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Featured Application: The research was motivated by the requirement of a printed circuit board
(PCB) manufacturer and the application of the work is to identify the repeated PCB orders for
batch production according to the predicted reorder level.

Abstract: Identifying the printed circuit board (PCB) orders with high reorder frequency for batch
production can facilitate production capacity balance and reduce cost. In this paper, the repeated
orders identification problem is transformed to a reorder level prediction problem. A prediction
model based on a modified Bayesian network (BN) with Monte Carlo simulations is presented to
identify related variables and evaluate their effects on the reorder level. From the historically
accumulated data, different characteristic variables are extracted and specified for the model.
Normalization and principal component analysis (PCA) are employed to reduce differences and
the redundancy of the datasets, respectively. Entropy minimization based binning is presented
to discretize model variables and, therefore, reduce input type and capture better prediction
performance. Subsequently, conditional mutual information and link strength percentage are
combined for the establishment of BN structure to avoid the defect of tree augmented naïve BN
that easily misses strong links between nodes and generates redundant weak links. Monte Carlo
simulation is conducted to weaken the influence of uncertainty factors. The model’s performance
is compared to three advanced approaches by using the data from a PCB manufacturer and results
demonstrate that the proposed method has high prediction accuracy.

Keywords: printed circuit board; reorder level; principal component analysis; Bayesian network

1. Introduction

A printed circuit board (PCB) is found in practically all electrical and electronic equipment. It is
the base of the electronics industry [1]. Due to increased competition and market volatility, demand
for highly individualized products promotes a rapid growth of orders with a small batch of purchase
and production. Some orders even with the relatively large volume have been placed separately and
repeatedly at different times by customers. Dynamic fluctuation of market demands for PCB can easily
bring great production imbalance, which is a waste of production capacity during the idle period with
fewer orders from customers. However, during the busy period, it results in tardiness among many
orders. Multi-batches of the same PCB product produced separately always require higher preparation
and production cost with a higher scrap rate. Identifying orders with high reorder frequency and
combining different batches of these orders during a reasonable period (e.g., an idle period) as batch
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and inventory-oriented production can reduce production cost, benefit production capacity balance,
and facilitate on time delivery.

Taking an example from a PCB manufacturer named Guangzhou FastPrint Technology Co., Ltd.
(called FastPrint in this paper), few orders were manually selected each month for batch production
during the idle period based on reorder frequency and cumulative delivery area in the past 30 months.
The reorder frequency is the number of times a customer places the same type of orders to a
manufacturer in a given period. The delivery area of each order corresponds to the amount (quantity)
of PCB products the customer orders multiplied by the area of each piece of PCB. The cumulative
delivery area is the accumulation of the delivery area of the same type of orders in a given period.
If 80% of the manually selected orders for batch production can be purchased by customers within
six months (i.e., the maximum storage period in the manufacturer’s inventory can be ordered by
most of customers), then the manufacturer can profit from better utilization of idle resources and the
reduction of repeated production preparation and cost. However, the manual selection process is
experience-dependent and time-consuming. Meanwhile, the accuracy needs to be improved because
only the reorder frequency and the cumulative delivery area are taken into consideration.

The selection of orders for batch production is not based on the accurate reorder frequency
within a certain period but always according to the range of predicted reorder frequency (e.g., reorder
frequency ≥ 3) in practice. Moreover, it is difficult to accurately determine the reorder frequency
within a certain period for each PCB order in advance. Therefore, we transform the repeated orders
identification problem into a reorder level prediction problem in which the reorder frequency within
six months was divided into four reorder levels (i.e., 1, 2, 3, and 4) corresponding to the reorder
frequency (0, 1–2, 3–5, and >5, respectively). On this basis, orders with a highly predicted reorder level
corresponding to the range of high reorder frequency placed within six months are taken as candidates
for batch production.

The reorder level prediction is similar to the data mining based customer identification
(also referred to as customer acquisition) problem as an important task of customer relationship
management (CRM) [2]. The former can be conducted by analyzing characteristics of the orders
and subdividing them into different groups in which the order groups with higher reorder levels
(e.g., 3 and 4) can be taken as candidates for batch production. The latter, on the other hand, is to
seek the profitable customer segments by analyzing their underlying characteristics and subdividing
an entire customer base into smaller customer segments, which are comprised of customers who
are relatively similar within each specific segment [2,3]. Identification of the most profit-generating
customers and segmentation of customers are quite vital [3]. Previous studies reveal that recency,
frequency, and monetary (RFM) analysis and frequent pattern mining can be successfully used or
integrated to discover valuable patterns of customer purchase behavior [3–8]. Dursun and Caber [3]
took the RFM analysis for profiling profitable hotel customers and related customers were divided
into eight groups. Chen et al. [4] incorporated the RFM concept to define the RFM sequential
pattern and developed a modified Apriori for generating all RFM sequential patterns from customers’
purchasing data. Hu and Yeh [5] proposed RFM-pattern-tree to compress and store entire transactional
database and developed a patterned growth-based algorithm to discover all the RFM-patterns in the
RFM-pattern-tree. Coussement et al. [6] employed RFM analysis, logistic regression, and decision trees
for the customers’ segmentation and identification. Mohammadzadeh et al. [7] employed k-means
clustering for identifying target patient customers and then conducted the prediction of customers
churn behavior via the RFM model based on the decision tree classifier. Song et al. [8] employed RFM
considering parameters with time series to cluster customers and identify target customers.

Other data mining approaches have also been developed and many special factors were
considered to excavate the customer pattern purchase behavior. Liu [9] developed a fuzzy text mining
approach to categorize textual data to analyze consumer behaviors for the accurate classification
of customers. Sarti et al. [10] presented a consumer segmentation method using clustering based
on consumers’ purchase of sustainability and health-related products. Murray et al. [11] combined
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clustering with time series analysis to create customer segments and segment-level forecasts and
then applied the forecasts to individual customers. Caigny et al. [12] proposed a logit leaf model for
customer churn prediction in which customer segments are identified using decision rules and then a
model is created for every segment using logistic regression. Ngai et al. [2] provided a comprehensive
review of CRM from four dimensions such as customer identification, customer attraction, customer
retention, and customer development. Zerbino et al. [13] presented a review of Big Data-enabled CRM
including research on customer evaluation and acquisition. However, the topic discussed in this paper
has seldom been studied to the best of our knowledge and it was not involved in the two previously
mentioned reviews either.

Customer identification and a reorder level prediction are similar in that both of them aim to
develop classified treatment strategy according to historical transactions. Nevertheless, there are
differences from the following three aspects. First, the customer identification problem is to develop
more accurate sales and advertising strategies based on customer transaction history and, therefore,
better for retaining target customers [10] while the final purpose of the problem discussed in this paper
is to select orders for batch production with different misclassification risks based on accumulated
manufacturing orders. Second, RFM of different purchase products (orders) should be considered
for the customer pattern mining while, in this research study, we only consider the parameters of
the same product ordered at different times. Third, RFM are the main parameters considered in the
customer identification problem while the production scale including quantity, area, and lifecycle
of orders should also be considered in this paper. However, the previously mentioned approaches
cannot be employed directly for reorder level prediction. Therefore, more influential variables and
misclassification loss should be considered and related approaches should be developed.

In this paper, a prediction model based on modified Bayesian network (BN) with Monte Carlo
simulations is presented to predict a reorder level of PCB orders. More precisely, we apply BN to
excavate the relationship between influential variables (factors) and the reorder level. The main reason
for choosing BN is that it has the clearest common sense interpretation and can be viewed as causal
models of the underlying domains. It also owns the powerful capability of dealing with uncertainty
and causality inference and has been widely used in predicting and classifying problems [14–21].
Figure 1 illustrates the framework of the proposed approach in which all procedures will be discussed
in detail except for decision making marked with the dashed boxes.
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The remainder of this paper is organized as follows. Relevant variables specification and data
preprocessing including principal component analysis (PCA)-based factors extraction and entropy
minimization-based data discretization are introduced in Section 2. The combination of conditional
mutual information (CMI) and link strength percentage (LSP) to avoid the defect of tree augmented
naïve (TAN) BN and conditional expected loss for final classification are described in Section 3.
The model evaluation and comparison are given in Section 4 in which Monte Carlo simulation is
conducted to determine the confidence upper limits of reorder frequency and weaken the influence
of uncertainty factors. Additionally, performance of the proposed approach is compared to TAN,
AdaBoost, and artificial neural networks (ANN). Conclusions are drawn in Section 5.

2. Variables Specification and Data Preprocessing

2.1. Variables Specification

Reorder level related variables were inherited and derived from fields in enterprise resource plan
(ERP) system and order management system (OMS) in which the same type of repeated orders placed
at different date are labeled with the same production number but different order numbers generated
by the manufacturer’s coding rule. On this basis, statistics of delivery area, quantity, transaction money,
and interval days of the past 30 months before a set date were derived and the related description is
presented in Table 1. The set date is prepared for orders selection and batch production. The statistic
excludes the accumulation before 30 months under the consideration of order’s lifecycle based on
expert experience. The reorder level is the classification objective and four levels are set based on the
reorder frequency of a production number in the next six months after a set date.

Table 1. Variable specification.

Variables Symbols Description

Layer number Ln
PCB is made of resin, substrate, and

copper foil and the Ln is the number of
copper foil layers.

Continued days Condays Interval days between the first order date
and a set date.

Recency Rec A period between the last order date and
a set date.

Maximum/minimum/mean of
delivery interval days Delind_Max/Min/Mean Days between order date and required

delivery date in the past 30 months.

Maximum/minimum/mean of
interval days Interval_Max/Min/Mean Days between two adjacent order dates in

the past 30 months.

Frequency in 30 months Fre3 Reorder frequency within 30 months
before a set date.

Frequency Fre Reorder frequency before a set date.

Maximum/minimum/mean/sum
of delivery area (m2) Area_Max/Min/Mean/Sum Delivery area of the past 30 months before

a set date.

Maximum/minimum/mean/sum
of money (CNY) Mon_Max/Min/Mean/Sum Transaction money of the past 30 months

before a set date.

Maximum/minimum/mean/sum
of delivery quantity Qaun_Max/Min/Mean/Sum Delivery quantity of the past 30 months

before a set date.

Reorder level Rel
1, 2, 3, and 4 levels corresponding to the

reorder frequency 0, 1–2, 3–5, and >5
within six months, respectively.

Note: Statistic parameters of maximum/minimum/mean/sum were derived from the orders with the same
production number accumulated in the past 30 months before a set date.

Data from three factories accumulated in ERP and OMS of Fastprint were collected and integrated.
Then 33,542 training samples were selected randomly with the set date 31 March 2016 based on the
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orders accumulated between 1 October 2013 and 31 March 2016. Meanwhile 14,484 test samples with
another set date of 31 May 2016 were selected randomly based on the orders accumulated between
1 December 2013 and 31 May 2016 excluding the records with the same production number in training
samples. The observed reorder levels for the records from training and test samples are transformed
from the reorder frequency within six months after its set date (i.e., the frequency accumulated between
1 April 2016 and 30 September 2016 for training samples and between 1 June 2016 and 31 October 2016
for test samples). Each record was aggregated based on the orders placed during the past 30 months
according to the production number. The records with reorder frequency 1 were not to be considered
for batch production and have been deleted. Meanwhile few special orders with odd number layers
and layer number greater than 20 have also been excluded because they are seldom taken for batch
production in practice.

Sample size and the proportion of different reorder levels are presented in Table 2. It can be seen
that sample proportions of different reorder levels are similar to those of the training and test samples,
respectively. The statistic results show that only about 5.5% of the records with reorder level ≥ 3 in
Table 2 in number were aggregated by a separately placed reorder. However, these small proportions
of the records exerted significant influence on resource utilization and balance for the manufacturer
in practice.

Table 2. Samples and their proportion of different reorder levels.

Samples
Number (Proportion of Different Reorder Levels %)

Total Number
1 2 3 4

All 38,678 (80.54) 6734 (14.02) 1777 (3.70) 837 (1.74) 48,026
Training 26,963 (80.39) 4735 (14.11) 1225 (3.65) 619 (1.85) 33,542

Test 11,715 (80.88) 1999 (13.80) 552 (3.80) 218 (1.52) 14,484

2.2. Principal Component Analysis

There are significant differences in values among variables given in Table 1. Some variables
may be redundant or not have a significant influence on the reorder level prediction. Furthermore,
continuous-valued variables with a large amount of input types easily generate too many conditional
probability tables (CPTs) with sparse samples for each value, which negatively affects the establishment
of a robust model. It is, therefore, necessary to perform preprocessing before building a model.

First, in order to eliminate the negative impact caused by the huge difference between each
variable in terms of values, there is a need to normalize each variable ranging from 0 to 1. Second,
the total data sample matrix 48,026 × 23 (i.e., the number of the samples multiplied by the number
of the input variables for each records) would be considerably complicated and time consuming to
model and test for such a high-dimension data samples [22]. It is, therefore, essential for reducing the
dimension of the data samples and extracting the typical features from the original data samples. Third,
in order to reduce input type and get better performance for variables, it is important to discretize
variables for BN model development [14].

PCA is an effective statistical analysis method in multi-dimensional data compression and factors
extraction. It can fuse relatively useful features and extract more sensitive factors through the evolution
of the variance contribution rate and the cumulative variance contribution rate of each variable [22].
In this study, PCA was used for reducing variable redundancy for the proposed models. This could
greatly reduce the modeling time and improve operational efficiency. The procedure of PCA is
described below.

PCA was conducted by Algorithm 1 based on training samples according to the 21 input variables
given in Table 1 except for the layer number and recency with some initial experiment. Seven factors
were extracted with 87.87% of the cumulative variance contribution rate, which means the extracted
factors can represent 87.87% of information of the original 21 input variables. The variance contribution
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rate and cumulative variance contribution rate are shown in Figure 2. The factor loading matrix with
each loading aij represents how many information factors f j can explain the variable xi, which is
illustrated in Figure 3. The numbers represent the original variables in Figure 3 and the main variables
that each factor explained can be found in Table 3. On this basis, factor values of the test samples were
computed based on the weighted sum of the original variables.
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Algorithm 1. Factors extraction based on PCA.

(1) Normalization: For each column of the data sample xi, min-max normalization was taken and
x′i = (xi − ximim)/(ximax − ximim) was computed, where xi is the original data with ximim and ximax
representing the minimum and maximum values in xi, respectively.

(2) Principal component analysis: The calculation of the correlation coefficient matrix and its eigenvalues
and eigenvectors was conducted. Subsequently, a variance explained matrix was constituted based on
the eigenvectors. All the columns of this matrix were ranked according to the variance contribution rate
in descending order. The cumulative variance contribution rate of principal components (factors) was

calculated by αm =
m
∑

i=1
λi/

n
∑

i=1
λi, where λ is the eigenvalue of each dimension with m representing the

top m principal components and αm is the cumulative variance contribution. In this study, the top m
factors with a cumulative variance contribution rate of more than 85% were selected to replace the
original n variables.

(3) Computing scores of factors. Scores of factors were computed according to the weight sum of original
variables in which the weights were obtained based on least squares estimation.

2.3. Data Discretization

The entropy minimization based binning method employed in this paper has been widely applied
in discretizing variables [23]. The core measures of entropy minimization based discretization include
information entropy and gain [24,25]. Let k classes be C1, C2, . . . , Ck in samples set S and let P(Ci, S) be
the proportion of samples in S that has class Ci. The entropy of S is defined by the equation below.

Ent(S) = −
k

∑
i=1

P(Ci, S) log2 P(Ci, S) (1)

where Ent(S) measures the amount of information needed to specify the classes in S. The greater the
Ent(S) value is, the more information it contains and the lesser purity it has. A binned interval with all
values belonging to the same class has the highest purity [26,27].

Entropy of samples S partitioned by an arbitrary split point T of attribute X into two disjoint
intervals is defined by the equation below.

Ent(X, T; S) ==
2

∑
j=1

|Sj|
|S| Ent(Sj) (2)

where |Sj| and |S| are the sample size of subset Sj and S, respectively. The information gain for a
variable X based on a given split point T can be defined by Equation (3).

Gains(X, T; S) = Ent(S)− Ent(X, T; S) (3)

A partition induced by a split point T for a set S is accepted according to the minimum description
length principle (MDLP) [24]. The binning algorithm for the discretization of each variable (i.e., F1–F7,
layer number and recency) is described below.

The maximum number of the binned intervals was set to 10 and the discretization results of
the variables obtained by Algorithm 2 are given in Table 4. Split points were used directly for the
discretization of the test samples. Proportions of the different reorder levels for the training samples in
the different binned intervals of the variables are illustrated in Figure 4.

It can be seen that proportions of the different reorder levels in the different binned intervals vary
significantly, which indicates that the cumulative delivery quantity/area (F1 and F3), delivery interval
day (F5), and continued days (F2) are also important for classification of reorder level besides RFM
(i.e. Rec, F7, and F4). Proportion of reorder level 2, 3, and 4 decreases with an increase in the value of
discretized recency and the reorder level of the samples with the binned interval 10 for recency can
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almost directly be classified as 1. F7 performs the opposite tendency compared to recency in which the
sample with the binned value 1 or 2 has high purity (probability) to be classified as 1. A sample with
the binned recency as 1, F7 as 6, F2 or F3 as 1, or F7 as 9 has high probability to be classified as 4.

Table 4. Discretized results of variables.

Variables (Factors) Spilt Points

Ln 4, 10
Rec 11, 36, 67, 114, 172, 195, 325, 440, 714
F1 −0.09, 0.002, 0.211, 1.221, 2.436
F2 −0.767, −0.634, −0.496, 0.026, 0.787, 1718
F3 −0.532, −0.311, −0.251, −0.173, −0.024, 0.534
F4 −0.802, −0.481, −0.09, 0.872
F5 −0.1097, 0.443
F6 −0.879, −0.586, −0.329, 0.009, 1.432
F7 −1.009, 0.628, 0.386, 0.023, 0.401,1.335, 1.865, 3.501
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Algorithm 2. Entropy-based data discretization.

Input:
Samples S, samples size N, variable x, classes of reorder level Rel = {1, 2, 3, 4}, and maximum number of
binned interval MaxIntv.
Output:

Split points for the variable SPx = {sp1, sp2, . . . , sps−1}, the number of final split point s, and binned
values for variable Bx = {1, 2, . . . , s}
Iteration

Initialize empty set SPx and Bx;
Rank sample S according to x in ascending order and the position [1, . . . , j, . . . , N] are taken as its possible

split points;
for k = 1 to MaxIntv;

Compute E(S) according to Equation (1); tempN = N; tempj = 0;
for j = 2 to N;
sp = 1; tempj = j

Get the value of x at the position j for (updated) sample S and suppose it is Tj;
|S1

j |, |S
2
j |←the number of samples in the two intervals S1

j and S2
j separated by Tj;

|Sl
j1|, |S

l
j2|, |S

l
j3|, |S

l
j4|←the number of samples with Rel = {1, 2, 3, 4} in Sl

j, l = 1, 2, respectively;

P(Relk, Sl
j) = |S

l
jk|/|S

l
j|, 1 ≤ k ≤ 4, l = 1, 2;

Compute E(Sl
j), l = 1, 2, Ent(x, Tj; S), and Gains(x, Tj; S) according to Equations (1)–(3) respectively;

if Gains(x, Tj; S) satisfies MDLP;
Append Tj to SPx and sp to Bx; sp ++; update S← S2

j , N = |S2
j |; break;

end;
end;

if tempj = tempN; break; end;
end;

return SPx and Bx.

3. Modified Bayesian Network Model Development

3.1. Bayesian Network

Bayesian network (also known as belief network and causal network) is a probabilistic graphical
model that represents a set of random variables and their conditional dependence by means of a
directed acyclic graph (DAG) and CPTs [19,20]. Each node in DAG represents a variable of the ranges
over a discrete set of domain and contacts with its parent’s nodes [14] and directed arcs represent the
condition or probability dependency between random variables [14,28]. BN has become a popular
knowledge-based representational scheme in data mining [27–30]. This graphical structure, which
expresses causal interactions and direct/indirect relations as probabilistic networks, has secured BN’s
popularity. Experts can easily understand such structures and (if necessary) modify them to improve
the model [28].

The critical problem in establishing a BN is to determine the network structure S and
corresponding set of parameters θ [28,29], which are always called structure learning and parameter
learning, respectively. In order to reduce arcs between nodes (variables) with weak causal interactions
and corresponding CPTs, CMI and LSP were combined with expert’s experience to establish BN
structure and, therefore, avoid the defects of TAN. The CMI was first introduced in TAN [31] by
relaxing the conditional independence assumption of naïve Bayesian for the purpose of selecting
particular dependences [15]. However, TAN links all the input variables (evidence node) to output
variables (class node) and allows at most two parents nodes with one connection to the class node and
one causal connection to another evidence node, which easily misses some strong links and sometimes
generates redundant weak strength links [28] that are negative for the robustness and generalization
of the BN model.
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Suppose a set of discretized random variables is X = {x1, x2, . . . , x9} corresponding to
the variables such as a layer number, recency, and F1–F7 and CMI between xi and xj can be
computed below.

CMI(xi; xj|Rel) = ∑
m,n,k

P(xm
i , xn

j , Relk) ln
P(xm

i , xn
j |Relk)

P(xm
i |Relk)P(xn

j |Relk)
, i 6= j (4)

where xm
i , xn

j , andRelk represent the mth, nth, and kth values of xi, xj, and Rel, respectively.
CMI(xi; xj|Rel) measures the information xj provides on xi when the value of reorder level Rel
is known. The smaller the CMI(xi; xj|Rel) value is, the weaker the connection between xi and xj is.

The LSP from parent node x to child node y is defined by the equation below.

LSP(x → y) = 100× Ent(y|Z)− Ent(y|x, Z)
Ent(y|Z) (5)

where Z = Pay/{x} denotes a set of all parents of y other than x, Ent(y|Z) =

∑
z

P(z)∑
x2

P(y|z) log2(1/P(y|z)), and Ent(y|x, Z) = ∑
x,z

P(x, z)∑
x2

P(y|x, z) log2(1/P(y|x, z)). LSP can

be interpreted by how much the uncertainty (in percentage) in class variable is reduced by knowing the
state of an input variable if the states of all other parent variables are known. LSP plays an important
role to evaluate the quality of the BN structure and can facilitate experts to modify arrows based on
link strength values [32]. The structure learning algorithm is depicted below (Algorithm 3).

Algorithm 3. Modified BN structure establishment.

(1) Compute the CMI(xi; xj|Rel) between xi and xj according to Equation (4);

(2) Select input variables xk1, . . . , xkt with CMI(xi; xj|Rel) being greater than a threshold, and manually link
xi to xk1, . . . , xkt with directed arcs if there are no arcs between the two nodes;

(3) Combining CMI by expert experience to determine the variables that links to Rel with directed arcs;
(4) Compute LSP according to Equation (5) for each link to evaluate the quality of BN structure and

modified (deleted) arrows with small LSP, e.g., 10%.

The Bayesian estimation method was employed for parameter learning in this paper to estimate
θ = maxp(θ|X) based on the training samples. Initially, θ was treated as a random variable and prior
knowledge of θ is expressed as a prior probability distribution p(θ). Furthermore, there is a likelihood
that the function was utilized based on samples. Subsequently, the Bayesian formula was taken to
determine the posterior probability distribution of θ. Dirichlet distribution was employed as the prior
probability distribution of p(θ) [16].

CMI between xi and xj for the training samples based on Equation (4) is given in Table 5.
The threshold was set as 10% and CMI equal to or greater than 10% was reserved to construct the link.
It can be seen that (1) CMI is small between layer number, recency, and F1–F7, which can be taken
as independent variables while constructing BN structure. (2) CMI is large between F3, F4, F6,
and F7, which means that the cumulative delivery scale (F1) of repeated orders is not independent
of mean/min/max statistic results of delivery quantity, area, transaction money (F3, F6, and F4),
and frequency (F7). (3) Similarly, F6 (mean/min/max delivery area) has great mutual information
between F3 (mean/min/max delivery quantity) and F4 (mean/min/max transaction money).

On this basis, the structure of modified BN with entropy in each node and LSP for each link was
constructed according to Algorithm 3, which was given in Figure 5. Entropy in each node reflects the
purity of the node and they were computed based on Ent(x) = −∑ xi P(xi) log2 P(xi) where xi is the
discretized value set of node x, which indicates how much uncertainty is in x if no evidence is given
for any other nodes. LSP was computed based on Equation (5) and it can be seen that the LSP for links
from Ln, Rec, F1, F2, F5, and F7 to Rel are large, which means that these variables can help reduce
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the high percentage of uncertainty for Rel when knowing the state of these nodes. Similarly, LSP of
links from F2, F3, F6, and F7 to F1 are large, which indicates that F2, F3, F6, and F7 have a close causal
relationship with F1. However, weak LSP of links from F7 to F2 and F4 to F6 marked with dotted lines
are less than 10% and, therefore, the directed arcs from F7 to F2 and F4 to F6 were deleted accordingly.
Then parameter learning was conducted based on the training samples and the structure to determine
the CPTs for each node.

Table 5. Conditional mutual information matrix.

Variables and Factors Ln Rec F1 F2 F3 F4 F5 F6 F7
Ln 1 0.0018 0.002 0.0023 0.0703 0.0729 0.0307 0.0934 0.0023
Rec 1 0.01 0.019 0.005 0.041 0.0047 0.0108 0.0277
F1 1 0.0681 0.1004 0.141 0.0411 0.1098 0.1108
F2 1 0.0357 0.0125 0.0121 0.0226 0.1445
F3 1 0.099 0.041 0.2215 0.087
F4 1 0.0461 0.1121 0.0192
F5 1 0.0891 0.0144
F6 1 0.027
F7 1
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3.2. Conditional Expected Loss-Based Classification

Classification can be conducted based on learned BN structure and joint probability (the product
of all the conditional probabilities of the network). Posterior probability of the reorder level can be
calculated according to the Bayesian equation. Lastly, each sample can be predicted to the reorder
level corresponding to the greatest posterior probability. However, a sample with a reorder level 1
misclassified as 2, 3, or 4 will bring economic risk if it is taken for batch production. At the same time,
posterior probabilities of the biased reorder level may bring a different misclassification. Posterior
probabilities of the training samples with observed reorder level 2, 3, or 4 based on the modified BN
are given in Figure 6 according to initial experiments in which the posterior probabilities is generated
by the formula below.

P(Pr_Reli|Ob_Rel = 2, 3, 4) =
P(Pr_Reli)P(Ob_Rel = 2, 3, 4|Pr_Reli)

∑4
j=1 P(Pr_Relj)P(Ob_Rel = 2, 3, 4|Pr_Relj)

(6)

where P(Pr_Reli) is the probability of predicted reorder level i (i = 1, 2, 3, 4), P(Ob_Rel = 2, 3, 4) is
the probability of observed reorder level with the value of 2, 3, or 4, P(Ob_Rel = 2, 3, 4|Pr_Reli) is
the posterior probabilities of observed reorder level with the value of 2, 3, or 4 on the condition of
the predicted reorder level i and P(Pr_Reli|Ob_Rel = 2, 3, 4) is the posterior probabilities of predicted
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reorder level on the condition of observed reorder level as 2, 3, or 4. It can be seen that samples to be
predicted as 3 and 4 are small and the corresponding posterior probabilities subjects to serious left
skewed distribution with a mean value less than 0.25. In contrast, samples to be predicted as 1 or 2
are subject to right skewed distribution with a mean value greater than 0.5. This indicates that the
posterior probability-based classification has high posterior probability to predict the reorder level of 1
with an observed value equal to or greater than 2 in many cases. Only a few instances with observed
Rel = 3 or 4 have been predicted as 3 or 4.
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Figure 6. Posterior probabilities corresponding to different predicted reorder levels.

Figure 7 illustrates the posterior probabilities of 100 randomly selected samples obtained by
Equation (6) with observed Rel = 2 and Rel = 4 in which the probability of 1, 2, 3, and 4 corresponds to
a predicted reorder level 1, 2, 3, and 4, respectively. Posterior probability in Figure 7a illustrates that
it is easy to predict the reorder level of 2 to 1. Figure 7b illustrates that many posterior probabilities
corresponding to the predicted reorder level 4 have no significant possibility for classifying it as 4.
Therefore, the conditional expected loss was introduced instead of a posterior probability for the final
classification decision. Let αi be the decision to classify sample X as αi, λij = λ(αi, ωj)represents the
loss (risk) to classify X with observed value ωj to αi, and all the λij = λ(αi, ωj) i, j = 1, 2, 3, 4, consist
of classification loss matrix. Conditional expected loss is defined to illustrate the expected risk for a
decision to predict X as αi.

R(αi|X) = E
[
λ
(
αi, ωj

)]
=

4

∑
j=1

λ
(
αi, ωj

)
P
(
ωj|X

)
, i = 1, 2, 3, 4. (7)

The final decision can be conducted based on the minimization of the conditional expected loss.

R(αk|X) = min
i=1,2,3,4

R(αi|X) (8)

The conditional expected loss-based classification can be described below (Algorithm 4).
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Algorithm 4. Conditional expected loss-based classification.

(1) Compute the posterior probability P
(

ωj|X
)
= P(ωj)P(X| ωj)/

4
∑

j=1
P(ωj)P(X| ωj);

(2) Compute R(αi|X) for the classification of αi according to Equation (7);
(3) Classify reorder level of X to i with minimal R(αi|X), i = 1, 2, 3, 4 by Equation (8).
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Initial results also show that the probability to predict order with an observed reorder level of 1 to
2, 3, and 4 decreases with an increase in the value of binned recency and the risk to predict the larger
reorder level to the smaller one will also decrease. Therefore, four loss matrices corresponding to the
binned recency 1, 2–3, 4–5, and 6–10 were introduced for final classification based on Algorithm 4,
in which the value in the upper half of the matrix decreases with an increase in the value of binned
recency while the value in the lower half of the matrix increases with an increase in the value of
binned recency. The values were set to 1 and 0 in the non-diagonal positions and diagonal position,
respectively, when recency is 1. The other three matrices are shown in Table 6.
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Table 6. Loss matrix for different binned recency values.

Predicted Value

Overserved Value

Recency = 2–3 Recency = 4–5 Recency = 6–10

1 2 3 4 1 2 3 4 1 2 3 4

1 0 1.2 1.25 1.3 0 1.15 1.2 1.25 0 1.1 1.15 1.2
2 1.3 0 0.8 0.9 1.35 0 0.75 0.85 1.4 0 0.7 0.8
3 1.35 0.75 0 0.9 1.4 0.8 0 0.85 1.45 0.85 0 0.8
4 1.45 0.85 0.75 0 1.5 0.9 0.8 0 1.55 0.95 0.85 0

4. Model Evaluation

4.1. Estimation of Reorder Frequency

In order to get the expected reorder frequency for a given order, we use the sum of the mean
value of reorder frequency in each level weighted by conditional probability as the expected reorder
frequency. The expected output of the model can be computed by the equation below.

E(Re Freq|Cluster = i) =
4

∑
k=1

P(Rel = k|Cluster = i)M(Rel = k), i = 1, 2, . . . . (9)

where M(Rel = k) is the mean value of reorder frequency within six months for the samples with
Rel = k, which can be referred to Table 7. P(Rel = k|Cluster = i) is the average conditional probability
determined by the modified BN with Rel = k given a specific cluster i and Cluster = i represents the
ith cluster of the samples determined by the clustering algorithm.

Table 7. Mean reorder frequency for different reorder levels.

Reorder Level 1 2 3 4

Mean value for training samples 0 1.28 3.67 10.03
Mean value for test samples 0 1.27 3.67 10.28
Mean value for all samples 0 1.28 3.67 10.09

The purpose of the clustering is to classify samples according to their similarity by considering
the input features of discretized F1–F7, Rec, and Ln. The k-summary approach that can handle both
categorical and numerical data was adopted for the clustering and the number of clusters was set to
7 based on an initial experiment. On this basis, the average conditional probability of different reorder
levels given different clusters is presented in Table 8.

Table 8. Average conditional probability of different reorder levels given different clusters (%).

Reorder Level
Different Clusters

C1 C2 C3 C4 C5 C6 C7

1 89.67 91.88 65.87 58.87 89.60 42.60 92.49
2 9.42 7.32 24.84 31.50 7.03 23.25 6.67
3 0.78 0.64 7.06 7.99 2.18 17.79 0.65
4 0.13 0.16 2.23 1.64 1.18 16.36 0.19

4.2. Evaluation Indicators

The confusion matrix was taken to visualize the performance of different approaches in which
each column of the matrix represents the instances in an actual class while each row represents the
instances in a predicted class. All correct predictions are located in the diagonal of each table and
errors can be visually inspected by values outside the diagonal. Related terminology and derivations
are defined in Table 9 [33].
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Table 9. Terminology and derivations of the confusion matrix.

Terminology Description

True positive (TP) Number of correctly predicted instances for each column
False negative (FN) Number of incorrectly predicted instances for each column
False positive (FP) Number of incorrectly predicted instances for each row
True negative (TN) Number of correctly predicted instances for each row

Sensitivity or true positive rate (TPR) TP/(TP+FN)
False negative rate (FNR) 1-TPR

Specificity or true negative rate (TNR) TN/(TN+FP)
False positive rate (FPR) 1-TNR

Positive predictive value (PPV) TP/(TP+FP)
False discovery rate (FDR) 1-PPV

Accuracy (ACC) (TP+TN)/Total instances

In order to evaluate the performance of the proposed model, the following mean squared
error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) evaluation
indicators were used. MSE is the average of square sums between the predicted reorder level αi
and the observed value ωi [14]. It defines the goodness of fit of the models and is given by the
following equation.

MSE =
1
n

n

∑
i=1

(αi −ωi)
2 (10)

The MAE is the average of the sum of the absolute difference between observed values and the
predicted reorder level, which can be expressed below.

MAE =
1
n

n

∑
i=1
|(αi −ωi)| (11)

The MAPE is the average of the sum of the normalized absolute difference between observed
values and estimated values. The formula is written below.

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ωi − αi
ωi

∣∣∣∣ × 100 (12)

4.3. Experimental Results

Reorder frequency of the samples six months after a set date can be taken as a random event for
a manufacturer without prior knowledge and the models are expected to have errors in prediction.
It is necessary for finding an upper limit and a lower limit to make as many as possible observed
values lie in. Additionally, the small field data set may cause uncertain deviations between observed
reorder levels and predicted ones. It is also impractical to fit the reorder frequency in a specific
distribution absolutely. The counting nature of the reorder frequency makes it intuitive for using a
Poisson distribution as the probability distribution function (PDF). Therefore, assuming the reorder
frequency in each reorder level following a Poisson distribution is justifiable since it has a high
repetition occurrence rate and more numbers under low reorder levels and a small probability at
high reorder levels, which is shown in Table 2. The approximate upper limit for 95% confidence
aligns with the Poisson cumulative distribution function (CDF) and is equal to or greater than 95%.
The lower limits are considered to be zero because of the nonnegative counting property of Poisson
distribution [14].

Monte Carlo simulation is used to weaken the influence of uncertainty factors in this research. It is
an effective method for quantifying the variance resulting from the random nature of repetition events.
For any sample (orders with the same production number) with a given cluster and the distribution of
the reorder frequency, a random number can be generated through simulation to present the reorder
frequency for this sample and the 95% confidence upper limit can be obtained. As a result, it is used to
estimate reorder frequency and the 95% upper limit for each sample. Along with the increase in the
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number of simulations, the prediction accuracy will increase gradually. Therefore, it can quantify the
variance resulting from the randomness of repetition events. A procedure of Monte Carlo simulation
is described below (Algorithm 5).

Algorithm 5. Monte Carlo simulation of reorder times.

(1) Given a specific order, determine the cluster of the sample;
(2) Determine the expected reorder frequency (within six months after a set date) as the parameter (lamda)

of Poisson PDF and CDF for the sample according to Equation (9) based on Tables 7 and 8;
(3) Generate n (10,000 here) random number by Poisson PDF with lamda as its expectation and take the

average result of the n random number as the simulated reorder frequency;
(4) Determine the least integer for Poisson CDF being greater than 0.95 as the 95% upper limit of reorder

frequency for the order.

A total of 250 randomly selected samples with Monte Carlo simulation results obtained by
Algorithm 5 are presented in Figure 8. The performance of the Bayesian network for training and test
data can be seen from Figure 8a,b, respectively. When the reorder level is low, the estimated value is
close to the observed one. In some extreme situations, it can cause a greater reorder frequency than
what can be predicted. The presentation in figures is that the observed values are higher than the 95%
upper limits. Figure 8 indicates that the difference between estimated values and actual values is small
in most cases and almost all of them are less than 1.

Appl. Sci. 2018, 8, x 16 of 21 

with the increase in the number of simulations, the prediction accuracy will increase gradually. 

Therefore, it can quantify the variance resulting from the randomness of repetition events. A 

procedure of Monte Carlo simulation is described below. 

Algorithm 5. Monte Carlo simulation of reorder times. 

(1) Given a specific order, determine the cluster of the sample; 

(2) Determine the expected reorder frequency (within six months after a set date) as the parameter 

(lamda) of Poisson PDF and CDF for the sample according to Equation (9) based on Table 7 and 

Table 8; 

(3) Generate n (10,000 here) random number by Poisson PDF with lamda as its expectation and take 

the average result of the n random number as the simulated reorder frequency; 

(4) Determine the least integer for Poisson CDF being greater than 0.95 as the 95% upper limit of 

reorder frequency for the order. 

A total of 250 randomly selected samples with Monte Carlo simulation results obtained by 

Algorithm 5 are presented in Figure 8. The performance of the Bayesian network for training and 

test data can be seen from Figure 8a and Figure 8b, respectively. When the reorder level is low, the 

estimated value is close to the observed one. In some extreme situations, it can cause a greater 

reorder frequency than what can be predicted. The presentation in figures is that the observed 

values are higher than the 95% upper limits. Figure 8 indicates that the difference between estimated 

values and actual values is small in most cases and almost all of them are less than 1. 

 
(a) 

 
(b) 

Figure 8. Observed and estimated reorder frequency with 95% upper limits by Monte Carlo 

simulations. (a) Training observed and estimated reorder frequency with 95% upper limits. (b) Test 

observed and estimated reorder frequency with 95% upper limits. 

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200 220 240

R
eo

rd
er

 f
re

q
u

en
cy

Samples

Observed

Estimated

95% Upper limit

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160 180 200 220 240

R
eo

d
er

 f
re

q
u

en
cy

Samples

Observed

Estimated

95% Upper limit

Figure 8. Observed and estimated reorder frequency with 95% upper limits by Monte Carlo simulations.
(a) Training observed and estimated reorder frequency with 95% upper limits. (b) Test observed and
estimated reorder frequency with 95% upper limits.

In order to verify the proposed ensemble approach in this research, the data preprocessing
and modified BN prediction model were implemented and the performance was compared to other
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classifiers including TAN, AdaBoost, and ANN. Among the four competing methods, TAN as a naïve
Bayesian network has been widely utilized in classification [17,18]. AdaBoost is an ensemble method
whose output is the weighted average of many weak classifiers and is the best-known and most widely
applied boosting algorithm in both research and practice [34]. ANN has a strong learning ability and
has also been widely used for prediction and classification [35–37]. TAN and ANN were implemented
in the IBM SPSS Modeler and AdaBoost was developed by Matlab while the proposed modified BN
was developed based on Matlab and package FullBNT.

Confusion matrices of different approaches are given in Figure 9. These confusion matrices show
that TAN achieved the highest sensitivity for observed reorder levels 2, 3, and 4. However, the ability
to identify a reorder level 1 was weak and the unbalanced and biased distribution of reorder level 1
can greatly increase the production risk if a large amount of orders were taken as batch production
in advance without customers’ confirmation. On the other hand, the modified BN achieved better
results with sensitivity 98.5% and 98.1% for training and test samples, respectively. It can reduce the
number of samples with a reorder level 1 to be incorrectly predicted as 2, 3, or 4, which reduces the
risk of batch production. In addition, the modified BN can correctly identify a higher amount of orders
with an observed reorder level 2 and 3 compared with AdaBoost and ANN both for training and
test samples. The sensitivity of the modified BN for observed reorder level 4 deteriorated for the test
sample. However, many samples have been predicted as 2 or 3, which can also be taken for batch
production. Overall indicators of confusion matrices also show that the modified BN obtained the
highest accuracy (81.9%) both for training and test samples.

The approaches were compared both for training and test samples according to indicators
presented in Equations (10)–(12) and the comparison results can be referred to Table 10. It shows
that the proposed modified BN obtained the lowest MAE and MAPE for training samples and the
lowest MSE and MAE for test samples. The results in Figure 9 also illustrate that TAN obtained
the maximum correctly classified instances with observed reorder levels of 2, 3, and 4 as well as
the maximum incorrectly classified instances with an observed reorder level of 1 compared to the
other classifiers. Therefore, the indicators show that TAN achieved the lowest MSE for training
samples as well as almost the largest MAE and MAPE both for training and test samples. This may be
caused by redundant links between the evidence node and the missing strong links such as the causal
relationships between F2, F3, F6, and F1. Yet, it is worth noting that TAN deteriorated greatly on the
test dataset according to MAE and MAPE, which indicates that the TAN considered in the current study
lacked robustness and generalization ability. The ANN exhibited steady performance both for training
and test samples but had no superiority according to the three indicators. The AdaBoost achieved
slightly better performance for test samples for the indicator MAPE but the worst performance for the
indicators MSE and MAE.

Table 10. Comparison of classifiers according to different indicators.

Classifiers
Training Samples Test Samples

MSE MAE MAPE MSE MAE MAPE

Modified BN 689.98 0.2306 10.6965 291.74 0.2239 11.0818
TAN 666.8964 0.2421 11.5641 302.2279 0.2509 11.9724

AdaBoost 738.0686 0.2407 11.2314 308.0735 0.2358 11.0472
ANN 692.7819 0.2349 11.3129 293.1946 0.2346 11.1991

The above results indicate that the modified BN combing CMI, LSP, and expert experience
maintains the DAG requirement of BN and produces a more nuanced network that captures the main
dependency relationships among evidence nodes (variables) while deleting some weak dependency
relationships without allowing arbitrary graphical structures that would make it harder to interpret
and extract relations to enhance the prediction model. At the same time, the conditional expected loss
can benefit the final classification and it can exhibit better performance especially when compared
to TAN. In addition, the modified BN has the clearest common sense interpretation.
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5. Conclusions

In this paper, the identification of repeated PCB orders for batch production was transformed
into a reorder level prediction problem and a modified Bayesian network model with Monte Carlo
simulations to study the relationship between different characteristic variables and reorder levels of
PCB within six months was established. Reorder frequency was divided into four reorder levels and
variables related to a reorder level were specified. Field data was exported and integrated from a PCB
manufacturer with 33,542 training samples and 14,484 test samples. Normalization and PCA were
employed to reduce differences and redundancy of the datasets, respectively. PCA results indicated
that the causes of the reorder level are closely related to seven principal components and the other two
variables, i.e., recency and layer number. Entropy minimization based binning method was employed
to discretize model variables for the purpose of reducing input type and capturing better performance
and results. The modified structure of BN was established by deleting redundant connections between
nodes (with weak link strength) and corresponding conditional probability tables based on conditional
mutual information and link strength percentage combining with expert experience. This can facilitate
the manufacturer to comprehend causal interactions between variables. On this basis, the conditional
expected loss was presented for final classification considering different misclassification risk.

Monte Carlo simulation was conducted to enable the determination with greater accuracy of a
mean and confidence interval for reorder frequency estimations based on the predicted reorder level.
The upper limits of reorder frequency are particularly useful for the PCB manufacturer as a basis
of each reorder level. The performance of the proposed modified BN was visualized by confusion
matrix, evaluated by three indicators, and compared to three advanced methods including TAN,
AdaBoost, and ANN. It was found that the modified BN prediction model achieved steady and
satisfactory results both for training and test samples with the clearest common sense interpretation.
Therefore, the proposed model in this paper is an effective approach to capture the repetition pattern
of PCB orders that have seldom been studied before. The established explicit relationship between the
variables including extracted factors and the reorder level by the causal network can directly facilitate
order selection for batch production that can be conducted according to the decision making step given
in Figure 1.

The main contributions of this work are summarized below.

1. The tricky problem of identifying repeated orders for batch production was transformed into a
reorder level prediction problem and then a reorder level prediction model based on modified
causal Bayesian network was proposed. From the historically accumulated data in a PCB
manufacturer, different characteristic variables were extracted and specified for the model.

2. PCA was employed for data compression and factors extraction. Yet, an entropy minimization
based method was presented to discretize variable and extracted factors. They could facilitate
data compression, input type reduction, and better classification performance.

3. In order to avoid the defect of TAN BN that easily misses strong links between nodes and
generates redundant weak links, CMI and LSP were combined for the establishment of the
BN structure.

4. By using Monte Carlo simulations, the confidence upper limits of reorder frequency within six
months were determined and the influence of the random nature of reorder was reduced.

Further research will be made to design intelligent approaches that can predict and determine
reasonable batch production area for each candidate order. Further attempts will also be made to
apply this method to similar order-oriented production and develop other intelligent techniques for
the repetition pattern excavation.
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