
(

Bt|ω = k
)

p
(
ω = k|B1:t−1)

p(Bt|B1:t−1)
. (11)

Substituting the Bayes rule

p
(

Bt|ω = k
)
=

p
(
ω = k|Bt)p

(
Bt)

p(ω = k)
(12)

into Equation (11) yields:

p
(

ω = k|B1:t
)
=

p
(
ω = k|Bt)p(Bt)

p(ω = k)
p
(
ω = k|B1:t−1)
p(Bt|B1:t−1)

(13)

Furthermore, we define the class confidence of a sequence of bounding boxes from the Faster
R-CNN with:

p(ω = k|B1:t) , f t
k , where

C

∑
k=1

f t
k = 1 (14)
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and consider a new quantity:

1− f t
k

f t
k

=

C
∑

k′=1
f t
k′ − f t

k

f t
k

. (15)

Substituting Equation (13) into Equation (15) yields:

1− f t
k

f t
k

=

C
∑

k′=1

p(ω=k′|Bt)p(Bt)
p(ω=k′)

p(ω=k′|B1:t−1)
p(Bt |B1:t−1)

−
p(ω=k|Bt)p(Bt)

p(ω=k)
p(ω=k|B1:t−1)

p(Bt |B1:t−1)
p(ω=k|Bt)p(Bt)

p(ω=k)
p(ω=k|B1:t−1)

p(Bt |B1:t−1)

=
C
∑

k′=1

p(ω=k′|Bt)p(ω=k′|B1:t−1)p(ω=k)
p(ω=k|Bt)p(ω=k|B1:t−1)p(ω=k′) − 1 .

(16)

Herein, we denote the detection confidence for the bounding box selected in Equation (5) as:

pt
k , p(ω = k|Bt), where

C

∑
k=1

pt
k = 1. (17)

For practical consideration, if the detector missed the target ship, we considered the recovered
bounding box in Equation (6) as a background; then, its detection confidence is assigned by:

pt
k =

{
0.9 f or k = C (background)

0.1
C−1 otherwise

(18)

Then, substituting Equation (17) into Equation (16) yields:

1− f t
k

f t
k

=
C

∑
k′=1

pt
k′ · f t−1

k′ · f 0
k

pt
k · f t−1

k · f 0
k′
− 1, (19)

where f t−1
k is the previous confidence of the sequence B1:t−1 at time t− 1, f 0

k is the initial confidence,
and pt

k is the confidence of the tth frame of Bt.
If we define

ρt
k ,

C

∑
k′=1

pt
k′ · f t−1

k′ · f 0
k

pt
k · f t−1

k · f 0
k′

, (20)

then, we can obtain the following from Equation (19):

f t
k =

1
ρt

k
, where k = 1, 2, . . . , C. (21)

From Equations (19) and (20), we can update the sequence confidence f t
k at time t from the

previous sequence confidence f t−1
k at time t− 1, and the current frame confidence pt

k from the Faster
R-CNN at time t. Thus, we did not need to retain all the previous frame confidences to compute the
current sequence confidence. Then, we can predict the class of a sequence B1:t from Equation (8). In this
study, we set the IoU threshold εthd to 0.5 and δB to (−1, −1, 1, 1). Summarizing the abovementioned
results, the proposed probabilistic ship detection algorithm using video is outlined in Algorithm 1 and
illustrated in Figure 5.
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Algorithm 1: Probabilistic ship detection and classification from video.

Step 1: At frame 1, initialize the target ship-bounding box
B1 = argmax

B1
r ∈ {B1

1 , . . . , B1
R}

k = 1, · · · , C− 1

p(ω = k|B1
r )

f 1
k = p1

k = p(ω = k|B1)

f 0
k = 1/C f or ∀k

Step 2: For a given image at frame t > 1, update the bounding boxes
If max

Bt
r∈{Bt

1,...,Bt
R}

IoU(Bt
r, Bt−1) ≥ εthd,

Bt = argmax
Bt

r∈{Bt
1,...,Bt

R}
IoU(Bt

r, Bt−1)

pt
k = p(ω = k|Bt)

else
Bt = Bt−1 + δB

pt
k =

{
0.9 f or k = C (background)
0.1/(C− 1) otherwise

End
Step 3: Evaluate the class confidence of a sequence of bounding boxes recursively by

ρt
k =

C
∑

k′=1

pt
k′ · f

t−1
k′ · f 0

k
pt

k · f
t−1
k · f 0

k′

f t
k = 1

ρt
k

Step 4: Determine the class at frame t using
class(B1:t) = argmax

k=1,..,C
f t
k

Step 5: For every next frame, repeat Steps 2, 3, and 4.
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5. Experimental Results

We built our own ship dataset to train the Faster R-CNN and evaluate the proposed method.
For this dataset, 7000 ship images were collected by Google image search and they were manually
labeled as one of seven classes: aircraft carrier, destroyer, submarine, container ship, bulk carrier, cruise
ship, and tugboat.
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5.1. Ship Dataset

The dataset mainly focused on large ships, which were divided into two types navigating
in the ocean: warship and merchant ship. Three warship classes exist: aircraft carrier, destroyer,
and submarine. Three classes of merchant also exist: container ship, bulk carrier, and cruise ship.
Finally, we included a small ship in the dataset, a tugboat that assists large ships in entering and
leaving a port, resulting in seven classes.

To train the Faster R-CNN for ship detection and evaluate single image detection, a total of
7000 still images were collected. Each class included 1000 images, completely balancing the problem.
All the still images were manually gathered from Google image search. Most of the collected still
images were completely different from and separated from other collected images and none were
not consecutive. The ship image dataset was divided into a training dataset and a test dataset,
as summarized in Table 2. In detail, 5250 images (75%, 750 images per class) among the 7000 images
were used for the training the Faster R-CNN, and 1750 images (25%, 250 images per class) were used
to test single image detection.

Table 2. The number of images in the ship dataset.

Class Training Set Test Set Subtotal

Aircraft carrier 750 250 1000
Destroyer 750 250 1000
Submarine 750 250 1000

Container ship 750 250 1000
Bulk carrier 750 250 1000
Cruise ship 750 250 1000

Tugboat 750 250 1000
Total 5250 1750 7000

To evaluate ship detection performance on videos, seven video clips involving all the
aforementioned classes were downloaded from YouTube in MPEG-4 video format. A test video
file was decomposed into a sequence of still images that were consecutive in time and each image
was processed by Faster R-CNN. The detection result of each image was combined with that of the
consecutive images and the combined result was used in video simulation.

5.2. Performance

5.2.1. Results of the Single Image Detection

The same hyper parameters used in the original Faster R-CNN [10] were applied to train our Faster
R-CNN for ship detection. The hyper parameters used in our experiments were as follows: learning
rate: 0.001, momentum: 0.9, and weight decay, 0.0005. The ZF net pre-trained on ImageNet was used
as a base CNN to extract features and fine-tune the network using our ship dataset. The maximum
iteration was set to 10,000. We use the Caffe [25] framework to train the Faster R-CNN on Ubuntu
16.04 LTS and NVIDIA GeForce GTX 980 on GPU. Table 3 shows the results of the ship detection using
the Faster R-CNN fine-tuned by the above training set. The results of the ship detection using the
Faster R-CNN by the test sample images are shown in Figure 6.
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Table 3. Results of the single image detection.

Class AP (%)

Aircraft carrier 90.56
Destroyer 87.98
Submarine 90.22

Container ship 99.60
Bulk carrier 99.59
Cruise ship 99.59

Tugboat 95.01

mAP 94.65
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5.2.2. Results of Detection Based on Video

Seven sequences of images were used to demonstrate the performance of the proposed method
based on video. Among them, two videos were considered in detail. In the first sequence involving a
tugboat, the weather was relatively fine and the ships were not influenced by environmental factors.
In the second sequence involving a destroyer, however, the weather was windy and the environmental
factors, such as waves and wind, influence ships. The Faster R-CNN returned eight confidences,
one for each class, and the eight confidences equaled 1 in each frame, as shown in Equation (17).
In Figure 7, the changes in the eight confidences are plotted against the frames for the first sequence.
The subfigures in the first, second and third rows correspond to the Faster R-CNN; Faster R-CNN and
IoU tracking; and Faster R-CNN, IoU tracking and Bayesian fusion, respectively.
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Figure 7. The change of confidences in the image sequence without environmental factors. (a) Faster
R-CNN, (b) Faster R-CNN and IoU tracking, and (c) Faster R-CNN, IoU tracking, and Bayesian fusion.

The confidence in Figure 7a implies pt
k = p(ω = k|Bt) and the confidence in Figure 7c implies

f t
k = p(ω = k|B1:t). In the first sequence, the target ship is a tugboat. In Figure 7a, the tugboat is

classified as a bulk carrier four times by Faster R-CNN. The confidence of the tugboat also does not
remain steady but changes irregularly. In Figure 7b, IoU tracking is also used with the Faster R-CNN.
When the target was not detected or the IoU was lower than the threshold, the bounding box was
considered background and the corresponding confidences were assigned by Equation (18). However,
in the figure, no background confidence was observed since all the targets in each frame were detected
by the Faster R-CNN and the IoU values from IoU tracking were higher than the threshold. Figure 7c
shows the experimental result when Faster R-CNN, IoU tracking and Bayesian fusion were used
together. The confidence for the tugboat was steady and approached one after a few frames, and the
confidences for the other classes disappeared and approached zero.

The experimental results for the second sequence are shown in Figure 8. Unlike the first sequence,
the ships were affected by environmental factors. The target ship in the second sequence was a
destroyer. Similar to Figure 7, the change in the eight confidences is plotted against frames for the
second sequence in Figure 8. The subfigures in the first, second and third rows in Figure 8 correspond
to Faster R-CNN; Faster R-CNN and IoU tracking; and Faster R-CNN, IoU tracking and Bayesian
fusion, respectively.
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First, let us consider Intervals 1 and 4 in Figure 8. In the two intervals, the destroyer was falsely
classified as an aircraft carrier, as shown in Figure 8a,b. In particular, the target ship was classified
not as a destroyer but as an aircraft carrier in six frames in a row from frame 235 to 240. However,
the proposed method overcame the false classification problem and the confidence for the destroyer
progressed steadily to one, as shown in Figure 8c. Second, consider Interval 2. In this interval,
the destroyer was not detected and was actually classified as background by the IoU tracking several
times. However, the proposed method again overcame the misdetections again and the confidence for
a destroyer progressed steadily to one, as shown in Figure 8c. Third, consider Interval 3, which was
slightly different from Intervals 1, 2 and 4. Unlike the previous intervals, several misdetections and
tens of false classifications occurred together in Interval 3. The proposed method worked well even
for this challenging situation for the first 30 frames but the frequency of the misdetection and false
classification exceeded a certain threshold. Moreover, our algorithm failed to classify effectively and
returned the wrong result.
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Three competing methods are compared on a per-frame basis in Table 4. As stated, the ground
truth was a destroyer. In Intervals 1 and 4, only Faster R-CNN returned a false classification for the
aircraft carrier in several frames such as #19, #20 and #21 and its confidence remained around 0.5. When
Faster R-CNN was combined with IoU tracking and Bayesian fusion, however, the confidence steadily
increased and approached one. In Interval 2, only Faster R-CNN often missed the destroyer but when
it was combined with IoU tracking and Bayesian fusion, Faster R-CNN overcame the misdetections
and the confidence also approached one. Here, when the target was not detected or falsely classified for
several consecutive frames, for example, during frames #124 to #127 in Interval 2 frame or frames #235
to #240 in Interval 4, the confidence for the destroyer dropped to around 0.9. However, the confidence
quickly recovered from the loss when Faster R-CNN returned the correct result. Figures 9–11 show
captured images from the frames #19 to #21 in Interval 1, frames #125 to #127 in Interval 2 and frames
#238 to #240 in interval 4, respectively.

Table 4. The change of the class and the confidence of the destroyer.

Algorithm Faster R-CNN Faster R-CNN + IoU Faster R-CNN + IoU + Bayes

Interval Frame Class Confidence Class Confidence Class Confidence

1

19 Aircraft Carrier 0.420 Aircraft Carrier 0.420 Destroyer 0.999
20 Aircraft Carrier 0.403 Aircraft Carrier 0.403 Destroyer 0.999
21 Aircraft Carrier 0.539 Aircraft Carrier 0.539 Destroyer 0.997
22 Destroyer 0.403 Destroyer 0.403 Destroyer 0.998
23 Destroyer 0.433 Destroyer 0.433 Destroyer 0.999
24 Aircraft Carrier 0.548 Aircraft Carrier 0.548 Destroyer 0.997
25 Destroyer 0.463 Destroyer 0.463 Destroyer 0.998
26 Destroyer 0.609 Destroyer 0.609 Destroyer 0.999
27 Destroyer 0.611 Destroyer 0.611 Destroyer 0.999
28 Destroyer 0.420 Destroyer 0.420 Destroyer 0.999
29 Aircraft Carrier 0.434 Aircraft Carrier 0.434 Destroyer 0.999

2

118 Destroyer 0.546 Destroyer 0.546 Destroyer 0.999
119 Misdetection 0 Background 0.900 Destroyer 0.999
120 Destroyer 0.508 Destroyer 0.508 Destroyer 0.999
121 Destroyer 0.454 Destroyer 0.454 Destroyer 0.999
122 Destroyer 0.672 Destroyer 0.672 Destroyer 0.999
123 Destroyer 0.432 Destroyer 0.432 Destroyer 0.999
124 Misdetection 0 Background 0.900 Destroyer 0.999
125 Misdetection 0 Background 0.900 Destroyer 0.995
126 Misdetection 0 Background 0.900 Destroyer 0.966
127 Misdetection 0 Background 0.900 Destroyer 0.806
128 Destroyer 0.486 Destroyer 0.486 Destroyer 0.847

4

234 Destroyer 0.612 Destroyer 0.612 Destroyer 0.999
235 Aircraft Carrier 0.611 Aircraft Carrier 0.611 Destroyer 0.999
236 Aircraft Carrier 0.648 Aircraft Carrier 0.648 Destroyer 0.999
237 Aircraft Carrier 0.616 Aircraft Carrier 0.616 Destroyer 0.990
238 Aircraft Carrier 0.521 Aircraft Carrier 0.521 Destroyer 0.983
239 Aircraft Carrier 0.630 Aircraft Carrier 0.630 Destroyer 0.955
240 Aircraft Carrier 0.642 Aircraft Carrier 0.642 Destroyer 0.758
241 Destroyer 0.858 Destroyer 0.858 Destroyer 0.974
242 Destroyer 0.870 Destroyer 0.870 Destroyer 0.997
243 Destroyer 0.814 Destroyer 0.814 Destroyer 0.999
244 Aircraft Carrier 0.575 Aircraft Carrier 0.575 Destroyer 0.998
245 Destroyer 0.766 Destroyer 0.766 Destroyer 0.999
246 Destroyer 0.801 Destroyer 0.801 Destroyer 0.999
247 Destroyer 0.689 Destroyer 0.689 Destroyer 0.999
248 Destroyer 0.639 Destroyer 0.639 Destroyer 0.999
249 Aircraft Carrier 0.601 Aircraft Carrier 0.601 Destroyer 0.999
250 Destroyer 0.670 Destroyer 0.670 Destroyer 0.999
251 Aircraft Carrier 0.558 Aircraft Carrier 0.558 Destroyer 0.999
252 Aircraft Carrier 0.632 Aircraft Carrier 0.632 Destroyer 0.998
253 Aircraft Carrier 0.553 Aircraft Carrier 0.553 Destroyer 0.997
254 Aircraft Carrier 0.651 Aircraft Carrier 0.651 Destroyer 0.991
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The performance of ship detection with the proposed method on test videos was compared with
using only Faster R-CNN for ship detection. The ship detection results are summarized in Table 5.
Overall, our proposed method outperformed the previous Faster R-CNN detector.

Table 5. Performance of ship detection on test videos.

Class
AP (%)

Faster R-CNN Faster R-CNN + IoU + Bayes

Aircraft carrier 99.33 100.00
Destroyer 68.67 77.61
Submarine 98.00 100.00

Container ship 76.69 88.19
Bulk carrier 88.00 94.67
Cruise ship 96.33 96.97

Tugboat 98.67 100.00

mAP (%) 89.38 93.92

6. Conclusions

In this study, a probabilistic ship detection and classification system for video using deep learning
was proposed. To train the detector and evaluate the proposed system, we collected thousands of ship
images from a Google image search and built our own ship dataset. The probabilistic ship detection
and classification system demonstrated better detection and classification performance compared to
when only Faster R-CNN was used. The proposed method used IoU tracking to build a sequence of
the bounding boxes and considered the confidence from the detector as a probability. The undetected
ships were recovered by IoU tracking. Moreover, the probabilities of the detection accumulated over
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time and the classes of the ships were determined by Bayesian fusion. In the experiments, the proposed
method was tested with two sequences of images and showed considerable improvement in both
detection and classification over prior methods.
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