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Abstract: This paper investigates the effect of selected strategies of distributed energy resources
(DER) on an energy cost function that optimizes the distribution of distributed energy resources
for a mid-rise apartment building. This is achieved through comparing parameter optimization
results for both a high-level and low-level optimizer, respectively. The optimization process is carried
out using the following approach: (1) a two-objective function is constructed with one objective
function similar to that of the high-level optimizer (DER-CAM); (2) an evolutionary algorithm (EA)
with modified selection capability is used to optimize the two-objective function problem in (1)
for four selected cases of DER utilization that were previously optimized in DER-CAM; and (3)
the optimization results of the low-level optimizer are compared with the outcome of DER-CAM
optimization for the four selected cases. This is done to establish the capability of DER-CAM as
an effective tool for optimal distributed energy resource allocation. Results obtained reveal the
effect of load shifting and solar photovoltaic (PV) panels with power exporting capability on the
optimization of the cost function. The Pareto-based MOEA approach has also proved to be effective
in observing the interactions between objective function parameters. Mean inverted generational
distance (MIGD) values obtained over 10 runs for each of the four cases that were considered show
that a DER combination of PV panel, battery storage, heat pump, and load shifting outperforms the
other strategies in 70% of the total simulation runs.

Keywords: evolutionary algorithm; pareto front; distributed energy resource

1. Introduction

‘Distributed energy resources’ (DER) is the collective term that is given to alternative sources of
electricity that operate separately from the conventional power grid, but can be incorporated into the
existing grid. An optimized combination of these sources results in strategies that make energy usage
more efficient, accessible, and environmentally sustainable [1]. When these energy sources operate
apart from the grid, they are said to be in ‘islanding’ mode (commonly called distributed generation);
when they are connected to the grid, they are in grid mode. There are generally two categories of DER:
namely, discrete and continuous DER. Discrete forms of DER are those sources that can be switched on
and off instantaneously, such as diesel and petrol generators, microturbines, reciprocating engines,
and fuel cells [2]. The second category consists of energy sources that are renewed on a frequent basis
(for, instance daily) such as wind turbines, solar photovoltaic (PV) panels, and stationary battery banks.
The present increase of small-scale urban PV in buildings [3] and urban wind generators [4] can help
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home electricity consumers also become producers using the smart grid (SG) concept [5–7] and the
microgrids approach [8,9].

Over the years, efficient energy dispatch management has become an important priority for
distribution network operators. This is because they seek to minimize distribution system losses and
the cost of maintenance of energy distribution equipment, while maximizing profits and customer
satisfaction. This has been made possible through the evolution in distribution network architecture by
the application of advances made in computer science and engineering, and also supervisory control
and data acquisition (SCADA) systems [2]. These advancements have led to the development of the
concept of smart power grids that are capable of adjusting the relevant power supply parameters based
on changing demand patterns. A review of the key concepts of smart grids can be found in Cuadra et al.,
Colak et al. and Tuballa & Abundo [5–7]. Specifically, Cuadra et al. [5] explore the optimization of
distribution smart grids with distributed renewable generation using a novel approach based on
complex network concepts [10] with evolutionary algorithms. The use of evolutionary algorithms and
other computational intelligence techniques in energy can be found in Ardabili et al., Cuadra et al.
and Jiang et al. [11–13]. Also, with the recent passage of laws in countries such as Spain, Germany,
and the United Kingdom banning restrictions on private energy sourcing [14,15], the demand is rising
for specialized software to meet consumers’ energy needs. Since the distribution side of a power supply
system represents the downstream sector of the system, which links the generation sector with the final
consumer, efficient and reliable power supply can only be guaranteed when the distribution system
is optimally modeled. Also, the development of alternative energy sources has transformed energy
consumers to ‘prosumers’, which means that they can now play a more active role in the utilization of
electricity. Therefore, having a distribution network that is able to accommodate these changes would
result in enormous benefits for both the supply and demand side of the energy distribution network.

Optimization is the process of achieving a set objective with the least possible resources. This is
important when it is difficult to determine which combination of variables yields the most viable
outcome by simple observation. In such cases, it would be impossible to make a decision based
on simply observing the given data, because the data points are likely to be as diverse as they
are similar, based on the given objective and predefined parameters. The optimization process
involves the development of a mathematical model of the problem, which represents the problem’s
variables, constraints, and features [16]. This mathematical model of the problem being optimized
is commonly referred to as the objective function (OF). When a suitable OF has been obtained,
the next step involves selecting a suitable optimization algorithm to find the best possible extreme
trade-off among the variables (and, in the case of multiple objectives, among the objectives) that best
solves the problem. Popular search strategies include stochastic, deterministic, and evolutionary
algorithms [16]. The fundamental concepts of evolutionary algorithms (EAs) are inspired by two
biological phenomena [12,17]: (1) the characteristics of living beings are encoded (represented) using
genetic information; and (2) evolution is the result of the interaction between the random creation of
new genetic information and the selection of those individuals that are best adapted to the ecosystem [5].
In an EA, candidate solutions (‘individuals’) for the OF are encoded in a way that simplifies the search
for the optimal solution. A set of individuals (‘population’) is evolved by applying operators (mutation,
crossover, selection) in each iteration (‘generation’). When fulfilling a stop criterion, the EA ends in
providing the solution that optimizes the OF (the individual that is best adapted to the ecosystem, in the
biological analogy). More details of EAs applied to DER can be found in Cuadra et al. [5]. With respect
to evolutionary algorithms, they are classified as single-objective, multi-objective, or many-objective.
The advantage of multi-objective evolutionary algorithms is that they find a set of non-dominated
solutions rather than a single optimal solution.

The process of optimizing a combination of alternative energy sources with respect to cost
minimization and efficient energy supply from the demand side involves developing an OF
representing the various sources in the DER mix, subject to specified constraints. The result of the
optimization process is a combination of DER technologies that could benefit the consumer from
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both a cost and demand perspective. This ensures that both sides of the distribution network benefit
mutually. A typical optimization process is shown in Figure 1. The process of parameter selection and
optimization has been investigated by Eiben & Smith and Gershman in [18–20]. Reinforcement learning
has been applied to the training and validation of network parameters for wireless communications
systems. This paper adopts a similar approach, and involves the optimization of a cost function
for selected combinations of DER technologies in a mid-rise apartment building. Using a low-level
Pareto-based evolutionary algorithm, the optimal mix of energy sources is obtained for four scenarios:
a base case with no DER, and three other cases involving varied combinations of PV solar panel, battery
storage, air source heat pump, and load shifting. The rest of the paper is organized as follows: Section 2
discusses the impact of optimization in the determination of DER dispatch strategies. Section 3
discusses the DER-CAM and Pareto-based cost functions for the four selected cases of DER strategies,
as well as the parameter specification for the two-objective cost function. Section 4 discusses the
outcome of the optimization using the multi-objective evolutionary algorithm, and compares the
results with DER-CAM optimization. Section 5 concludes the paper.
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2. The Role of Optimization in Demand Side Management (DSM) of DER

Smart power grids are the result of a system of technologies, which are able to anticipate the
needs of consumers based on an accurate prediction of their energy usage profiles over a specified
period of time. With regard to buildings and microgrids, the optimization of parameters related to
energy demand, energy pricing for time-of-use (ToU) patterns, and weather information (with regard
to renewable sources) can allow consumers to minimize both the amount paid for electricity and the
effect of distributed generation on the environment. Therefore, there is the need for reliable algorithms
that are capable of ensuring that these smart grids balance usability with cost-effectiveness.

A lot of research has focused on the application of optimization techniques to the distributed
generation of electricity. However, not much work has analyzed the results of these optimizers in order
to determine whether or not they are likely to translate to cost-effective physical implementations.
This real-life scenario implementation problem has been highlighted by Steen et al. and Hassan et al.
in [1,15]. The following are some approaches that have been adopted to issues relating to load
scheduling, optimal DER combination and scheduling, and capacity expansion.

The effect of capacity expansion strategies on long-term economic performance for a rural mini-grid
operator was investigated by Hartvigsson et al. in [21]. The research proposed a linear bottom–up model,
and used DER-CAM to implement the capacity investment model. The results of the research revealed that
a cost-optimized model alone is likely not the best long-term investment solution., another optimal DER
combination for rural areas in Nigeria was considered by Olatomiwa et al. [22]. The Hybrid Optimization
Model for Electric Renewables (HOMER) was used to analyze various combinations of renewable
energy sources for six randomly selected rural communities across the country. It was found that for
a sensitivity of $1.1 and $1.3/l of diesel, the PV/diesel/battery combination was the most cost-effective
solution. This model was the most effective in terms of fuel consumption and CO2 reduction.

A trade-off between grid expansion and standalone electricity generation from renewable
sources was considered by Sen & Bhattacharyya [23]. An off-grid, remote village in the state of
Chhattisgarh in India was used as a case study, and the electricity demand profile included domestic
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consumption, as well as industrial, commercial, and agricultural purposes. The research outcome
proposed a least-cost combination of small hydropower, solar PV, biodiesel, and batteries. However,
it has concluded that the reliability of the proposed system was likely to reduce in the winter season,
with less availability of hydropower. A mixed integer linear programming (MILP) model was adopted
by Mesaric & Krajcar in [24] for DSM with renewable sources, including an optimally scheduled
injection from electric vehicles (while they were parked). The aim of this work was to reduce
reliance on the main electricity grid by scheduling consumer demand. The DSM schedule included
time-shiftable and power-shiftable appliances, and also the contribution of EVs in V2G mode while
parked. Compared with a base case with no EV injection and no home DSM, the proposed model
provided the best energy and cost-savings model for the consumer.

A scheduling algorithm based on the optimal stopping rule (OSR) technique was proposed by
Rasheed et al. in [25]. OSR uses a sequence of reward functions to select an optimal time slot in the
search process, which either minimizes total cost or maximizes expected return. This approach was
used to efficiently manage limited grid supply using a modified first-come first-serve (MFCFS) and
priority enable early deadline first (PEEDF) algorithms for the load scheduling process. Also, a demand
response algorithm was proposed by Gazijahani et al. [26] using a cost minimization function consisting
of maintenance and power loss costs, as well as the cost of energy not supplied. The ant colony
optimization approach was used to realize the point estimate method (PEM). The proposed approach
was applied to a 69-bus distribution system consisting of four wind turbines, three PV panels, and three
battery storage systems. The simulations resulted in a flattened load profile based on optimal load
shifting from high price periods to other cost-saving periods.

Much of the above-mentioned research for optimal DER mixing and scheduling (especially those
based on specialized platforms such as HOMER and DER-CAM) typically adopt a ‘blackbox’ approach
to the simulation/optimization of energy usage data, and they adopt more of an optimization approach
than a simulated one. Furthermore, since the proposed results are based on simulation, there is the
need for a means of verifying that the optimized output of these platforms is indeed the best possible,
cost-effective outcome for real-life implementation.

3. Modeling of the Cost Function: A DER-CAM Case Study

Several tools and methods of optimizing various aspects of a smart grid have been used in the
literature, as discussed in the previous section of this paper. However, DER-CAM has gained attention
in recent years due to the following reasons:

• Its input and output can be easily interfaced with common software platforms such as MATLAB
and Vensim.

• Due to its optimization-based mathematical model, it can be reliably applied to situations
involving a large number of decision variables to make accurate DER investment and
dispatch decisions.

• Its customer-based model makes it suitable for DSM and time-of-use (ToU)-based DER scheduling.

This paper is based on the idea of ‘optimizing the optimizer’, in which the performance of
DER-CAM as an optimization model is analyzed using a Pareto-based evolutionary algorithm.
The main contributions of this paper are:

• To analyze the performance of DER-CAM using a Pareto-based evolutionary algorithm with
differential evolution (DE)-based candidate selection strategy.

• To test the capability of the Pareto-based optimization approach to provide a cost-effective balance
among selected parameters of the DER strategies being considered

Performance metrics of mean inverted generational distance (MIGD), Pareto solution spread,
and Pareto set variation (PSV) will be used to compare the performance of the selected DER cases
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optimized by Hassan et al. using DER-CAM in [27]. The flowchart representing the proposed
optimization approach is shown in Figure 2.
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(a) DER-CAM Cost Function

DER-CAM is an optimization platform that provides information regarding the viability of various
DER configurations from both an economic and environmental perspective. The latter is achieved by
providing information on the DER mix that yields the least CO2 emissions, while the former is done by
obtaining the most cost-effective mix of generation and storage installations [28]. Therefore, DER-CAM
is useful for both investment and planning decisions. DER-CAM does not perform simulations or
power flow analyses, and can be utilized for both buildings and microgrids. The data being used
in this paper is for a mid-rise building, and data points have been adapted from Hassan et al. [27].
This is because DER-CAM is a physically-based optimization model [28]. The microgrid to which the
apartment is connected is shown in Figure 3, and the information about microgrid cable impedances
and transformer specifications can be obtained from Hassan et al. [27].

The cost function for DER-CAM is formulated as a mixed integer linear programming (MILP)
problem in which objective functions and constraints are linear, while decision variables can be either
integers or continuous [28]. The objective cost function to be minimized consists of:

• Retail electricity charges (by the distribution network operator on a monthly basis)
• Energy charges per unit load/hour/day/month (for peak, week, and weekend days)
• Maximum power charges (for peak days)/hour/day/month
• Total generation cost/DER/hour/day/month (for each DER utilized)
• Total depreciation cost for each DER (over a 20-year period)
• Excluding the total energy exported to the grid by each DER.
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(b) Proposed two-objective Pareto-based Optimization

The Pareto-based dynamic evolutionary algorithm attempts to optimize the Pareto front for two
objective functions f1(x, t) and f2(x, t). The first objective is similar to the cost function for DER-CAM,
while the second is an energy consumption minimization function with regard to the DER utilized
with a resulting decrease in CO2 emissions. The mathematical forms of the objective functions are
given in Equations (2) and (3).

f1(x, t) = minαc(t) (1)

αc(t) = ∑m
1 re+ ∑m

1 ∑t
1 ∑n

1 µl ·re + ∑
p
1 ∑m

1 re,p·µl,p + ∑s
1 ∑m

1 ∑t
1 Pgen,der

·cgen,kwh + ∑s
1 Pmax,der·Cc,der·Fa −∑s

1 ∑m
1 ∑t

1 Pgen,der·rexp,der
(2)

where:

re = electricity rate (peak, week, weekend)
s = no.of DER technologies
Pgen,der = power generated by DER

cgen,kwh = cos t of generation/KWh

Pmax,der = max.power gen.by DER over 20 year period
Cc,der = cap. cos t of DER over 20 year period (maintenance, etc.)
Fa = annuity factor
rexp,der = electricity export rate/DER/day/month

m = number of months
t = 1 hr (interval between data points)
n = denotes peak, week or weekend day
µl = normalization factor
µl,p = normalization factor for electricity rates on peak days

p = denotes rates that relate to peak days

f2(x, t) = ∑d
1 ∑t

1

(
eb + epv + ehp

)
+ ∑d

1 ∑t
1 ∑n

1 ηs (3)

where:
eb = battery energy coefficient, epv = solar PV panel energy coefficient, ehp = air source heat pump

energy coefficient, ηs = model for load shifting strategy, d = day (week, weekend, peak), n = number of
shiftable loads (it is assumed that all d, n = 3).

The parameters in Equation (3) are defined as follows:

eb = S(t− 1) +


ec·t·µb
−ed·(t/µb)

0
(4)

where:
S = state-of-charge of battery, t = charging time, µb = battery efficiency, ec = charging power, and ed

= discharging power.
epv = kβa −

(
0.01βop

)
(5)

where:
k = Boltzmann constant, βa = adjusted power of the photovoltaic (PV) module due to temperature

changes across the module, βop = output power of the PV module under standard operating conditions.

ehp =
αhe
Pc

(6)

where:
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αhe = power generated through heat exchange process, Pc = thermal power of compressor

ηs =

{
γ1δt(d− 1) + γ2δt[d− 2] + γ7δt[d− 7]
γ1ρt[d− 1] + γ2ρt[d− 2] + γ7ρt[d− 7]

(7)

where:
γ1, γ2, γ7 = shifting constants, d = day of the week, δt, ρt = shifting parameters
Constraints for f 1(x,t) include:

θ1,h = θk,24 (battery constraint) (8)

fc ≤ genmax,der·ccap,der·Fa + c f ix (DER investment constraint) (9)

Pgen,pv + Pmax,pv ≤ Pcap,pv·µpv·Ipv (PV module generation capacity constraint) (10)

Pgen,der + Pmax,der ≤ cinv,der·Pmaxgen,der (DER maximum power gen. constraint) (11)

Pgen,der + Pmax,der ≤ cinv,der·Pmaxgen,der·top,der (ToU constraint) (12)

lmax,der = Pgen,der + Psup,der·COPder (heat-pump operating constraint) (13)

Constraints for f 2(x,t) include:

Smin ≤ Sop,h,24 ≤ Smax (battery constraint) (14)

ed,h,24 ≤ Pconv (battery constraint) (15)

ec,h,24 ≤ Pconv (battery constraint) (16)

Vpv = Vocc + Vm,T (PV module operating constraint) (17)

Pmax,PV = Ppv,t + Ppv,T (PV module operating constraint) (18)

Ppump,t = ϑcomp,t·Tcomp,t·Pre f (heat pump constraint) (19)

Hpump,t = cheat,t·Tdi f f (heat pump constraint) (20)

f 1 represents the constructed cost function based on distributed energy resources (similar to that
used in DER-CAM optimization model). f 2 specifies the variables for the considered energy sources
(PV, battery, and air source heat pump). The two-objective optimization space has been used in order
to validate the optimization capability of DER-CAM. Three test cases are considered that have been
selected from the DER-CAM optimization by Hassan et al. in [27] for the following cases:

Case 1: Investment is made in solar PV panels with the capability to export excess energy,
and a battery, air source heat pump, and load shifting are also utilized.

Case 2: Investment is made in solar PV panels for self-consumption only, and a battery and an air
source heat pump, with load shifting, are also utilized.

Case 3: Investment is made in solar PV panels with the capability to export excess energy,
and a battery and air source heat pump are utilized.

Case 4: This is the base case without the DER strategy, and all of the supply and demand are met
by distribution utility.

The three test cases (Case 1–Case 3) have been considered in this paper because they are the
optimal cases selected by DER-CAM based on the analysis by Hassan et al. in [27]. Parameter variation
for the above investment scenarios are compared with the base case in which no investment is
made in DER, with all of the supply and demand being made by the energy distribution utility.
For the above-mentioned cases, the effect of the utilization of PV panels on the Pareto set for both
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self-consumption and energy export will also be considered. The Pareto-based genetic algorithm
used to optimize the dynamic bi-objective problem specified in Equations (1) and (2) is detailed in
Algorithm 1. All of the simulations are done using PlatEMO open source MATLAB-based platform [29].

Algorithm 1. Steps in optimizing f 1(x,t) and f 2(x,t)

Input: OF parameters, optimization parameters
Output: Pareto optimal set, MIGD
Start
Specify f2(x,t) based on case (n)
Activate input matrices for f2(x,t)
Perform genetic mutation, crossover, and selection based on specified crossover rate. Adjust mutation and crossover rate
for optimal Pareto front (PF)
Use DE/rand-to-best/for final selection of Pareto set (PS)
End

The mean inverted generational distance (MIGD) is the metric that is being used in this paper to
evaluate the Pareto front for each of the four cases optimized by DER-CAM. The smaller the numerical
value of the MIGD, the better the PF is likely to be. The mathematical form of the MIGD is given
in Equation (21).

MIGD =
1
|τ|∑t∈τ

IGD
(
ρ̂t, β̂t

)
(21)

where
ρ̂t and β̂t are the directional vectors for f 1(x,t) and f 2(x,t), respectively.
With regard to Algorithm 1, crossover is uniform and real-valued. Randomized mutation has been

used based on vector change. Selection is done using the DE/rand-to-best/strategy, which allows the
selection of the best-performing candidates for the Pareto set. Therefore, this strategy also helps with
the mutation of candidates toward final selection. The algorithm is based on the non-dominated sorting
genetic algorithm (NSGA-III) [30,31]. Reference points and Euclidean distance are used to control the
crowding of candidates. Mutation and crossover rates are adaptively adjusted using the orientation of
reference points and normal boundary intersection (NBI) as discussed by Das and Dennis in [32].

The behavior of the particles in the OF space is also observed using the Pareto set variation,
as well as the spread of the particles along the PF. The simulation parameters are specified in Table 1.
The crossover rate is adaptive based on the use of both reference points and the NBI technique to
balance both convergence and diversity. The number of feature evaluations (FEs) is selected as 10,000 to
allow for the settling of non-dominated solutions to constitute the final Pareto set. The differential
evolution (DE) selection strategy aids both the mutation and final selection of the Pareto set by
controlling selection pressure. The true Pareto front is shown in Figure 4.

Table 1. Parameter Settings for Two-Objective Pareto-based Evolutionary Algorithm.

Parameter Setting

Number of dimensions 100
Number of feature evaluations (FEs) 10,000
Number of simulation runs per case 10

Mutation rate 1/n
Crossover rate (adaptive) 0.5–1.0

Population size 50
Selection strategy DE/rand-to-best/1

Number of generations 500

4. Results and Discussion

Figure 5 shows the approximation of the true Pareto front (shown in Figure 4) for each of
the specified cases. The approximation is done by using the normal boundary intersection (NBI)
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method [32] to guide the candidates toward the final non-dominated Pareto front. It can be seen that
the scenario in which there is no adoption of DER (Case 4) has the worst approximation of the PF,
while Case 1 has the best approximation. This demonstrates that in this case study, DER-CAM gave
the most economically viable solution based on the adopted DER mix. For cases 2 and 3, it can be
seen that the use of the load-shifting strategy marginally improves the cost and energy consumption
optimization functions for the consumer. This results in a comparatively more stable and cost-effective
energy profile. It can also be seen that cases 1 and 2 take less time to explore and exploit the search
space (observed from the axial calibrations of f 1(x,t) and f 2(x,t)) compared with the cases 3 and 4.
This means that the parameter selection for the cases involving load-shifting as an economically viable
strategy results in a more optimized PF. For each case (particularly Case 3 and Case 4), it is observed
that some of the points on the Pareto front are dominated. This is likely due to the interaction of
selected parameters in the OF space on the selection pressure of candidates.

The manner in which the particles in the search space settle on the final Pareto set is observed by
the variation of the Pareto set over the selected number of dimensions (Figure 6). Each particle in the
search space explores the best possible solution in 100 different directions before finally converging
to the final optimal candidate. For Case 1, it is observed that the particles settle much more quickly
compared with the other three cases. In cases 3 and 4, the particles are in a state of almost constant
oscillation, which makes it difficult for them to settle on the final PF. This is evidenced by the disoriented
PF in both cases.
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The diversity of the particles that constitute the final Pareto set has also been considered by
observing the behavior of the Pareto set over 10,000 feature evaluations (FEs). The ability of the
particles to efficiently explore the search space for potential solutions ensures a uniform spread of
solutions over the PF. In Case 4 (Figure 6), the evidence of premature convergence, and consequently
poor solution spread over the PF is observed over 5000 FEs (between 2000–7000 FEs). Therefore,
the OF parameters cannot be fully explored, thus leading to the poor PF observed in Figure 5d. Since
parameter selection is made based on the DER mix, it is to be expected that there would be a poor
performance over the two-objective space, since f 2(x,t) is almost non-existent for Case 4.

By contrast, the spread for Case 1 can be seen to be steady over 7000 FEs (between 2000–9000 FEs).
The outlier around 7000 FEs is likely a case of premature converge, which is handled by the
DE/rand-to-best/selection strategy in such situations. Cases 2 and 3 are also quite impressive in terms
of maintaining the diversity of the Pareto front due to a utilization of elements of the DER mix such as
PV panels and load shifting. For Case 2 in particular, the spread over the PF appears to be more stable
compared with Case 3, which has no load shifting strategy.
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The Pareto set variation is a measure of the ability of particles in the objective search space to
settle on the final optimal Pareto front. This was simulated over 100 dimensions for each case, with the
results shown in Figure 7. As predicted by DER-CAM, Case 1 had the best Pareto set variation over
the specified number of dimensions, and Case 4 had the worst variation. Case 2 outperformed Case 3
in being able to settle on the final PF (as seen in Figure 5). The extremely erratic response observed
in Figure 7d for Case 4 is a result of all of the parameter matrices for f 2(x,t) having been set to zero,
since no DER strategy has been adopted. Therefore, there is no attempt to balance the trade-off between
the two objectives.
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For the analysis carried out in Figures 5–7, the best results over 10 simulation runs were selected
for each case. In order to ascertain the results obtained, MIGD values were obtained over 10 runs for
each of the four cases considered. The results are shown in Table 2. Each test case has 10 simulation
runs, because it is observed that the MIGD values do not vary significantly beyond this number of
runs. It is observed from the results that Case 1 had the best MIGD values (shown in boldface) for
seven out of 10 runs for all of the cases over the two objective functions, while it was outperformed by
Case 2 in two runs (Run 4 and Run 7), and by Case 3 in 1 run (Run 10). With the exception of Run 1,
Case 4 had the highest MIGD value for all of the other simulation runs, which means that it had the
worst performance for 90% of the simulation runs.

Table 2. Mean inverted generational distance (MIGD) values over 10 runs for each case of distributed
energy resources (DER) mix.

Case 1 Case 2 Case 3 Case 4

Run 1 1.5672 × 10−2 2.0148 × 10−2 3.7531 × 10−2 4.4972 × 10−1

Run 2 2.2234 × 10−1 3.5951 × 100 2.1093 × 100 1.7693 × 101

Run 3 2.0087 ×10−3 3.8502 × 10−2 1.1096 × 10−1 3.0875 × 102

Run 4 2.5073 × 10−1 1.9617 × 10−1 1.0462 × 100 2.9839 × 102

Run 5 2.3394 × 10−1 3.5183 × 100 5.1907 × 10−1 4.4097 × 100

Run 6 1.9431 × 10−3 2.6783 × 10−2 4.4219 × 10−1 3.8519 × 101

Run 7 2.1104 × 10−2 1.5072 × 10−3 6.0173 × 10−2 6.3184 × 10−1

Run 8 1.8257 × 10−1 2.3725 × 100 3.2038 × 100 5.0318 × 101

Run 9 1.9736 × 10−3 4.5932 × 10−2 1.2563 × 10−1 2.3058 × 100

Run 10 2.8847 × 10−1 2.7931 × 10−1 3.5072 × 10−2 1.9417 × 101

From the results obtained, it has been established that the combination of both solar PV panels with
the capability to export excess energy and a load shifting strategy has the best trade-off between the two
objectives. This result also confirms the optimized output from DER-CAM for the mid-rise building,
thereby confirming the capability of DER-CAM to give accurate optimization results regarding the most
cost-effective DER strategies for a particular energy usage profile and location. The results obtained
also raised questions regarding the economic viability of combining PV panels with and without energy
export capability, and load shifting strategies for particular scenarios. While energy export to the grid
may have its merits, the results obtained for cases 2 and 3 suggest that combination of energy export
and load shifting may not always be the best economic strategy, given the specific energy usage profiles
(particularly situations in which there are generally few peak energy usage periods).

5. Conclusions

This paper has examined the effect of parameter variation for four cases of DER mix using
a dynamic two-objective Pareto-based evolutionary optimization. The objective function has been
designed such that the first cost function is similar to the MILP objective function used by DER-CAM
for finding the optimal mix of distributed energy resources from an economic and environmental
perspective. The microgrid under consideration supplies a mid-rise apartment building, and the
energy usage profiles used in the optimization and results obtained are to optimize energy usage for
the specific building and microgrid.

The paper has made the following research contributions based on the results obtained:

1. A Pareto-based modeling approach has been used to investigate the ability of DER-CAM to
optimize distributed energy resources for real-life applications.

2. The Pareto-based approach has been used to examine the effect of parameter variation on
the optimization of an energy cost function. This has been achieved by observing the effect
of parameter variation of selected cases of DER mix on the approximation of a two-objective
Pareto front
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3. The Pareto-based approach has the capability to allocate DER in a sustainable and
cost-effective manner.

Further research will examine the relationship between energy usage profiles with and without
considerable peak energy usage profiles, and the economic viability of combining load shifting with
energy export to the grid. Also, the effect of parameter selection and interaction in the objective function
space will be investigated. The aim of this will be to improve the integrity of the non-dominated
candidate solutions. Overall, it has been established that DER-CAM is indeed an effective tool for
optimization of distributed energy resources for specific energy usage profiles. Also, the Pareto-based
EA optimization approach provides an effective means of examining the effect of parameter variation
on the behavior of the energy cost function.
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Abbreviations

Acronyms Parameters
PV Photovoltaic t = 1 h
DER-CAM Distributed Energy d = 1–365
Resource Customer Adoption Model For f 1(x,t):
DER Distributed energy resources θ1,h, θk,24 battery charging constraint
MOEA Multi-objective evolutionary algorithm fc cost coefficient for DER
MIGD Mean inverted generational distance genmax,der maximum energy generation
SCADA Supervisory control and data acquisition coefficient for DER
OF Objective function ccap,der capital cost coefficient for DER
DSM Demand-side management c f ix fixed investment capital cost coefficient for DER
ToU Time-of-use Pgen,pv power generation coefficient for PV module

HOMER
Hybrid Optimisation
Model for Electric Renewables

Pmax,pv maximum power generation coefficient for PV module

Pcap,pv power generation capacity coefficient for PV module
EV Electric vehicle
V2G Voltage-to-the-grid
MILP Mixed-integer linear programming µpv energy conversion coefficient for PV module
OSR Optimal stopping rule Ipv current generation coefficient for PV module
MFCFS Modified first come first serve top,der time-of-use operating constraint for DER
PEEDF Priority enable early deadline first lmax,der maximum power generated by heat pump
PEM Point estimate method Psup,der power supplied by heat pump in DER mix
DE Differential evolution COPder heat pump operating coefficient in DER mix
PSV Pareto set variation For f 2(x,t):
PS Pareto set Smin minimum operating power for battery state-of-charge
PF Pareto front Smax maximum operating power for battery state-of-charge
IGD Inverted generational distance Sop,h,24 daily battery operating power wrt state-of -charge
NSGA-III Non-dominated Sorting ed,h,24 hourly energy discharge rate of battery
Genetic Algorithm-III ec,h,24 hourly energy charging rate of battery
NBI Normal boundary intersection
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FE Feature evaluation
Pconv maximum power delivered by battery converter
Vpv output voltage of PV module
Vocc open-circuit voltage of PV module
Vm,T maximum voltage at temperature T
Ppv,t power supplied by PV module at time t
Ppv,T power delivered at temperature T
Ppump,t power supplied by heat pump at time t
ϑcomp,t pump voltage coefficient at time t
Tcomp,t pump temperature coefficient at time t
Pre f pump reference power
Hpump,t heat delivered by pump at time t
cheat,t pump heating coefficient at time t
Tdi f f temprature differential for heat pump at time t
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