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Abstract: In this paper, we consider motion-planning for multiple unmanned aerial vehicles (UAVs)
that oversee cooperative target tracking in realistic communication environments. We present a novel
multi-UAVs cooperative target tracking algorithm based on co-optimization of communication and
sensing strategy, which can generate information-gathering trajectories considering the multi-hops
communication reliability. Firstly, a packet-erasure channel model is used to describe the realistic
wireless communication links, in which the probability of a successful information transmission is
modeled as a function of the signal-to-noise ratio (SNR). Secondly, the Fisher information matrix
(FIM) is used to quantify the information gained in target tracking. Thirdly, a scalar metric is
used for trajectories panning over a finite time horizon. This scalar metric is a utility function
of the expected information gain and the probability of a successful information transmission.
With the combining of the sensing and communication into a utility function, the co-optimization
of communication and sensing is reflected in the tradeoffs between maximizing information gained
and improving communication reliability. The results of comparison simulations show that the
proposed algorithm effectively improved estimation performance compared to the method that does
not consider communication reliability.

Keywords: multi-UAVs; cooperative target tracking; information filter; radio frequency communication;
Fisher information matrix; receding horizon optimizing

1. Introduction

Recently, multiple unmanned aerial vehicles (UAVs) have received increasing attention for their
accomplishments in both military and civil applications. Tracking of a moving ground target is
one of the important applications of UAVs, with the aim of increasing the overall knowledge of the
target’s state (position, velocity, etc.) and taking proactive measures. The goal of cooperative target
tracking is to control multiple UAVs to keep tracking a moving target and obtain more accurate target
state estimates.

In cooperative target tracking missions two or more UAVs track the same target. Under such
a mission two main technical issues arise [1]: (1) Target motion estimation; each UAV has a local
estimation of the target state (position and velocity). To obtain a more accurate target state estimate,
it is necessary to develop global estimation strategies by fusing the local estimates from UAVs in
an efficient manner; (2) Observer trajectory optimization; by developing cooperative control methods,
UAVs can move in such a way as to minimize the error and uncertainty of the target state estimation.
Extensive studies have been carried out on these two key issues.
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Target-motion estimation has been a major problem in the field of target tracking and has
received great attention. In target tracking applications, sensors (such as camera, radar, and sonar,
etc.) installed on the UAVs can obtain measurements, such as the relative range and azimuth of
the target with respect to the position of the airborne UAV. According to the measurement data,
the UAV can obtain a target state estimate which generally is suboptimal given the local information.
Fortunately, the communication capabilities of the UAVs enable sending their measurement data
to a fusion center (e.g., base station), which leads to a global optimal estimate. Most of existing
estimation and fusion methods are based on the information filter (IF), which is the information
form of the Kalman filter (KF). For the IF, the information vector and matrix are employed instead
of the mean and covariance used in the standard KF to represent the Gaussian distribution [2–4].
In this way, the IF has advantages to handle sensor fusion tasks and unknown prior covariance
conditions. Thus, IF is more widely used than KF in the estimation and fusion problems for multiple
sensors [5,6]. Ridley [7] provides a decentralized airborne data fusion method based on the IF
for ground targets tracking. Casbeer [8] presented a new information consensus filter (ICF) for
distributed dynamic-state estimation, in which estimation is handled by the traditional information
filter, while the communication of measurements is handled by a consensus filter. Additionally,
the unscented information filter (UIF) has been proposed for distributed estimation with nonlinear
dynamics. Lin [9] presented an adaptive consensus-based distributed UIF for mobile sensor networks
with communication delays. These studies show that the IF and its extensions can effectively solve the
problem of data fusion from different sensor platforms.

The observer trajectory optimization problem focuses on determining the trajectories of multiple
UAVs (note, the UAVs are the observers) such that the target state estimation error is minimized.
This issue is concerned with the cooperative control of the movements of multiple UAVs to
guarantee the optimal observer trajectory for target motion estimation. Different earlier studies have
developed observer trajectory planning approaches, including the gradient-based control law [10,11],
Lyapunov vector fields (LVF) [12,13], and receding horizon optimization (RHO) [14,15], among others.
In References [10,11], an optimal sensing strategy was given by minimizing the determinant of the
estimation error covariance matrix, and a gradient-based control law was derived for each sensor
platform to reach a local optimum. However, kinematic constraints of the platform were not considered,
and this gradient-based control strategy was easily trapped in local optimal solutions. Frew [12]
introduced Lyapunov guidance vector fields in an approach that maintains a prescribed standoff
radius. Additionally, Oh [13] proposed a coordinated standoff tracking method for groups of moving
targets using multiple UAVs. The vector field guidance approach was applied to track a group of
targets for a single UAV by defining a variable standoff orbit, to be followed, which keeps all targets
within the field-of-view of the UAV. However, their study neglected the accuracy of target motion
estimation in the tracking process.

Target motion estimation is a dynamic process and as a result, the performance of the estimation
depends on the trajectory of the sensor platform. To generate observer trajectories that improve
the performance of the target-motion estimation, several observer trajectory planning methods that
are based on receding horizon optimizing have been proposed. For example, Ponda [14] presented
an information theoretic approach for vehicle trajectory optimization in the 3D bearings-only target
localization problem. The trace of the Fisher information matrix (FIM) was used as the quality metric
for assessing the estimation performance and gave a framework for the choice of vehicle trajectories
that increased the information provided by the measurements to improve the accuracy of the estimation.
In Reference [15], a receding horizon control scheme for trajectory planning in target tracking was
presented for the problem of cooperative persistent target tracking in an urban environment. In that
study, the tracking objective was to maximize the information contribution from each UAV.

In cooperative target tracking missions, each UAV must process the measurement results
received from others to improve its estimate, and thus communication plays a key role in target
tracking. However, most of current researches assume ideal or non-realistic communication and
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consider only sensing objectives. For instance, it is common to assume either perfect links or links
that are perfect within a certain radius, a significant over-simplification of communication links.
Wireless transmission is degraded by several factors such as path loss, shadowing, fading, and noise.
Therefore, considering the impact of communication on estimation and control is an emerging area of
research [16]. Reference [17] investigated how to use the UAVs to build up a communication network
rapidly in a disaster environment. The deployment of the UAVs is optimized such that a line-of-sight
situation is achieved as well as a minimum required signal-to-noise ratio being ensured at the receivers.
However, the scenario in this literature is static, and the method is cannot be directly applied to
the moving target tracking scenario that is considered in this paper. The problem of integrating
communication and sensing together for information gathering tasks is treated in Reference [18].
The approach of [18] optimizes information metric over a finite horizon which accounts for the
qualities of communication links between the UAVs. In the scenario, once the range is too large
for direct communication to the base station, some UAVs act as communication relays to maintain
connectivity and further improve performance. Therefore, the UAVs automatically establish fixed
multi-hop chains to get the measurements back to the base station. In this the fixed communication
topology, the formation of the UAVs is rigid [19]. The rigid formation has higher stability, because the
only permissible smooth motions are translations or rotations of the entire formation. However, due to
the fixed communication topology, the algorithms do not produce efficient results in the dynamic
scenario of moving target tracking.

From these earlier studies it is clear that the motion decisions of each UAV should consider both
the information gained through its sensor as well as communication with fusion center. This creates
a multi-objective optimization problem where communication and sensing are both optimized
such that each UAV chooses a trajectory that gives the best balance between its communication
and sensing. A trajectory only maximizing sensing capabilities may not guarantee effective
communication performance, while a trajectory that optimizes communication may result in poor
sensing. Thus, the co-optimization of communication and sensing is reflected in the tradeoffs between
maximizing information gained and improving communication reliability.

In this paper, we study the problem of multiple UAVs cooperative tracking a moving target.
The main contribution of this paper is to develop a motion planning algorithm in which communication
and sensing are both optimized. Our novel motion planning approach properly integrates the
communication and sensing objectives to accomplish the target tracking mission of multiple UAVs,
while maintaining proper connectivity to the remote base station.

The structure of this paper is organized as follows. In Section 2, the mission scenario and
the problem formulation is provided. Section 3 discusses the extended information filter (EIF) and
the sensor fusion algorithms for moving target tracking in realistic communication environment.
This section also introduces the Fisher Information Matrix (FIM), which is the inverse of Cramer-Rao
Lower Bound (CRLB), as a tool to measure estimation performance. By identifying the measure of
estimation performance, an observer trajectory quality metric is developed which can be used to
determine the optimal trajectories of the UAVs for tracking a moving target. This trajectory quality
metric combines the communication and sensing into a utility function. In Section 4, we propose our
motion planning algorithm based on co-optimization of communication and sensing. The motion
planning is performed in a distributed fashion, i.e., each UAV solves local rolling time domain
optimization problem and obtains its own trajectory. We present our simulation and experimental
results in Section 5, followed by summary and conclusions in Section 6.

2. Problem Formulation and Model

Consider a fixed remote base station which uses N homogeneous UAVs for tracking a moving ground
target, as shown in Figure 1. Each UAV is identified by a unique identity number Ai, i = 1, 2, . . . , N, and is
equipped with a moving target indicator radar (MTIR) to localize the position of the target by measuring
the relative distance and azimuth with respect to the UAV’s own position. With the MTIR measurement,
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each UAV executes the filter algorithm and obtains its local estimation of the target state (position and
velocity). However, since a single local estimate is suboptimal, each UAV sends its local estimate to the
remote base station for fusion which enhances the tracking accuracy. After the base station receives all the
UAVs’ local estimates via the communication links, a global optimal estimate of the target state is obtained
with the fusion algorithm. The overall goal is for the station to constantly have a good global estimate of the
target state. However, the communication links between the UAVs and the base station are affected by path
loss, shadowing, fading, and noise, which can drastically degrade the quality of the received information.

In this paper, we employ a packet-erasure channel model to describe the realistic wireless
communication links. That is to say, the base station will drop all the packets with a received
signal-to-noise ratio (SNR) below a predefined threshold. Please note that in practice, more distance
between two communication nodes results in a lower received SNR. In this case, these two
communication nodes might be regarded as disconnected. Thus, for a UAV that is far away from the
base station, it fails to communicate with the base station directly. To ensure that the UAV can send
its local estimation results to the remote base station, some other UAVs act as communication relays
to maintain connectivity. The quality of the links should be considered in motion-planning such that
the UAVs intelligently move to locations that maximize both the information gain and the successful
transmission probabilities in communication links with the base station.
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2.1. UAV Dynamical Model

For simplicity, it is assumed that each UAV is equipped with a low-level flight control system [20–23]
that holds constant altitude and speed. A general flight control system—which includes the attitude angles
(roll, pitch, and yaw) controller and fast loop attitude angle rates controller—can follow the guidance inputs
to generate control surface deflections. In general, the guidance inputs include the speed (v), the vertical
flight path angle (γ) and the horizontal flight path angle (χ). In this paper, we assume that the UAVs move
on a fixed altitude with a constant cruising speed. Thus, we only need to designate the horizontal flight
path angle (χc), which is the sole guidance input to this low-level flight control system. The two-dimension
motion of a UAV in a horizontal plane is thus described by:

.
xi
.
yi.
χi

 = f(xi, ui) =

 vi cos χi
vi sin χi

αχ(χc
i − χi)

 (1)
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where xi = [xi, yi, vi, χi]T denotes the x and y components of the planar position, the speed, and the
horizontal flight path angle of UAV Ai, respectively. Additionally, αχ is the control gain, and ui = χi

c

is the desired horizontal flight path angle of Ai, which is the guidance input for the low-level flight
control system of the UAV.

.
χi is the turning rate, which is constrained by the following dynamic limits:

−ωmax ≤
.
χi ≤ ωmax (2)

The continuous UAV model in Equation (1) can be discretized by Euler integration method:

xi(k + 1) = f u(xi(k), ui(k)) = xi(k) + Tsf (xi(k), ui(k)) (3)

where Ts is the discrete sampling time.

2.2. Target Dynamical Model

Due to the ground target move with much lower speeds than UAVs, we use a constant-velocity
target model in this paper. This constant-velocity target model regards the target acceleration as
a zero-mean Gaussian acceleration noise. Therefore, we define xt(k) = [xt(k), vt

x(k), yt(k), vt
y (k)]T,

with pt(k) = [xt(k), yt(k)]T and vt (k) = [vt
x(k), vt

y (k)]T to denote the target position and velocity at time
k, respectively. The discrete model of the moving target is thus expressed by:

xt(k + 1) = ft(xt(k), w(k)) = F(k)xt(k) + G(k)w(k) (4)

where w(k)~N(0, Q(k)) represents the dynamic acceleration noise. The covariance matrix of the process
noise w(k) is Q(k) = diag(δx

2(k), δy
2(k)). δx(k) and δy(k) are the standard deviations related to target

acceleration toward x and y axes. The state transition matrix F(k) and the process noise input matrix
G(k) are expressed as:

F(k) =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

G(k) =

[
Ts

2

2 Ts 0 0
0 0 Ts

2

2 Ts

]T

(5)

2.3. Sensor Model

In this paper, each UAV is equipped with a moving target indicator radar (MTIR) to localize the
position of the target. In the MTIR, the sensor measurement zi(k) is composed of the relative range,
r̃i(k), and azimuth, θ̃i(k), of the target with respect to the position of the airborne UAV. Using the target
position xt(k) and the UAV position xi(k), the sensor measurement is defined via:

zi(k) =

[
r̃i(k)
θ̃i(k)

]
= hi(k, xi(k), xt(k)) + υi(k)

=

 √
(xt(k)− xi(k))

2 + (yt(k)− yi(k))
2

arctan yt(k)−yi(k)
xt(k)−xi(k)

+ υi(k)

(6)

In Equation (6), υi(k)~N(0, Ri(k)) is the measurement noise, and its covariance matrix
Ri(k) = diag(δr

2(k), δθ
2(k)); δr(k) and δθ(k) are the standard deviations of range and azimuth,

respectively. Let the matrix Hi(k)·be the Jacobian of the nonlinear function hi(k, xi(k), xt(k)) with
respect to the target state xt(k):

Hi(k) =

[
cos θi(k) 0 sin θi(k) 0
− sin θi(k)

ri(k)
0 cos θi(k)

ri(k)
0

]
(7)
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Thus, Equation (6) can be rewritten in terms of the following linear equation:

zi(k) = Hi(k) · xt(k) + υi(k) (8)

2.4. Communication Model

We use a packet-erasure channel model to describe the realistic wireless communication links,
in which the receiver drops all the packets with a received SNR below a predefined threshold.
The received signal-to-noise ratio (SNR) Γij at node j from a transmitting node i is given by:

Γij =
PiGij

Nj
(9)

where Pi > 0 is the power delivered to the transmitting antenna of node i; Nj > 0 is the average noise
power when node j operating as a receiver, and Gij is the channel gain. Using the Rayleigh model, Gij
can be expressed as:

Gij =
Cij
∣∣hij
∣∣2

dα
ij

(10)

where Cij is a constant in which the antenna gains and shadowing are considered. hij represents
the multi-paths fading. The distance between nodes i and j is dij. α is the propagation loss factor.
Maintaining a successful transmission with an acceptably small packet loss requires a sufficiently
high received SNR. In this paper, the required SNR threshold that to obtain minimal link quality is γ.
Therefore, if we assume that the channel has fast Rayleigh fading [24], the probability of a successful
transmission between nodes i and j is given by:

Pij
r (Γij ≥ γ) = exp

(
−

Njγdα
ij

CijPi

)
(11)

Equation (11) describes a realistic wireless communication model. Please note that a larger
distance between nodes i and j results in a lower received SNR. If Γij < γ, the packet from node i will
be dropped by node j, and thus nodes i and j are regarded as disconnected. If Γij ≥ γ, the packet
from node i will be successfully received by node j, and thus nodes i and j are regarded as connected.
The relationship between Pr

ij and the distance dij is shown in Figure 2; for the parameters listed
in Table 1.
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Table 1. The parameters of the realistic wireless communication model.

Parameter Value Unit

Transmission power Pi 30 dBm
Noise power Nj −70 dBm

SNR requirement γ 10 -
Antenna gain constant Cij 1 -
Propagation loss factor α 3 -

To compute the highest successful transmission probability between the source and desired
destination, we should examine all possible multi-hop routes. If the successful transmission of the
packet in each hop is independent, the successful transmission probability in a given multi-hop route
(routek) is given by:

Pr(routek) = ∏
(i,j)∈routek

Pij
r (12)

The specific route will be chosen by the routing algorithm. In this paper, the packet routing
algorithm will always choose the route with the highest successful transmission probability.

Remark 1. In addition to the Rayleigh fading model used in our algorithm, other fading models can also be
employed in a similar way. In practice, the distribution of the channels can be collected and employed within the
framework of this paper in a straightforward way. In future work, we will design other communication fading
models, such as Rician fading, and integrate them into the framework of co-optimization of communication
and sensing.

3. Target State Estimation and Observer Trajectory Quality Metric

3.1. Target State Estimation

Considering the advantage of using information filter in multiple sensor estimation and fusion
problems, the estimation of target state is performed by using the EIF. The EIF is the information form
of EKF. The EKF generates the target state estimation, x̂t(k|k), at time k, together with a corresponding
estimate covariance P(k|k). The EIF is obtained by re-writing the target state estimate and covariance
in terms of the information vector ŷ and information matrix Y.

ŷ = P−1x̂t, Y = (P)−1 (13)

At time k, each UAV Ai runs the following EIF algorithm.

• Prediction phase

Yi,k|k−1 = (FkY−1
i,k−1|k−1FT

k + GkQkGT
k )
−1

(14)

ŷi,k|k−1 = Yi,k|k−1FkY−1
i,k−1|k−1ŷi,k−1|k−1 (15)

x̂t,i,k|k−1 = Y−1
i,k|k−1ŷi,k|k−1 (16)

• Measurement update
Yi,k|k = Yi,k|k−1 + Ii,k (17)

ŷi,k|k = ŷi,k|k−1 + ii,k (18)

x̂t,i,k|k = Y−1
i,k|kŷi,k|k (19)
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where ŷi and Y i represent the information state vector and information matrix of the UAV Ai,
respectively. At the time k, Ai obtains measurement zi,k, and performs the associated information
state and matrix updates

ii,k = HT
i,kR−1

i,k

[
zi,k − hi(k, xi,k, x̂t,i,k|k−1) + Hi,kx̂t,i,k|k−1

]
(20)

Ii,k = HT
i,kR−1

i,k Hi,k (21)

Since its local estimation is not perfect, each UAV must send its estimate estimation to the base
station to obtain the global optimal estimate, thus enhancing the tracking accuracy of the UAVs.
The base station obtains the global optimal estimate by using following fusion algorithm:

ŷB,k|k = ŷB,k|k−1 +
N

∑
i=1

ξi,k · ii,k (22)

YB,k|k = YB,k|k−1 +
N

∑
i=1

ξi,k · Ii,k (23)

where ŷB and YB represent the information state vector and information matrix of the base station,
respectively. In Equations (22) and (23), we use ξi,k to indicate whether UAV Ai has sent its own
estimation to the base station successfully. ξi,k is a random variable taking on either 0 or 1 from the
following Bernoulli distribution

P(ξi,k = 1) = βi,k; P(ξi,k = 0) = 1− βi,k (24)

where βi,k indicates the probability of the packet successfully getting through from Ai to the base
station. βi,k can be calculated by Equations (11) or (12).

Hence, the global optimal estimate of the target state determined by the base station is:

x̂t,k|k = (YB,k|k

)−1
· ŷB,k|k (25)

3.2. Observer Trajectory Quality Metric

A metric is defined in this section which can be used to determine the optimal trajectories of the
UAVs for tracking a moving target. In practice, the performance of target-motion estimation depends
on the trajectories of the UAVs. That is, the performance of target-motion estimate is a function of
the specific observer trajectory, and therefore some trajectories lead to better performance (accuracy,
effectiveness, etc.) than others. The goal of the cooperative target tracking mission is to enhance the
global estimate performance by determining optimal or near-optimal observer trajectories. To generate
good trajectories, it is necessary to define the notion of quality metric for the global estimate of
target state. Therefore, the problem of identifying the best trajectory-quality metric is the problem of
determining the best description of estimation performance.

According to the Cramer–Rao lower bound (CRLB) theorem, the estimation error covariance
represents the uncertainty associated with the accuracy of the estimation results, which should be
minimized. The CRLB provides a lower bound for the error covariance and any unbiased estimator
that achieves this lower bound is considered efficient. Specifically:

Pk = E[(x̂t,k − xt,k)(x̂t,k − xt,k)
T] ≥ Ck = Y−1

k (26)

where xt,k is the target state to be estimated, x̂t,k is the unbiased estimate of xt,k given the measurements
zk, and Pk represents the covariance of the estimation error. The CRLB on Pk is denoted by Ck and its
inverse Yk = (Ck)−1 is the Fisher information matrix (FIM).
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CRLB provides a lower bound on the achievable covariance of the estimator. It means minimizing
the covariance of the estimation can be achieved by minimizing CRLB. Minimizing the covariance of
the estimation will reduce the uncertainty of the estimation results, and then improve the estimator
performance. Since the CRLB and the FIM are inversely related, maximizing the FIM will improve the
estimator performance and reduce uncertainty. Thus, the optimal sensing trajectory can be generated
by maximizing the FIM.

According to References [14,18], the FIM can be predicted at future time (k + l), based on the current
target state estimation results. Prediction of FIM, Ŷk+l|k, is computed via the following recursive form

Ŷk+l|k = (Fk+l−1Ŷ−1
k+l−1|kFT

k+l−1 + Gk+l−1Qk+l−1GT
k+l−1)

−1
+ Îk+l|k (27)

where the recursive equation starts with Ŷk = Yk|k. The matrix Îk+l|k is the prediction of the information
gain matrix, which is regarded as the expected measurement contribution to the FIM from all the
UAVs. On one hand, Îk+l|k is dependent on the planned trajectories of all the UAVs. On the other hand,
Îk+l|k is also dependent on the probabilities of the measurement packets being successfully received by
the base station. At time k, the information gain from Ai can be defined as

Ii,k = χi,k ·HT
i,kR−1

i,k Hi,k (28)

where χi,k ~Bern(βi,k) is a random Bernoulli variable (either 0 or 1). βi,k, which is determined by the
packet-erasure channel model, indicates the probability of the packet successfully getting through from
Ai to the base station. If the measurement packet from Ai is dropped by the base station, the information
gain from Ai is Ii,k = 0. If the measurement packet can be transmitted from Ai to the base station
successfully, the information gain from Ai is Ii,k = HT

i,kR−1
i,k Hi,k.

For planning purposes, we need the value of the information gain in the future times (k + l),
thus the expectation must be used. At future times (k + l), the prediction of the information gain matrix
Îk+l|k is defined as

Îk+l|k =
N

∑
i=1

βi,k+l · Ĥ
T
i,k+lR

−1
i,k+lĤi,k+l (29)

Ĥi,k+l = ∇x̂t,k+l|k hi(xi,k+l|k, x̂t,k+l|k) (30)

In Equation (29), xi,k+l|k is the state of Ai at future time (k + l), and which is defined as trajectory
of Ai. x̂t,k+l|k are the predictions of target state, which are computed as follows:

x̂t,k+l|k = ft(x̂t,k+l−1|k, 0) = Fk+l−1x̂t,k+l−1|k (31)

In general, maximizing the FIM involves maximizing a matrix, which is difficult. Thus, it is
necessary to find a scalar function based on the FIM to serve as an objective function in the observer
trajectory optimization problem. Three common choices for scalar functions are the determinant
(D-optimality criterion), the trace (A-optimality criterion), and the maximum eigenvalue (E-optimality
criterion) of the FIM [14]. In this paper, the trace of the FIM, which is equal to the sum of its
eigenvalues, was chosen as the desired scalar function. The eigenvalues of the FIM are related to the
uncertainty hyper-ellipsoid of the target estimation, which depicts the distribution of the estimate
error. More specifically, the sizes of the semi-axes of this hyper-ellipsoid are given by the reciprocal
square of the eigenvalues. Therefore, maximizing the trace of the FIM leads to a smaller uncertainty
hyper-ellipsoid; a more accurate estimation.

Thus, from Equations (27) and (29), the observer trajectory quality metric is defined as:

Jk+l = tr

(
(Fk+l−1Ŷ−1

k+l−1|kFT
k+l−1 + Gk+l−1Qk+l−1GT

k+l−1)
−1

+
N

∑
i=1

βi,k+l · Ĥ
T
i,k+lR

−1
i,k+lĤi,k+l

)
(32)
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According to Equation (32), the observer-trajectory quality metric combines the sensing and
communication channels into a utility function. This quantity metric is used to optimize the trajectories
of the UAVs, so that the UAVs intelligently move to the locations that maximize both the information
gains and the successful transmission probabilities in communication links with the base station.

4. Motion Planning Algorithm Based on Co-Optimization of Communication and Sensing

If the exact position and velocity of the target are known, optimal observer trajectories can
be accurately designed. However, the target state is not known in advance, so the trajectory
generator must continually re-plan the trajectory based on the results of the target state estimation.
Hence, the multiple UAV cooperative target tracking problem is a real-time dynamic optimization
problem. We use the combined communication and sensing utility function to plan optimal trajectories
for the UAVs in the framework of receding horizon optimization.

4.1. Receding Horizon Optimizing Model for Multi-UAVs Cooperative Target Tracking

The receding horizon optimization model for multiple UAV cooperative target tracking at time k
is:

u∗[k + 1 : k + Tp] = arg max
u

{
TP

∑
l=1

(λk+l Jk+l)

}
= arg max

u

{
TP

∑
l=1

λk+l · tr
(

Ŷk+l|k)

}
(33)

subject to
xt(k + 1) = ft(xt(k), w(k)) (34)

xi(k + 1) = fu(xi(k), ui(k)) (35)

zi(k) = hi(k, xi(k), xt(k)) + υi(k) (36)√
(xi − xj)

2 + (yi − yj)
2 ≥ dsafe, i 6= j (37)

where u[k + 1: k + TP] = {u1[k + 1: k + TP], u2[k + 1: k + TP], . . . , uN[k + 1: k+TP]} denotes the vector of
control inputs to all the UAVs over the time horizon [k + 1: k + TP]. According to the UAV dynamic
model, which is described by Equation (1), the control input u is the desired horizontal flight path
angle (χc) of the aircraft. In this receding horizon optimization model, the purpose is to maximize the
weighted sum of the trace of Ŷk+l|k over the time horizon [k + 1: k + TP], and l = 1, 2, . . . , TP. The weight
factors are given by λ(k + l). Equations (34)–(36) denote the target dynamical model, the UAV dynamical
model, and the sensor model, respectively. Equation (37) ensures collision avoidance between the
UAVs, where dsafe is the safety distance for collision avoidance.

For maximizing the weighting sum of the trace of Ŷk+l|k over the time horizon [k + 1: k + TP],
an approximate solution is to maximize the trace of Ŷk+l|k at time (k + l). Thus, Equation (33) becomes

u∗(k + l) = arg max
u(k+l)

{Jk+l} = arg max
u(k+l)

{
tr
(

Ŷk+l|k)
}

(38)

Ŷk+l|k = (Fk+l−1Ŷ−1
k+l−1|kFT

k+l−1 + Gk+l−1Qk+l−1GT
k+l−1)

−1︸ ︷︷ ︸
Ŷ−k+l|k

+
N

∑
i=1

βi,k+l · Ĥ
T
i,k+lR

−1
i,k+lĤi,k+l︸ ︷︷ ︸

Îk+l|k

(39)

It can be seen from Equation (38) that we need to compute u*(k + l) = {ψ1
*(k + l), ψ2

*(k + l), . . . ,
ψN

*(k + l)}, which are the control inputs for all of the UAVs at time (k + l) in order to maximize the trace
of Ŷk+l|k at time (k + l). From Equation (39), the information matrix Ŷk+l|k is determined by a sum of

two terms Ŷ−k+l|k and Îk+l|k. The first term in Equation (39), Ŷ−k+l|k, represents the prediction of prior
information obtained by propagating the corresponding EIF one step ahead, which is independent
of the measurement results. The second term in Equation (39), Îk+l|k represents the information gain
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contained in the measurements of all the UAVs. Ŷ−k+l|k is not related to u*(k + l), so Ŷ−k+l|k can be ignored,
and the objective function Jk+l in Equation (38) can be reduced to:

J̃k+l = tr(
N
∑

i=1
βi,k+l · Ĥ

T
i,k+lR

−1
i,k+lĤi,k+l) =

N
∑

i=1

[
βi,k+l · tr(Ĥ

T
i,k+lR

−1
i,k+lĤi,k+l)

]
≤
(

N

∑
i=1

βi,k+l

)
︸ ︷︷ ︸

Jcommnication
k+l

·
(

N

∑
i=1

tr(ĤT
i,k+lR

−1
i,k+lĤi,k+l)

)
︸ ︷︷ ︸

Jsensing
k+l

(40)

In Equation (40), the objective function J̃k+l contains communication optimization item
Jcommnnication
k+l and sensing optimization item Jsensing

k+l . Therefore, the co-optimization of communication
and sensing is reflected in the tradeoffs between communication reliability and sensing utility, aims to
maximize the overall information gain delivered to the base station.

In the framework of distributed receding horizon optimization, as shown in Figure 3, at time
k, each UAV Ai receives the planned control inputs U−i(k) and the trajectories X−i(k) from the
other UAVs. Then Ai optimizes its control inputs Ui(k) and plans its own trajectory Xi(k) based
on the estimates of the target state and the future state predictions of the other UAVs. Ai also
can share the optimal control inputs Ui(k) and the planned trajectory Xi(k) with the other UAVs.
Thus, the distribution optimization is performed in a specific order [25]. For example, An plans its
trajectory based on the trajectories of the previous (n − 1) aircrafts (A1 ~An−1) and then sends its
trajectory to aircraft An+1.
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UAV Ai computes its own trajectory by solving the following local optimization problem:

u∗i [k + 1 : k + Tp] = arg max
ui

{
TP

∑
l=1

λk+l · tr
(

βi,k+l · Ĥ
T
i,k+lR

−1
i,k+lĤi,k+l

)}
(41)

with the constraints of Equations (34)–(36).

4.2. Communication Topology Optimization Based on a Minimum Weighted Spanning Tree

In this paper, the packet routing algorithm always chooses the route with the highest successful
transmission probability. To find such a route, we define the weight of each link as:

Wm,n = − ln(Pr
m,n) (42)
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where smaller weight, indicates a higher the probability of successful transmission. For UAV Ai,
the problem of finding the route with the highest successful transmission probability can be represented
via solving:

route∗i,k = arg max
routei,k

βi,k = arg min
routei,k

 ∑
(m,n)∈routei,k

Wm,n

 (43)

which can be solved by Dijkstra algorithm.
For the entire multiple UAV system, to ensure that all the UAVs and the base station relate to

the highest successful transmission probabilities, the concept of the minimum weighted spanning
tree (MST) [26] from graph theory is used to determine the topology of the communication network.
Figure 4 shows an example communication topology and its minimum weighted spanning tree.
The base station is the root node that directly or indirectly connects to all the other nodes (the UAVs).
The MST must connect all nodes with the condition that the sum of the weights is minimized.
Thus, the overall probability of a message “floating” in the MST network is maximized.
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At each time k, the MST can be constructed according to the positions of UAVs and the base station.
Based on such MST communication topology, Dijkstra algorithm is used to find the route with the highest
successful transmission probability between each UAV Ai and the base station. The MST communication
topology determines the planning hierarchy, which is the order of the optimization calculation in the
distributed frame. All UAVs are sorted in the ascending order of their total hops numbers of the optimal
transmission route to the base station. If the total hops are the same, they are arranged in ascending
order of their identity numbers. This sorted result is the planning hierarchy, in which each UAV plans
its trajectory based on the planned results of the aircrafts which are higher in the hierarchy and sent the
planned results to the aircrafts which are lower in the hierarchy. For example, in Figure 4, A1 acts a relay
for A2, thus the successful transmission probability between A2 and the base station can be represented as
β2,k+l = β2→1,k+l · β1,k+l. Where β1,k+l denotes the transmission probability between A1 and the base station,
and β2→1,k+l denotes the transmission probability between A2 and A1. It can be seen that A1 computes its
own trajectory by itself, while A2 computes the trajectory based on the planned results of A1.

4.3. Cooperative Target Tracking Algorithm Based on Co-Optimization of Communication and Sensing

The block diagram in Figure 5 summarizes the cooperative target tracking algorithm based on
the co-optimization of communication and sensing. At each time k, first, according the positions of
UAVs and the base station, the weighted minimum spanning tree strategy is used to optimize the
communication network topology. Based on the MST communication topology, the Dijkstra algorithm
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is used to find the route with the highest successful transmission probability between each UAV Ai
and the base station. Next, all the UAVs are sorted in the ascending order of the total number of hops
to the base station as described in the previous section. The UAVs successively perform the local
optimization calculation according to the sorted results. Next, each UAV Ai uses an EIF to obtain the
local estimation results x̂t,i,k|k of the target state. The local information terms ii,k and Ii,k, which are
generated based on the measurement zi,k of the target, are summed at the base station to produce
a global estimation. Ai then computes its own trajectory based on the planned results of Aj, which is
the relay of Ai in the current MST communication topology. In distributed fashion, each UAV Ai solves
the local optimization problem in Equation (42) to obtain the optimal control sequence u*

i, k during
a planning time horizon TP. Finally, the control input in the sequence is implemented, Ai changes its
flight state xi,k, and obtains a new measurement zi,k of the target restarting the cycle.
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Remark 2. Our algorithm uses the concept of the MST to optimize the communication network topology according to
the positions of the UAVs and the base station. The MST communication topology determines the planning hierarchy,
which determines the order of the optimization calculation in the distributed framework. In this way, our algorithm can
effectively adapt to a dynamic environment such as moving targets and the non-static spatial distribution of the UAVs.
Thus, in the dynamic scenario of tracking a moving target, our algorithm can produce a more efficient target state
estimate than the algorithm in Reference [18]. However, there is a limitation in our algorithm, which also exists in
Reference [18]; the scalability of the planning approach. As trajectory optimization is performed sequentially, each UAV
plans its own trajectory based on the planned results of other UAVs. For large networks, exchanging the planned
trajectories between the UAVs requires many communications. However, due to the bandwidth limitation of realistic
wireless communication links, it is hard to receive all the required information within one sampling time. In addition,
as the number of UAVs increases, solving the optimization problem in Equation (42) becomes difficult in real time.
In future work, we will design a planning algorithm with low computational complexity.

5. The Simulation Validation and Results Analysis

5.1. Comparative Simulations for Communication Optimization

In Scenario 1, a single moving target T is continuously tracked by two UAVs, A1 and A2.
The detailed initial settings of the UAVs are listed in Table 2. The ground speed of the UAVs is



Appl. Sci. 2018, 8, 899 14 of 31

vi = 50 m/s, and their maximum turning rate is ωmax = 30 deg/s. The target motion is modeled by
Equation (4), its initial position is (−800, 0) m, its initial movement direction is −20 deg, and its noise
is characterized by δx = δy = 0.1 m/s2. The standard deviations in the sensor model are δr = 2 m
and δθ = 0.05 rad. The position of the base station B is (−500, −800) m. The communication model is
shown in Figure 2 and the relevant parameters in Table 1. The simulating time of each simulation is
100 s, with a time step of Ts = 1 s. Finally, the planning time horizon is set at TP = 3 s and the safety
distance for collision avoidance is dsafe = 100 m.

Table 2. The initial settings of two UAVs in Scenario 1.

UAV Ai Position (xi, yi)/(m) Heading Angle Ψi/(◦)

A1 (−400, −700) 45
A2 (−800, 200) 0

To verify the effectiveness of cooperative target tracking algorithm based on co-optimization of
communication and sensing, the two groups of experiments are carried out.

• Group A: with communication optimization; and
• Group B: without communication optimization.

5.1.1. Group A: With Communication Optimization

Figures 6–8 show the trajectories at 30 s, 64 s, and 100 s, respectively. In these figures, the communication
links are denoted by cyan thin dashed lines. The numbers represent the successful transmission probabilities
of the links. The arrows denote the movement directions of the UAVs. It can be seen from Figure 6, that at
the beginning of the simulation (t = 30 s), A1 is closer to the base station and A2 is farther away from the
base station, thus A1 orbits near the base station to act as a relay for maintaining connectivity between A2

and the base station B. At this time, A2 is tracking target T, and sending its local estimation results back to
base station B through the relay A1. With the movement of the target, the distance between the target T and
the base station B gradually is reduced. Since A1 is orbiting near the base station, the distance between T
and A1 also gradually is decreased causing A1 to gradually move up and track the target T. When t = 64 s,
as shown in Figure 7, the topology of the communication network is changed and A2 acts as a relay for A1.
As the target moves away from the base station, for example at t = 100 s as shown in Figure 8, A2 moves
near the base station to continuously act as the relay for A1, and A1 orbits near the target T to track it.Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 31 
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their average transmission probabilities are 0.8627 and 0.7730, respectively. Thus, the 
communication performances of A1 and A2 are improved by our algorithm with considering the 
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Figure 9 shows that the successful transmission probabilities of A1 and A2. It can be seen that A1

acts as the relay for A2 during the time period [0, 64) s, and A2 acts as the relay for A1 during the time
period [64, 100] s. In addition, it can be seen that, when communication optimization is considered,
the average transmission probabilities of A1 and A2 to base station are 0.9076 and 0.8504, respectively.
However, if A1 and A2 communicate with the base station directly without any relay, their average
transmission probabilities are 0.8627 and 0.7730, respectively. Thus, the communication performances
of A1 and A2 are improved by our algorithm with considering the communication optimization.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 31 

0 10 20 30 40 50 60 64 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Time /s

T
ra

ns
m

is
si

on
 p

ro
ba

bi
lit

y

 

 

A1

A2

A1(no relay)

A2(no relay)

relay: A1 relay: A2

 
Figure 9. The probabilities of successful transmission of A1 and A2 to base station (Group A in  
Scenario 1). 

The track of the FIM of A1, A2 and base station is shown in Figure 10. Due to considering 
communication optimization, the probabilities of a successful transmission of A1 and A2 to the base 
station are almost larger than 0.7 in Group A. Thus, A1 and A2 can transmit their measurement 
packets back to the base station, which can significantly enhance the global estimate performance 
and then improve the effectiveness of multi-UAVs cooperative target tracking. 

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Time /s

T
he

 t
ra

ce
 o

f 
F

IM

 

 

Base Station
A1

A2

 
Figure 10. The track of FIM of A1, A2 and base station (Group A in Scenario 1). 

Figure 11 shows the distance between A1, A2. The distance is always larger than the safety 
distance (dsafe = 100 m), thus the safety of the UAVs is guaranteed. 

0 20 40 60 80 100 120

100

200

300

400

500

600

700

800

900

1000

Time /s

D
is

ta
nc

e 
be

tw
e

en
 U

A
V

s 
/m

 

 

Distance

Collision

 
Figure 11. The distance between the UAVs during the simulation process (Group A in Scenario 1). 

Figure 9. The probabilities of successful transmission of A1 and A2 to base station (Group A in Scenario 1).



Appl. Sci. 2018, 8, 899 16 of 31

The track of the FIM of A1, A2 and base station is shown in Figure 10. Due to considering
communication optimization, the probabilities of a successful transmission of A1 and A2 to the base
station are almost larger than 0.7 in Group A. Thus, A1 and A2 can transmit their measurement packets
back to the base station, which can significantly enhance the global estimate performance and then
improve the effectiveness of multi-UAVs cooperative target tracking.
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Figure 11 shows the distance between A1, A2. The distance is always larger than the safety
distance (dsafe = 100 m), thus the safety of the UAVs is guaranteed.
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5.1.2. Group B: Without Communication Optimization

Figures 12–14 show the trajectories at 30 s, 64 s and 100 s, respectively for UAVs without communication
optimization. The algorithm without communication optimization only focus on sensing optimization item
Jsensing
k+l , and thus guides both A1 and A2 toward the target to maximize the information gain. However, with A1

and A2 flying away from the base station, a significant amount of measurement packets is dropped by the
base station. This conclusion is confirmed in Figure 15. As shown in Figure 15, in Group B, the average
transmission probabilities of A1 and A2 are only 0.6717 and 0.6276, respectively. It means that, in Group B,
there are more packets from A1 and A2 are dropped (not received) by the base station than in Group A.
The measurements contained in the dropped packets will not be incorporated into the global estimate result of
the target state. As shown in Figure 16, the track of the FIM at the base station shows zero growth and a small
downtrend over a long time (20 s~100 s). Figure 17 shows the distance between A1, A2. The distance is always
larger than the safety distance (dsafe = 100 m), and thus the safety of the UAVs is guaranteed.
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5.1.3. Monte-Carlo Simulations for Scenario 1 

Due to the acceleration noise in the target model and the measurement noise in the sensor 
model, the results of a single simulation are not sufficient to illustrate that the proposed method is 
effective. Hence, we run ten times Monte-Carlo simulations for Scenario 1 to further analyze the 
performance of the target state estimation in two cases. The statistical results—such as the average 
errors of the target state estimation (position, speed, movement direction)—the average 
transmission probabilities, the average trace of the FIM, are shown in Table 3. 
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5.1.3. Monte-Carlo Simulations for Scenario 1

Due to the acceleration noise in the target model and the measurement noise in the sensor model,
the results of a single simulation are not sufficient to illustrate that the proposed method is effective.
Hence, we run ten times Monte-Carlo simulations for Scenario 1 to further analyze the performance
of the target state estimation in two cases. The statistical results—such as the average errors of the
target state estimation (position, speed, movement direction)—the average transmission probabilities,
the average trace of the FIM, are shown in Table 3.

Table 3. Comparison of the average estimate errors, the average transmission probabilities, and the
average trace of the FIM in Scenario 1 (Group A vs. Group B).

Item Group Base Station A1 A2

Average estimation error for position (m) A 1.2778 3.4806 1.9570
B 1.6287 2.4619 1.9565

Average estimation error for speed (m/s) A 0.2100 0.3110 0.2714
B 0.2451 0.2931 0.2493

Average estimation error for direction (◦) A 1.2098 1.5951 1.3775
B 1.2133 1.5253 1.3121

Average transmission probability A - 0.8858 0.8056
B - 0.7359 0.6203

Average trace of the FIM A 72.4468 50.5545 55.9077
B 46.2311 52.0081 60.4408
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• For the base station, the average errors in the estimation of the target state (position, speed,
movement direction) in Group A are less than in Group B, and the average trace of the FIM
in Group A is larger than in Group B. Thus, when communication optimization is considered,
the global estimate results for the target state are more accurate and more effective. This is because
our algorithm maximizes the information gain while considering communication reliability.
The remote UAVs can successfully transmit their measurement packets back to the base station
with other UAVs acting as communication relays. These measurements are used to improve the
accuracy and effectiveness of the global estimate results.

• For A1 and A2, their target state estimate results in Group B are better than in Group A in terms of
the average errors and the average trace of the FIM. The reason is that, in Group B, the algorithm
only focuses on sensing optimization, and guides both A1 and A2 toward the target to maximize
the information gain. However, A1 and A2 are outside the range for direct communication to the
base station, and then the measurements obtained from A1 and A2 do not contribute to the global
estimate results of the target state.

• In Group A, A2 has lower average estimate errors and larger the average trace of the FIM than A1.
It implies that A2 has better sensing performance than A1. This is because A1 acts as a relay for A2

in a long time. To establish a multi-hops chain to get the measurement packets from A2 back to the
base station, A1 orbits near the base station, and hence cannot get better sensing information from
the target. These results illustrate how the proposed algorithm implements tradeoffs between
communication performance and sensing utility.

5.2. The Effect of Different Communication Topology Optimization Strategies

As mentioned above, the planning hierarchy of the UAVs is determined by the communication
topology structure. In the proposed approach, the communication topology structure is optimized by
the weighted minimum spanning tree strategy. However, in Reference [18], the planning hierarchy of
the UAVs is determined according to the identity numbers of the UAVs. Since the identity numbers of
the UAVs are pre-defined, the planning hierarchy is fixed. A Fixed planning hierarchy results in a fixed
communication topology structure. More specifically, the UAVs automatically establish a fixed multi-hop
chain, where the UAV Ai acts as relay for the UAV Ai+1. To analyze the effect of different communication
topology optimization strategies on the performance of cooperative target tracking, the proposed method is
compared with the method of Reference [18] by setting up the following two group experiments.

• Group A: the minimum spanning tree topology (the proposed method);
• Group B: fixed communication topology structure (the method of Reference [18])

In Scenario 2, two UAVs A1 and A2 locate a single static target T. The detailed initial settings of
the UAVs are listed in Table 4. The position of the static target is (−800, 0) m, and the position of the
base station B is (−500, −800) m. The other simulation conditions are identical to Scenario 1.

Table 4. The initial settings of the two UAVs in Scenario 2.

UAV Ai Position (xi, yi)/(m) Heading Angle Ψi/(◦)

A1 (−800, 200) 45
A2 (−400, −700) 180

5.2.1. Group A: The Minimum Spanning Tree Topology

Figures 18 and 19 show the trajectories at 10 s and 100 s, respectively. The transmission
probabilities of A1 and A2 to base station are shown in Figure 20. The trace of the FIM for A1,
A2 and base station are shown in Figure 21. We can conclude that, due to A2 being closer to the base
station than A1, the communication topology structure based on the weighted minimum spanning
tree is {A1 → A2 → B}. With A2 acting as the relay of A1, A2 should to make a tradeoff between
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communication and sensing. Therefore, A2 finds the optimal location O2 = (−520.4, −557.6) m,
where the information gain and the probability of a successful transmission with the base station are
both optimal. Due to the dynamic constraints, A2 continue to orbit around the optimal position O2.
At the same time, A1 continue to orbit around the target T.
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5.2.2. Group B: Fixed Communication Topology Structure

Figures 22–24 show the trajectories at 10 s, 20 s and 100 s, respectively. In Group B, identical to
Reference [18], the fixed communication topology structure is {A2 → A1 → B}. However, A1 is initially
closer to the target and A2 is initially closer to the base station, so this fixed communication topology is
not optimal obviously. To form and maintain this fixed topology, A1 moves toward the base station
while A2 moves toward the target, as shown in Figure 22.
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The pre-set fixed topology is unreasonable, which causes A1 and A2 to perform unnecessary
maneuvers. It can be seen from Figure 25 that, the transmission probabilities of A1 and A2 to base
station are low, which reduce the global estimate performance. This can be confirmed in Figure 26.
During the period of [0, 20] s, the trace of FIM in the base station is less than A1 and A2. This is because
the ground station failed to receive the measurement packets from A1 and A2.
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5.2.3. Monte-Carlo Simulations for Scenario 2

Again, we ran ten Monte Carlo simulations for Scenario 2. The statistical results are shown in Table 5.

Table 5. Comparison of the average estimate errors, the average transmission probabilities, and the
average trace of the FIM in Scenario 2 (Group A vs. Group B).

Item Group Base Station A1 A2

Average estimation error for position (m) A 0.4266 0.7203 1.1680
B 0.5081 0.9029 0.7240

Average transmission probability A - 0.7463 0.9818
B - 0.9209 0.6051

Average trace of the FIM A 27.4777 14.6744 13.0033
B 15.5617 13.1899 14.2413

It can be seen from Table 5 that, compared with the fixed communication topology strategy,
the global estimate results are more accurate and more effective by using the topology optimization
strategy. The simulation results verify the rationality and validity of the topology optimization strategy
based on the minimum spanning tree.

5.3. Performance of the Algorithm in a Complex Scenario

The following experiments are presented to verify the performance of the algorithm in more
complex scenarios.

5.3.1. Three UAVs Tracking One Moving Target

In Scenario 3, a moving target T is continuously tracked by three UAVs A1, A2 and A3. The detailed
initial settings of the UAVs are listed in Table 6. The initial position of target is (−800, 600) m.
The position of the base station B is (−500, −1000) m. The safety distance for collision avoidance is
dsafe = 250 m. The other simulation conditions are same with Scenario 1.

Table 6. The initial settings of three UAVs in Scenario 3.

UAV Ai Position (xi, yi)/(m) Heading Angle Ψi/(◦)

A1 (−400, −900) 10
A2 (−800, 300) 0
A3 (−800, 0) 0

The snapshots, Figures 27–29, show the trajectories and communication topology of the UAVs
at 10 s, 50 s and 100 s, respectively. In the tracking process, the MST communication topology is
{A2 →A3 → A1 → B}. With A3 and A1 acting as the relays, A2 gets close to the target to get better
measurements and then circles it around. A1 automatically sets itself up as a relay for A3, so it is close
enough to the base station. A3 takes advantage of the position of A1 to fly closer to A2 and acts as the
relay for A2. Although A2 is too far from the base station, it still can send its measurements back to the
base station successfully.

The communication performances of A1, A2 and A3 are shown in Figure 30. The average transmission
probability of A2 can be improved to about 0.5. By contrast, if A2 communicates with the base station
directly without any relay, its average transmission probability is lower than 0.1. Thus, the communication
performance of A2 is vastly improved with A3 and A1 acting as the relays.
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Figure 27. Trajectories of UAVs and target at t = 10 s (Group A in Scenario 3). 

-1500 -1000 -500 0 500
-1000

-800

-600

-400

-200

0

200

400

600

x/m

y/
m

T

0.62

A2

A3

A1

B

0.71

0.85

 
Figure 28. Trajectories of UAVs and target at t = 50 s (Group A in Scenario 3). 
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The trace of the FIM is shown in Figure 31. To establish a reliable multi-hops chain between A2

and the base station, A3 and A1 get close to the base station act as relays for A2. Hence, A3 and A1 have
no information gathering, and their trace of FIM have no change in the long time.
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In Scenario 3, the average estimate errors, the average transmission probabilities, the average
trace of the FIM are shown in Table 7.

Table 7. The average estimate errors, the average transmission probability, and the average trace of the
FIM in Scenario 3.

Item Base Station A1 A2 A3

Average estimation error for position (m) 1.2454 6.2889 1.7638 4.0183
Average estimation error for speed (m/s) 0.2338 0.4282 0.2457 0.3552
Average estimation error for direction (◦) 1.1365 1.1575 1.7017 1.4710

Average transmission probability - 0.8485 0.4653 0.6953
Average trace of the FIM 72.4623 41.2674 57.2770 43.1731

It can be seen from Table 7 that, our algorithm integrates the communication and sensing
objectives, so that the UAVs intelligently move to the locations that maximize both the information
gained and the successful transmission probabilities in communication links with the base station.
Thus, the base station can obtain a good estimate result of the target state.
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5.3.2. Three UAVs Localizing One Static Target

In Scenario 4, a single moving target T is localized by three UAVs A1, A2 and A3. The detailed initial
settings of the UAVs are listed in Table 8. The position of the static target is (−300, 600) m, and the position
of the base station B is (0,−200) m. The safety distance for collision avoidance dsafe = 100 m.

Table 8. The initial settings of three UAVs in Scenario 4.

UAV Ai Position (xi, yi)/(m) Heading Angle Ψi/(◦)

A1 (100, −100) 180
A2 (−100, 400) 180
A3 (−300, 800) 45

The snapshots, Figures 33 and 34 show the trajectories and communication topology of the whole
UAVs at 10 s and 100 s, respectively. From these snapshots, we can see that, the UAVs automatically
establish a multi-hops chain {A3 → A2 → A1 → B}. Due to A1 being close enough to the base station,
A1 continue to orbit around the optimal position O1 = (−21.8, 44.3) m to re-transmit the measurement
packets back to the base station. A2 takes advantage of the position of A1 to acts as the relay for A3.
The optimal position of A2 is O2 = (−96.1, 306.8) m. A3 gets close to the target from its starting position
and keeps orbiting around the target T for better observation.
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Figure 33. Trajectories of UAVs at t = 10 s (Scenario 4). 
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The communication performances of A1, A2 and A3 are shown in Figure 35. The average
transmission probability of A3 is 0.8894. In contrast, if A3 directly communicates with the base
station without any relay, its average transmission probability is only 0.5215. The communication
performance of A3 is vastly improved with A1 and A2 acting as the relays.
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The trace of the FIM of A1, A2 A3 and base station is shown in Figure 36 during the whole
simulation process. A2 gets close to the target to get better measurements and send its measurements
back to the base station by the multi-hops chain {A3 → A2 → A1 → B}. Hence, the base station has
good estimation performance.
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In Scenario 4, the average estimate error of the target position, the average transmission
probabilities, the average trace of the FIM are shown in Table 9.

Table 9. The average estimate errors, the average transmission probability, and the average trace of the
FIM in Scenario 4.

Item Base Station A1 A2 A3

Average estimation error for position (m) 0.4535 1.2332 0.8105 0.4610
Average transmission probability - 0.9818 0.9460 0.8894

Average trace of the FIM 40.7112 13.0033 13.1245 14.9834

It can be seen from Table 9 that, our algorithm can make UAVs more focus on maintaining
good communication with base station or other UAVs in the mission process, so as to improve the
performance of the target position estimation.
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5.4. Effect of Varying Number of UAVs on Estimation Performance

In Scenario 5, we test the performance of the global estimation of the target state on the number of
deployed UAVs. Using Monte Carlo simulations, we tested cases where the number of UAVs ranged from
N = 2–10. For each case 100 independent experiments were performed. For each experiment, the initial
positions and the initial heading angles of the UAVs, and the initial positions of targets are randomly
generated in a 2 km× 2 km bound region. The ground speed of the UAVs is vi = 50 m/s, the maximum
turning rate of the UAVs is ωmax = 30 deg/s. For the target, its initial position is (−1000, 1000) m, and its
initial movement direction is−20 deg. The position of the base station B is (0,−1000) m. The safety distance
for collision avoidance is dsafe = 200 m. The other simulation conditions are the same as Scenario 1.

The average estimate errors of target position, speed and direction are shown in Figures 37–39,
respectively. The average trace of FIM is shown in Figure 40. From Figures 37–39, we can summarize
that, the larger number of UAVs, the smaller average estimation errors. It implies the global estimation
results are more accurate with increasing the number of the UAVs. From Figure 40, we can conclude
that, the larger number of UAVs, the higher average trace of FIM. It implies the global estimate results
are more effective with increasing the number of the UAVs. Therefore, the performance of the global
estimate of target state will be improved as the number of the UAVs increases. This is for two reasons.
On one hand, more UAVs implies more information obtained at each time step, which is beneficial
for improving the global estimation performance. On the other hand, with increasing the number of
UAVs, the operational range of the UAV swarm can be extended, due to more UAVs being used as
relays to provide measurement packets to the remote station. In this case, several UAVs can get close
to the target for better observations while their measurement packets can be sent back to base station
successfully. It is also beneficial for improving the global estimation performance.
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Figure 38. The average estimation error of target speed for different numbers of UAVs (Scenario 5). 
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6. Conclusions

The problem of multiple UAVs cooperative tracking of a ground moving target is studied.
The main contribution of this paper is to develop a motion planning algorithm in which communication
and sensing are both optimized. This novel motion planning approach properly integrates the
communication and sensing objectives to accomplish the target tracking mission of the multiple
UAVs, while maintaining proper connectivity to the remote base station.

The performance of target fusion and estimation not only depend on overall information contained in
given data sets of measurement of the UAVs, but also depend on whether the UAVs could successfully send
their measurement packets back to the base station or not. According to this idea, the co-optimization of
communication and sensing scheme is designed.

On one hand, a packet-erasure channel model is applied to model the communication links.
In this channel model, the successful transmission probability is a function of the SNR, which is
regarded as the communication reliability. On the other hand, the FIM is used to quantify the
information gained by observation from the UAVs in target tracking process, which is regarded as
the sensing utility. The communication reliability and the sensing utility are combined into a single
utility function, which is used to plan trajectories over a finite time horizon for the UAVs. To maximize
the overall information gain delivered to the base station, each UAV must make a tradeoff between
maximizing the information gain through sensing and improving the probability of a successful
transmission with the base station. The results of comparison simulations show that the proposal
approach could improve fusion and estimation performance compared to method that does not
consider communication optimization.
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To produce efficient results in the moving target tracking scenario, the topology optimization
strategy based on the minimum spanning tree (MST) is designed. The MST communication topology
determines the planning hierarchy, which is the order of the optimization calculation in the distributed
frame. Compared to the fix communication topology strategy, the results of simulations verify the
rationality and validity of the topology optimization strategy.
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