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Featured Application: A robust estimation procedure is proposed in this work targeting GNSS
performance improvements. Thus this research is exclusively beneficial and applicable to
a wide-ranging GNSS applications particularly for on road vehicle navigation and tracking.
Despite of GNSS, the proposed scheme is appropriate to make expansions in EKF filter
performance as well.

Abstract: Global Navigation Satellite System (GNSS) is the most reliable navigation system for
location-based applications where accuracy and consistency is an essential requirement. The LSE
(least squares estimator) has been used since the start of GNSS for position estimation. However;
LSE is affected by outliers and errors in GNSS measurements and results in wrong user position.
In this paper; we proposed a novel three-phase estimator for enhancing GNSS positioning accuracy
in the presence of outliers and errors; relying upon the robust MM estimation theory. In the first
phase; a subsampling process is proposed on available observations. IRWLS (iterative reweighted
LS) is applied to all subsamples up to a predefined number of observations to obtain a positioning
estimate and a scale factor. Secondly; IRWLS is applied up to the convergence point on a set of
selected subsamples. The third phase involves the selection of optimum positioning solution having
minimum scale factor. An outlier detection and exclusion process is applied on a probabilistic set of
outlying observations to maintain the integrity and reliability of the position. Multiple simulated and
real scenarios are tested. Results show high accuracy and reliability of the proposed algorithm in
challenging environments.

Keywords: multi-GNSS; GNSS navigation; LSE; IRWLS; urban canyon; outliers; MM estimation

1. Introduction

Location-based applications are progressively getting more traction in our daily life, including
applications such as transportation, communication, precise farming, and life-rescue operations.
Positioning accuracy and consistency are the key requirements for the applications such as
autonomous land vehicle driving, unmanned aerial vehicle (UAVs) and in life-critical applications.
Global Navigation Satellite System (GNSS) is one of the most trustworthy positioning systems.
The establishment of new GNSS constellations like the BeiDou and the Galileo has greatly increased
the number of visible satellites around the global as well as new frequency signals and satellites
are also added in existing GNSS constellations. These developments make it possible to use signals
from multiple constellations to enhance the accuracy of user position. However, a key challenge for
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multiconstellation GNSS positioning is to identify the trustable satellite measurements from all visible
satellites for getting true position. The quality of the estimated position depends on the ability of the
receiver on getting position in the presence of outlying observations and on the receiver environments.
Multipath and NLoS (non-line of sight) signals can cause errors in the satellite observations for the
receiver moving in challenging environments such as urban canyons, under the elevated highway or
under the dense trees. Hence it is a problematic task to achieve the positioning accuracy and reliability
in such environments and it is required to adopt the positioning estimation techniques to prevent the
effect of possible wrong or outlier satellite observation on the user position.

A number of algorithms and methods have been proposed to improve the GNSS receiver
performance in terms of the positioning accuracy. The geometric dilution of precision—(GDOP)
based best satellite selection is one of the proposed methods [1–5]. The fundamental idea is to select a
subset of observations having a minimum GDOP factor, though the rejection of a good observation
can also lead to the minimized GDOP. Receiver autonomous integrity monitoring (RAIM) is another
approach to reject outlier observations using pseudorange measurement redundancy to maintain the
positioning accuracy by isolating the contaminated measurements from the good ones [6–8], and is
primarily designed for aviation applications [9,10]. However, for user position estimation in urban
environments, visible and available satellites are rapidly changing and it is difficult to use the RAIM
for satellite/pseudorange selections. Besides the satellite/observation selection techniques, several
researchers also focused to improve the estimation algorithms to enhance the positioning accuracy.
Least-square estimators (LSE) has been used as the fundamental algorithm for GNSS positioning since
the start [11]. LSE estimates the position of user by making a relationship between the unknown
parameters and satellite to receiver geometry. However, it is assumed during LSE-based estimation,
that the variance-covariance matrix of the observations, also called the dispersion matrix, is an identity
matrix i.e., all the observations have same accuracy and are uncorrelated. On the other hand, real time
GNSS observations have different level of accuracies depending upon the satellite elevation angle,
signal strength and other radio interferences. Multiple algorithms and methods have been proposed
to improve the GNSS positioning accuracy. WLSE (weighted least-squares estimation) schemes are
proposed for calculating and assigning weights to the GNSS observations. In [12], authors proposed
a WLSE (weighted least-squares estimator) where signal to noise ratio and observation variance are
the weight model parameters. Tabatabaei [13] proposed a fuzzy weighted least squares method to
enhance the GPS and the GLONASS (RUSSIAN GNSS) integrated navigation solution and 12 rules
were defined based on the GDOP and the elevation angles of satellites for assigning weights to the
GNSS observations. In [14], authors studied, tested and compared multiple weighing schemes for
GNSS positioning relying upon the elevation angle and signal to noise ratio. In [15], two GNSS
observation weighing models, sigma-elevation and CN0-elevation, are studied and compared by Sarab
Tay. For the WLSE algorithms, satellite elevation angle and SNR (signal to noise ratio) are the primary
focus of the researchers to compute the observation weights. However, relying on the elevation angle is
not always useful because it is possible for the signal, from high elevation satellite, to be disrupted from
the multipath and radio interferences especially in urban canyons. The concept of non-linear statistics
(or robust statistics) has been also studied in literature by several researchers to improve the GNSS
positioning accuracy. In [16], neural networks are used to improve the performance of least absolute
and least-squares estimators for robust GNSS positioning. However, the primary disadvantage is the
computational cost in addition to the outfitting problem. In [17], the concept of robust M-estimator
is used to improve the performance for the GNSS positioning by calculating and adding the weight
matrix during the innovation step. In [18] multiple robust statistical estimation techniques have been
discussed including M-estimators, L1 estimators and genetic algorithm. The proposed estimation
process in [18] determines a set of all possible solutions by using the minimum required number
of satellites (e.g., in case of GPS, four satellites are required for positioning) using LSE. The median
of remaining estimates is considered as the user position after removing possible wrong estimates
and a genetic algorithm is used to minimize the estimation error. The fundamental problem for
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this scheme is the number of possible solutions. The addition of new constellations increases the
number of available satellites for positioning in a single epoch and the number of solutions as well
with the increase in computational cost. Secondly, the positioning process starts with an unknown
random initial estimate such as a least-squares estimate and the iterative reweighting scheme can
ignore perfectly good measurements resulting to a wrong convergence point with a bad initial estimate.
Some researchers focused on the development of techniques to minimize the effect of noise parameters,
such as ionospheric, multipath etc. In [19], authors introduced the concept of the adaptive carrier
smoothing to attain an optimal carrier smoothing time to minimize the cost functions related to white
noise multipath and correlated multipath errors. In [20], authors studied the application of DGNSS
(differential GNSS) in smartphones for enhancement of the GNSS positioning accuracy in challenged
environments. However the primary drawback for DGNSS-aided navigation is that a base station
must be required for transmission of useful information and without this information host system is
not able to maintain the required accuracy.

In this paper, we present a novel efficient estimation process for the GNSS positioning using signal
data from multiple constellations. The proposed idea is based on the nonlinear statistical estimation
theory. The proposed estimator is derived from the robust MM class estimators, proposed and named
by Yohai [21]. The MM estimator is a class of robust statistics for more efficient statistical data analysis
with a high breakdown point. Breakdown point is the proportion measure of the outliers that can be
treated efficiently without spoiling the results, and for the MM estimator, the breakdown point is 50%.
For a reliable initial estimate, a weighing scheme is provided using prior knowledge of signal-to-noise
ratio and satellite geometry of all visible satellites. A set of available pseudorange observations
is divided into small subsets with adaptive subset size. A three-step IRWLS estimation process is
applied to the individual subsample to minimize the effect of observation errors on the positioning
accuracy. An outlier identification and exclusion process is proposed on the set of probabilistic outlying
observations to maintain the reliability and the integrity of the positioning solution. Moreover, this
paper is also presented as a concise tutorial for a better understanding of the proposed estimation
algorithm in both theoretical and mathematical aspects.

The rest of the paper is organized as follows. Section 2 recalls the idea of the robust estimation
theory and proposed robust estimators are reviewed. Section 3 introduces the theory and the
application of the LSE model for GNSS positioning and details of the classic outlier detection exclusion
process. In Section 4, mathematical and theoretical aspects of the robust MM estimation theory are
presented. Details of the custom designed software receiver for performance analysis is presented
in Section 5. The proposed estimation algorithm for multiconstellation positioning is explained in
Section 6. Section 7 deals with the outlier detection and exclusion process in detail. In Section 8,
a detailed discussion is provided related to key modifications in the original statistical estimation
procedure and a very similar GNSS positioning scheme [18], based on the robust statistics, is analyzed
and compared with our proposed estimation scheme. Results of the proposed estimation algorithm
are analyzed and discussed against LSE and WLSE algorithms for several field and simulation tests
in multiple scenarios and environments in Section 9. A conclusion is drawn in the last section with
future enhancements.

2. Review of Robust Statistics

Robust estimation procedures have been developed and studied in statistical data analysis to
replace the LSE for unknown estimation. Robust estimation algorithms perform statistical analysis of
test data to detect and exclude the outlier data measurements for more accurate estimation. In normal
Gaussian distribution conditions, LSE has several advantages such as simplicity of calculation.
In addition, the properties of the stochastic and functional models do not change from start to end.

However, multiple classes of robust estimators have been introduced for data sets having multiple
outlying observations and with the nonlinear behavior. A robust estimation algorithm is defined
on three features: efficiency, stability and breakdown point. Efficiency is the performance of an
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estimator for an assumed model. Stability refers to the size of impairment in the performance for
small deviations from the model assumptions. A robust estimation process must be stable in the sense
that small deviations from the model assumptions should not impair the performance. The measure
of the maximal fraction of outlier observations in any data for a robust estimator, without spoiling
the final estimate, is defined as the breakdown point. A robust procedure should have an optimal or
near optimal efficiency at the assumed model. It should be stable in case of small deviations from the
assumed model and avoid catastrophe in case of large deviations from the model. The Least Median
Square Estimator (LMSE), proposed by Hampel [22] and further improved by Rousseeuw [23], is
the first estimator that achieved the maximum asymptotic break down point of 1/2. Conventional
LSE is based on minimizing the sum of the squared residuals. In the LMSE, the sum is replaced
by the median of the squared residuals. However, the relative efficiency of this estimator is 0 with
respect to LSE because of its low rate of convergence [24]. In [25], Rousseeuw and Yohai proposed the
first high breakdown robust regression estimator—named S-estimator—that can achieve both high
breakdown point and convergence rate. However, Hössjer proved that the regression S-estimator has
maximum asymptotic efficiency 0.329 at the normal distribution [26]. Under the condition of normality,
Rousseeuw introduced the concept of weighted LSE (WLSE) by designing a procedure to minimize the
weight of outlying observations to reduce the effect of the outliers [27]. Later on, this concept became
very popular in navigation research where weights are assigned based on the geometry (elevation and
azimuth) and quality of signals [28,29]. Yohai proposed a robust estimator that can achieve nearly
optimal efficiency as well as maximum breakdown point and called as MM-estimator [21]. Gervini
and Yohai introduced a robust and efficient reweighted least squaress estimator (REWLSE), which
combines a high breakdown point with the full asymptotic efficiency for normal errors [30].

3. Least Squares Estimation Model for GNSS Positioning and Outlier Correction

LSE has been used for the GNSS positioning since the start and still is the key part of many GNSS
positioning algorithms such as WLSE, IRLS, etc. A standalone LSE algorithm is not a trustworthy
estimator especially in GNSS-challenging environments and this is proved by experimental results
in Section 9. In this section, we provide a theoretical understanding of the LSE for GNSS positioning
because all positioning algorithms follow the same or a very similar approach.

3.1. Least Squares Position Estimation

In the classical GNSS-based position estimation process, LSE recursively calculates the offset of
the receiver’s position relative to the linearization point by using measured pseudorange errors. Let
∆ρ denotes the pseudorange error by taking the difference between the measured pseudorange ρ̃ and
the predicted pseudorange ρ̂:

∆ρ = ρ̃− ρ̂ (1)

ρ̂ is the geometric distance between the estimated receiver position and the satellite position:

ρ̂l =

√(
xs

l − xu
)2

+
(
ys

l − yu
)2

+
(
zs

l − zu
)2

+ cdtclk (2)[
xs

l , ys
l , zs

l
]

are the position coordinates of the l_th satellite, [xu, yu, zu] are the estimated receiver’s
coordinates and dtclk is the receiver clock correction. c is the speed of light. The relation between ∆ρ

and ∆Xu (difference between the predicted X̂u and the true X̃u receiver positions) is expressed as,

∆ρ = H∆Xu + ξ (3)

H is the geometry matrix and ξ is the measurement noise vector. The noise might include
uncompensated atmospheric delay, multipath error, satellite clock and ephemeris errors, and the
Gaussian white noise. The receiver position is recursively computed,
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∆Xu =
(

HTH
)−1

HT∆ρ (4)

X̂i
u = X̂u

i−1 + ∆Xu
i (5)

X̂i
u is the estimated position for i-th, X̂u

i−1 is the estimated position in last iteration and ∆Xu
i is the new

estimated position error.

3.2. Receiver Autonomous Integrity Monitoring Model for Outlier Detection and Removal

RAIM is a self-monitoring process in a GNSS receiver to provide protection against the
measurement faults. The classic RAIM scheme uses observation residual vector from the LSE for
outlier prediction and tracking.

rρ
∼= ∆ρ−H∆Xu (6)

rρ is the observation error residual vector. Replacing ∆Xu from Equation (4) into Equation (6),

rρ
∼= (I −H(HTH)

−1
HT)∆ρ (7)

The test statistic for fault isolation is defined as the sum of the squared residual errors,

υ = rT
ρ rρ (8)

Under a fault-free positioning condition, the corresponding test statistic υ follows a chi-square
(χ2) distribution with n− ν degree of freedom where n is the number of measurements and ν is the
number of unknowns, and should be less than a predefined threshold Tth. The system false alarm
probability PFA and misdetection probability Pmd are used to calculate the Tth.

PFA = P{υ > Tth|no fault} (9)

Pmd = P{υ < Tth|fault in sat} (10)

Mathematically PFA and Pmd are expressed as [6],

PFA =

∞∫
thr

[
υ(

n−ν
2 −1)e

−υ
2σ2

2
n−ν

2 Γ
(n−ν

2
)
σn−ν

]
dυ (11)

Pmd =

thr∫
0

[
1

2σ2 e
s2+υ
2σ2
( υ

s2

)( n−ν
4 −

1
2 ) I n−ν−2

2

( s
σ2

√
υ
)]

dυ (12)

Γ(α) and Ia(t) are the gamma and the first order Bessel function respectively; σ2 is the variance of

measurement error and s =
√

E[rT
ρ ]E[rρ]. If the test statistic exceeds the threshold, the presence of

fault is confirmed. Referring to [7,8], the standardized outlier test is defined as,

ql =

∣∣eT
l rρ

∣∣√
eT

l Qvel

(13)

el = [0, . . . , 1, . . . 0]T , the l_th element equal to 1 while others are zeros. Qv is the cofactor matrix of the
estimated residuals and is defined as,

Qv = (I −H(HTH)
−1

HT) (14)
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A second test is performed to isolate the faulty measurements.∣∣qj
∣∣ > |ql |∀l and

∣∣qj
∣∣ > N αo

2
(0, 1) (15)

αo is the probability of false alarm.

4. MM Estimation Theory for Positioning

Conventional statistical estimation schemes are based upon some assumptions about the
observations. If the real observations deviate from the assumptions, estimation might deviate from the
truth, such as LSE. The robust estimator tries to dynamically search a best fitting criterion to the real
observations to reduce the effect of unusual data. Generally, a robust estimator minimizes the cost
function J(r),

J(r) =
n

∑
l=1

µ(rl) =
n

∑
l=1

µ(ρl −HT
l X) (16)

ρl is the l_th observation, X is the estimated unknown (here we consider the unknown term as generic),
Hl is the transformation vector for the l_th observation, and rl = ρl −HT

l X is the error residual for the
l_th observation. µ(r) is the objective function that gives the contribution of each residual to the cost
function J(r). For the least squares estimator µ(r) = r2, while in the robust estimation process, a scaled
observation residual is minimized. The scaled estimation process minimizes the weight of out of the
bound observations dynamically,

min
n

∑
l=1

µ
( rl

s

)
= min

n

∑
i=1

µ

(
ρl −HT

l X
s

)
(17)

s is the scale factor.
^
r s is the scaled residual r/s. Let if ψ be the derivative of the objective function

for the unknowns X, ψ = µ′|X . Differentiating the objective function in Equation (17) and setting the
derivative to 0,

− 1
s

n
∑

l=1
ψ

(
ρl−HT

l X
s

)
Hl

T = 0

equivalent to
n
∑

l=1
ψ
(

ρl−Hl
T X

s

)
Hl

T = 0
(18)

By introducing a weighting function w
(
^
r s,l

)
to consider the effects of each scaled residual

^
r s,l ,

Equation (18) can be modified as,

n

∑
l=1

w
(
^
r s,l

)
ψ
(
^
r s,l

)
Hl

T = 0 (19)

Solution of Equation (19) is a weighted least-squares problem. However, the weights depend upon
the scaled residuals, the scaled residuals depend upon the estimated coefficients, and the estimated
coefficients depend upon the weights. Hence, it is an iterative process, iteratively reweighted least
squaress (IRWLS) [31,32]. Three most popular objective functions and their corresponding weighting
functions are shown in Table 1.
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Table 1. Most popular objective and weighting functions.

Name Objective Function Weight Function

LSE µ(
→
r ) =

→
r

2
w(
→
r ) = 1

Huber µ(
→
r ) =

{
1
2
→
r 2, |→r | ≤ α

α|→r | − 1
2 α2, |→r | > α

w(
→
r ) =

{
1 |→r | ≤ α

α/|→r |, |→r | > α

Bi-square µ(
→
r ) =

{ →
r 2

2 −
→
r

4

2α2 +
→
r

6

6α4 , |→r | ≤ α
α2

6 , |→r | > α
w(
→
r ) =


[

1−
(→

r
α

)2
]2

, |→r | ≤ α

0 |→r | > α

→
r is the observation residual and it can be either true or scaled. The α, for Huber and Bi-square, is

a tuning constant with optimal value to attain more resistance against outliers (high breakdown point)
as well as the convergence efficiency. α is a tradeoff parameter in terms of robustness and efficiency.
The table of α is provided in Appendix A to represent the relation between efficiency, robustness and
tuning constant. α is selected such that to balance the performance of high breakdown point and
efficiency. An outline of robust estimation procedure is defined in the following steps:

1. Find an initial estimate, X0 with IRWLS (Appendix B) or subsampling method (Appendix C).
In IRWLS (simplest subsampling) procedure, all observations are used in X0 estimation. However,
in subsampling procedure, subsamples (subsets) of observations are selected each with size of
nsub, number of observations in one subset. For each subsample, a solution is computed using
IRWLS. Best candidate solution is selected as X0 and the initial residuals are estimated, rl(X0) =

ρl −Hl
TX0 for each observation. Then we get a residual vector r0 = [ r1(X0) . . . rn(X0) ]

2. Multiple scale estimate functions are defined, however the following median function is employed
to compute the initial scale value s0 [33],

s0 = 1.4826×median(r0) (20)

3. Compute initial scaled residual vector
^
r s

0 = r0/s0. Use the weighting function w(
^
r s) of

one method, Huber or Bi-square, shown in Table 1 to compute corresponding weights wl for
each observation.

4. Solve the estimated unknown Xi at the i-th iteration (i = 1, 2, 3, . . . ) by using the weighted
least-squared method,

Xi = (HTΣiH)
−1

ΣiH
Tρ (21)

H is the transform matrix composed of Hl , and Σ is the weighting matrix with the weights
wl(l = 1, 2, . . . , n) as diagonal elements.

5. Update residuals rl(Xi) = ρl − HT
l Xi with the new estimate Xi, calculated in last step.

Then compute scaled residual
^
r s,l = rl(Xi)/si−1. Note that we still use last-step’s scale factor to

get new scaled residual because updated scale factor can only be obtained later.
6. Use the objective function µ(

^
r s) to compute transformed scaled residual rµ

s,l = µ(
^
r s,l), and get a

transformed scaled residual vector rµ
i = [ rµ

s,1(Xi) . . . rµ
s,n(Xi) ].

7. Update scale factor si with Equation (20) but with the transformed scaled residual vector rµ
i .

After that go back to step 4 to start a new iteration.

The first three steps are only used for initial estimate, and the last four steps are iteratively used
for the later estimates.

5. GNSS Receiver Positioning System Architecture

The complete custom designed GNSS software receiver architecture is shown in Figure 1. The first
step comprises to receive original carrier frequency GNSS signals using a wideband antenna and
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signals are down-converted to IF (intermediate frequency) data for further processing in software
receiver. Receiver signal tracking module processes the IF data and performs two tasks: first the
satellites, originating the signal data, are acquired/identified, secondly the satellites are tracked using
the stream of signals. The next step involves the transformation of signal tracking parameters to the
satellite observations and navigation information. This information is used by estimation algorithm to
calculate the receiver location information i.e., position, velocity, time etc.

In Table 2, specifications of the custom designed software receiver are presented. For performance
comparison, LSE, WLSE and the proposed estimator are implemented under same receiver
specifications. Non-coherent scalar architecture is used for tracking satellites with the early-minus-late
discriminator for code phase and cross discriminator for Doppler frequency.CNo and other observation
parameters are averaged over 1 second. To reduce the dynamic stress errors, 3rd order phase lock
loop (PLL) assisted by frequency lock loop (FLL) is used. First order DLL (delay lock loop) is used
for code phase tracking. For n + m visible satellites from BeiDou and GPS constellations, tracking
module tracks the satellite signals using Doppler frequency and code phase ( f , φ). Doppler frequency
and Code phase information is used to estimate the satellite to receiver pseudorange rate

( .
ρ
)

and the
satellite pseudorange observations (ρ) respectively. This information along other satellite information
is transferred to position estimation module. Estimation process computes the receiver position in
addition to maintain the integrity and reliability of calculated position.
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Table 2. Software Receiver Specifications.

BeiDou Discriminator Output (Integration Time)
GEO 2 ms

MEO 20 ms

GPS Discriminator Output (Integration Time) MEO 20 ms

DLL bandwidth 1 Hz
PLL bandwidth 10 Hz

Position update interval 1 s
CN0 update interval 1 s
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In addition to the estimation process, an outlier identification and exclusion procedure is also
introduced for verification of outlier free positioning. A reliability test is used to check whether
the outlier observations is present or not. If the presence of an outlier observation is confirmed,
probabilistic outlier observations are approximated. Selected observations are analyzed for the outlier
selection and the corresponding observation is removed.

6. Proposed Multiconstellation Positioning Algorithm

The proposed positioning algorithm calculates the navigation information i.e., position, velocity
etc. of the object where antenna is fixed. In this paper, BeiDou and GPS satellite observations are
used in combination as a multiconstellation GNSS system. Let n be the number of observations from
the first constellation and m be the number of observations from the second constellation (first can
either be any GPS or BeiDou and other is the second). The first step involves the selection of subsets.
In classic subsampling based estimation schemes, for a statistical data analysis, a small number of
subsamples are drawn in random to process from all possible combinations and each subsample
contains a minimum required number of observations. Subsamples are drawn in random because
of large number of data samples and is not possible to process all combinations. In contrast, GNSS
observations are finite and by using a random technique, it is possible that a good observation is
thrown away. Hence it is more appropriate to consider all observations. If there are N number of
combinations from all n + m observations with nsub observations in one combination, there will be N
possible estimates G =

{
X̂1, X̂2, . . . , X̂N

}
. In this process, nsub is an essential parameter that needs to

be chosen carefully because the position estimation time is directly related to number of subsamples.
For example, if there are 20 satellite observations are available from two constellations and 5 unknowns
(three positions, two clock corrections) are required to be estimated, minimum 5 observations are
required for estimation of unknowns and there will be 15,504 number of combinations and it is not
possible to process all combinations in the GNSS receiver. Using hit and trial approach, it is found
that it is possible to relate the sample size nsub to CNo such that the nsub = (n + m)− kobs

CNo<thr. k is the
number of observations having CNo smaller than a defined threshold.

Because the presence of contaminated observations, the final position estimate X̂rb must meet the
following condition,

n+m

∑
l=1

µ

(
rl
(
X̂rb
)

srb

)
= min (22)

srb is the corresponding scale factor to the robust estimate X̂rb.
The proposed estimation procedure attains the required accuracy and consistency in two stages.

The first stage is aimed to compute a reliable initial estimate. The second stage tries to attain the
required accuracy. The two-stage algorithm is described in the following.

6.1. X0 Estimation (Stage 1)

1. Select P subsamples of size nsub from all n + m observations. The number of the subsamples is,

N =

(
n + m
nsub

)
, #(P) = nsub (23)

nsub represents the number of observations in one subsample. The value nsub should always
meet the criteria of gn < nsub < n + m. gn is the minimal number of observations required
for positioning. nsub is selected so that at least one combination contains all observations with
high CNo. However, Equation (23) is not directly applicable to a multiconstellation positioning
system. For a multiconstellation positioning system, the number of unknowns are 3 +<, here
< is the number of constellations used in positioning (clock correction parameters). In order to
attain the benefits of the multiconstellation positioning, subsamples must contain at least one
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observations from each constellation, for example a two constellations based positioning system
with five observations independently, maximum four observations can be selected from either
constellation to fulfill the minimum requirement as minimum five observations are required for
positioning.

2. Let pk is a subsample belonging to P where P =
{

p1, p2, . . . , pN
}

. We compute the initial estimate
X0

pk
with the WLSE method,

X0
pk

=
(

HT
pk

Σ0
pk

Hpk

)−1
HT

pk
Σ0

pk
ρpk (24)

Here Hpk , ρpk and Σ0
pk

are the geometry matrix, the observation vector and the weight matrix
for the subset pk. Σ0

pk
is a diagonal observation weights matrix diag

(
1/σ1, 1/σ2, . . . , 1/σnsub

)
and

initial weights are calculated by using following relation [34].

σ2
l =

λ2

2(T · 10(CNo)/10)
2 +

λ2

4T · 10(CNo)/10
(25)

T is the predetection integration time and λ = c/ fcode is the code wavelength. CNo is the
carrier-to-noise ratio for corresponding satellite signal.

3. Compute the residual vector r0
pk

, scale factor s0
pk

and standardized residuals,

r0
pk

= ρpk −Hpk X0
pk

s0
pk

= 1.4826×median
(

r0
pk

)
^
r

0
s,pk

=
r0

pk
s0

pk

(26)

4. Tukey bi-weight function (Table 1) is adopted to update the weighting matrix Σpk
.

wl = 1 if
∣∣∣∣^r 0

s,pk ,l

∣∣∣∣ < α

wl = 0 if
∣∣∣∣^r 0

s,pk ,l

∣∣∣∣ ≥ α
(27)

Here α is the tuning factor to balance the accuracy and the breakdown robustness and can be
selected from the look up table in Appendix A. α = 4.658 is selected to maintain 95% efficiency.
Then updated weighting matrix will be Σpk

= diag
({

wl : l = 1, 2, . . . , nsub
})

.

5. Use Equation (24) again with updated weight matrix to compute the unknowns, then we get the
estimate Xpk for the subsample set pk.

6.2. Xrb Estimation (Stage 2)

1. Apply steps 1∼5 to all subsets and we get a set of subsample estimates and their corresponding
scale factors,

β =
{

Xp1 , . . . , XpN

}
s̃ =

{
sp1 , . . . , spN

} (28)

Next sort up the scale vector s̃ in ascending order as s̃asc. Take the 5 minimal scale factors from s̃asc

and their corresponding estimates (the number 5 is determined empirically by the authors, it can

be changed). Up to now we obtained the most robust 5 initial estimates
^
β = {X1, . . . , X5}asc, their

relative scale factors
^
s = {s1, . . . , s5}asc and corresponding subsamples

^
P =

{
pX1 , . . . pX5

}
.pXq
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is the subsample used to compute Xq where Xq ∈
^
β . We apply the above steps 1∼5 iteratively to

the selected subsets
^
P . The iteration stops only when the convergence point is achieved,

‖Xq
i − Xq

i−1‖
‖Xq

i ‖
< kcc : q = 1, 2, . . . , 5 (29)

kcc is set as 0.001. The only difference in this step is the weighting function that we adopt Tukey
bi-weight function type 2,

wq
l,i =


{[

1−
(^

r
q
l,i

α

)2
] 2 ∣∣∣^r q

l,i

∣∣∣ ≤ α

0
∣∣∣^r q

l,i

∣∣∣ > α

(30)

Once all the selected 5 subset estimates have got converged, the one with minimal scale factor
will be taken as the most robust initial estimate X0

rb for the final robust estimation.
2. Based on the robust initial estimate X0

rb and its scale factor so
rb, we use all n + m observations at

this step to get the final robust estimate. The computation procedure is the same as step 1∼5,
or equivalently as the IRWLS algorithm in Appendix B. This iteration will not stop until the
convergence point, Equation (29) is met, and the final estimate Xrb is obtained.

7. Outlier Identification and Exclusion

The RAIM is a commonly used technique in the GNSS receivers for assurance of integrity and
reliability of the estimated position. The fundamental task of the RAIM is the identification and
exclusion of outlying observations for error free positioning. In the classic RAIM approach, the
least-squares residual is used as the test statistic for outlier identification. As a rule of thumb, if the
sum of squared residuals follows the chi-squared distribution, presence of outlier is rejected, otherwise
observations are verified for outlier and the observation with the highest residual error is considered
as the outlier. The primary drawback of this approach is that it is also possible that a wrong estimated
position or exclusion of a wrong observation may lead to successful chi-square test. Conversely, in
this paper, our proposed estimation technique itself maintains the integrity of estimated position by
selection of the best fit observations. If ε proportion of the observations are outliers, the probability of
the outlier free observation is µ = (1− ε)nsub , nsub is the number of observations in one subsample and

the probability of at least one good subsample is 1− (1− µ)N , N is the total number of subsamples.
However, to enhance the positioning accuracy and reliability, we also proposed a two-step outlier

detection and exclusion process. The proposed outlier detection and exclusion scheme is explained in
the following,

1. A predetection test is performed to predict the possible outlier observations prior to the FDE
(fault detection and exclusion) process. A predefined threshold level is used to predict the outlier
observations based on the confidence level and on the confidence interval. A confidence interval
is the range of values those act as the good estimates and the confidence level is the proportion
of the confidence interval that contains the true value of their corresponding parameter. The
confidence interval can be calculated from data [35,36]. However, the desired confidence level
is defined by the user. Let cl is the confidence level in predetection test, a threshold thcl can be
computed using normal inverse cumulative distribution function (also called quantile function).

tcl = F−1
(

κ
∣∣∣^µ ,

^
σ
)
=
{

tcl : F
(

tcl

∣∣∣^µ ,
^
σ
)
= κ

}
(31)
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Here κ = (cl + 1)/2 is the probability for corresponding confidence level with mean
^
µ and

standard deviation
^
σ and F

(
tcl

∣∣∣^µ ,
^
σ
)

= 1
^
σ
√

2π

tcl∫
−∞

e
−(t−^µ )

2

2
^
σ

2 dt is the cumulative distribution

function (CDF). The scaled observation residual is computed as,

usc = SY (32)

Here Y = (ρ̃− ρ̂)/ssc and S = I − H
(
HTH

)−1HT . As soon as γ =
n+m
∑

l=1
u2

sc,l follows χ2

distribution with n − ν degree of freedom, the estimated position is considered as reliable,
where is the number of observations used for integrity monitoring and ν is the number of
unknown to be estimated.

2. Otherwise, a set of observations is selected as the potential outliers based on the following relation,{
ρl ∈ {outliers}

∣∣usc,l > tcl∀usc ∧ ρl ↔ usc
}

(33)

Let ϕ = arg
usc,l>tcl

(
ρoutlier,k1 , ρoutlier,k2 , . . . , ρoutlier,kn

)
is the set of predicted outlier observations. kl is

corresponding observation number. The FDE on the predicted set of outliers is applied as follows,

ε l =

∣∣hkl
Tusc,kl

∣∣√
Sll,kl

(34)

Any faulted observation will satisfy the
∣∣ε j
∣∣ ≥ |ε l |∀l .

8. Discussion

Here we study some key modifications and properties of the proposed algorithm. As described in
Section 6, the fundamental algorithm is a two-stage process; the first stage involves the initialization of
a best fit estimate in the presence of outliers while the second stage involves the convergence of the
initial estimate. Subsampling process is the key point to find an initial robust estimate. Subsampling is
also the most critical task as the number of subsamples determines the computational cost. Thus the
number of observations per subsample is the most significant factor in determining the computational
load. In our proposed scheme, nsub is a selectable factor, hence it is possible to tune the computational
cost of algorithm.

The LSE estimator has low complexity level in terms of computational cost. IRWLS contains more
complex structure than simple LSE as it requires additional arithmetic operations related to residual
evaluation and updating of the observation weights and these operations are performed in iterative
manner. In statistics, a huge amount of observation data, either qualitative or quantitative, is needed to
be analyzed before making final decision. There are numerous statistical estimation techniques, such
as robust and multivariate regression procedures [31,32], those provide general interpretation of data
based on random samples drawn from original dataset as it is not possible to process all datasets, and
additionally enough processing power is available with no real time requirements. On the other hand,
the dataset such as GNSS has very small number of observations with certain characteristics, such as
GDOP, and random sampling technique can lead to a wrong estimate. A multiconstellation system
can provide better reliability and integrity, thus each subsample should contain the observations from
all available constellations. And the nsub factor is managed in such a way that at least one subsample
must contain all best fit satellites from both constellations.

Several authors proposed similar approaches for GPS positioning based on robust statistics.
The idea in [18], is discussed in details to compare with our proposed method as there are some
similarities among two algorithms. The key idea, in [18], is to find all possible solutions based on
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the minimum number of required observations per solution, and a genetic algorithm is applied for
outlier detection and exclusion. CNo of GPS and BeiDou visible satellites is shown in Figure 2 for
opensky data.
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Signals from all visible satellites have well CNo. Thus it is hard for any observation to be an outlier
and applying subsampling theorem in such a scenario is an impractical approach. And multi-GNSS
positioning further increases the complexity in using minimum number of required number of
observations. On the minimum requirement criteria basis, there will be multiple subgroups those
will contain either GPS only or BeiDou only observations, thus leaving the advantages of multiple
constellation positioning.

9. Performance Validation and Analysis

Multiple scenarios and environmental circumstances are assessed to validate the performance
of the proposed estimator. Considered scenarios comprise static as well as dynamic environments.
Two static locations are rooftop (for line of sight signal propagation model) and a location surrounded
by skyscrapers (for multipath in urban environment) in the downtown of shanghai. In Figure 3a,b, the
two locations are shown. In open sky scenario (roof top) all signals are line of sight with no multipath
or other interferences. In contrast, there are multipath as well as other radio interferences in urban
canyon scenario.
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For stationary scenarios, accuracy is examined in terms of 90% position error radius (RCEP =
radial circular error position) and position error mean distance (PMD) from the center. Results are
analyzed against LSE and WLSE (weighted least squares estimation) algorithms. In this paper, we
applied the SIGMA− ε weight model [37] for observation weight estimation.

σ2
l (i) = a. exp(−CNo/10) (35)

σl(i) is the variance of lth observation at ith epoch. a is the scaling constant and depends upon the
noise characteristics of the tracking loop or carrier tracking loop noise bandwidth. And the WLSE is
defined as;

∆x =
(

HTΣ−1H
)−1

HTΣ−1∆ρ (36)

Σ−1 is the weight matrix where Σ is the diagonal observation variance-covariance matrix.

Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

n

 (37)

9.1. Open Sky Scenario

In the open sky scenario, the only errors are Gaussian white noise from tracking loops, atmospheric
and receiver/satellite clock corrections. In Table 3, GNSS signal information for open sky scenario
is represented.

Horizontal radial error for open sky environment is shown in the Figure 4 in east and north error
terms. There is a very little difference between RCEP of three models. However, PMD of the proposed
scheme is larger than the other two schemes (except the difference is substantively small). The primary
cause of better performance of LSE/WLSE is the presence of Gaussian white noise. As RCEP provides
the 90% position error radius, results indicate that WLSE and the proposed schemes are more robust
although the mean position error distance of LSE is smaller. Two additional simulations are also
created by modifying the noise characteristics of observations.Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 23 
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Table 3. GNSS signal information for open sky scenario.

GNSS Signal Type Intermediate Frequency No. of Satellites Satellite IDs

BeiDou B1I −6.902 (MHz) 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

GPS L1-CA 7.42 (MHz) 10 2, 5, 13, 15, 18, 20, 21,
24, 29, 30

9.1.1. Emulated Scenario 1

The statistics of the first emulated scenario are presented in the following Table 4. This scenario is
designed to evaluate the positioning accuracy in the presence of fixed outliers. Measurement errors
stay fixed for a satellite over a defined period of time. The measurement error is kept small because a
large error is easy to detect by a simple algorithm however it is more difficult to detect if the error is
not very large and show significant effect. Results, in Figure 5, showed that the performance of our
proposed estimation scheme is better than LSE and WLSE in both RCEP and PMD.

Table 4. Statistics of Emulated Scenario 1.

Time (s) Outliers Bias (m)
PRN with Bias

BeiDou GPS

1–100 0 0 0 0
101–200 1 500 3 0
201–300 2 [500, 900] 4, 9 0
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9.1.2. Emulated Scenario 2

The objective of this scenario is to evaluate the positioning reliability and accuracy for unstable
observation data. Figure 6 represents the dynamic environment simulation scenario.
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Specifications include the details about PRN, measurement error, number of outliers etc.
Navigation module receives the signal data from tracking loops and errors are introduced in the
real measurements dynamically based on the error specifications. PRN/Sat IDs are selected at random
and are changed every 10 s. Results are presented in Figure 7. Position mean distance error of our
proposed estimator is significantly smaller as well as RCEP. On the other hand, WLSE is also performed
well against LSE. One important point to consider is that if the observation is effected by un-modeled
noise sources such as radio interferences, the performance of WLSE is degraded though observations
with high CNo because the weight estimation scheme for WLSE is based on the observation CNo.
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9.2. Multipath Scenario in Urban Canyons

This scenario is designed to analyze the performance of the proposed algorithm in severe
urban environments. Multipath and line of sight problem are the primary source of errors in urban
environments. Experiment location is surrounded by high skyscrapers as shown in the Figure 1b.
In Figure 8 CNo of visible satellite is shown from GPS and BeiDou satellites.
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Figure 8 demonstrations that CNo of both BeiDou and GPS is unstable. And the disruption in
line represents the loss of satellite visibility. Moreover the multipath signal interferences introduce
additional errors in observations.

Positioning results are provided in the Figure 9 in terms of RCEP and PMD. As RCEP represents
the accuracy of estimated position during most of time, it can be found in the figure that the proposed
estimation technique significantly improved the positioning accuracy.
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9.3. High Dynamic Moving Scenario

The most critical requirement for every GNSS receiver is the performance under high dynamics
when moving in the severe surroundings. Examples of harsh surroundings are moving under trees,
under elevated roads and in urban canyons with partial visible sky. High dynamic characterizes the
condition when the Doppler shift may vary in the range of ±60 kHz. Although this is difficult to
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achieve in normal urban canyons, still at carrier-to-noise ratio of the order of 30–40 dB-Hz and sudden
loss of tracking satellites make it challenging to maintain the navigation accuracy. The following
scenario is designed to evaluate the dynamic performance of the proposed estimation procedure
against classic LSE and WLSE algorithms. GNSS signal data is recorded in remote rural area near
shanghai during driving on the road with antenna fixed on the roof of van. Ephemeris information
and other navigation data is produced by offline processing of signal data.

Experiment trajectory of vehicle is shown in Figure 10. The experiment route is designed so that
there must be multiple full and partial sky visibility regions. Figure 11 illustrates the CNo of GPS
satellites. As the CNo of satellites represent the signal characteristics, observations from the satellites,
with unstable CNo, can lead the estimator to wrong approximation.
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Figure 12a shows the errors in the estimated position from LSE, WLSE and our proposed
algorithms. As described before, there are several open sky and partial visible sky regions, mentioned
with arrows. In Figure 12b, position errors for open sky are zoomed. Estimated positions errors, for
the duration of driving under trees, are showed in Figure 13. From Figure 11b, it is found that the
performance of three algorithms is similar under (LoS) line-of-sight signal propagation conditions
such as open sky. In LoS conditions, signals are biased with Gaussian-only white noise, hence LSE
showed high positioning accuracy.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  19 of 23 

Figure 12a shows the errors in the estimated position from LSE, WLSE and our proposed 

algorithms. As described before, there are several open sky and partial visible sky regions, mentioned 

with arrows. In Figure 12b, position errors for open sky are zoomed. Estimated positions errors, for 

the duration of driving under trees, are showed in Figure 13. From Figure 11b, it is found that the 

performance of three algorithms is similar under (LoS) line-of-sight signal propagation conditions 

such as open sky. In LoS conditions, signals are biased with Gaussian-only white noise, hence LSE 

showed high positioning accuracy.  

 
(a) 

 
(b) 

Figure 12. (a) Estimated position error from three algorithms; (b) estimated position error during open 

sky region (zoomed in). 

  
(a) (b) 

Figure 13. Estimated position errors when during driving under trees (zoomed in). 

However, the circumstances are quite different for NLoS (non-line of sight) conditions i.e., 

driving under trees. During NLoS conditions, other than Gaussian errors are dominant such as 

multipath, signal diffraction or reflection etc. We cannot say that the standalone positioning accuracy 

of the proposed scheme is very high (Figure 13b), however there is a significant improvement in 

positioning accuracy in comparison to LSE and WLSE.  

Positioning error for moving scenario from three algorithms are analyzed in Table 5. Maximum 

and RMS (root mean square) position errors from the proposed estimation algorithm are significantly 

lower than LSE and WLSE. The maximum error are resulted when vehicle was moving under dense 

trees and majority of the received observations were corrupted.  

Table 5. Analysis of position errors from three algorithm for moving scenario. 

Figure 12. (a) Estimated position error from three algorithms; (b) estimated position error during open
sky region (zoomed in).

Appl. Sci. 2018, 8, x FOR PEER REVIEW  19 of 23 

Figure 12a shows the errors in the estimated position from LSE, WLSE and our proposed 

algorithms. As described before, there are several open sky and partial visible sky regions, mentioned 

with arrows. In Figure 12b, position errors for open sky are zoomed. Estimated positions errors, for 

the duration of driving under trees, are showed in Figure 13. From Figure 11b, it is found that the 

performance of three algorithms is similar under (LoS) line-of-sight signal propagation conditions 

such as open sky. In LoS conditions, signals are biased with Gaussian-only white noise, hence LSE 

showed high positioning accuracy.  

 
(a) 

 
(b) 

Figure 12. (a) Estimated position error from three algorithms; (b) estimated position error during open 

sky region (zoomed in). 

  
(a) (b) 

Figure 13. Estimated position errors when during driving under trees (zoomed in). 

However, the circumstances are quite different for NLoS (non-line of sight) conditions i.e., 

driving under trees. During NLoS conditions, other than Gaussian errors are dominant such as 

multipath, signal diffraction or reflection etc. We cannot say that the standalone positioning accuracy 

of the proposed scheme is very high (Figure 13b), however there is a significant improvement in 

positioning accuracy in comparison to LSE and WLSE.  

Positioning error for moving scenario from three algorithms are analyzed in Table 5. Maximum 

and RMS (root mean square) position errors from the proposed estimation algorithm are significantly 

lower than LSE and WLSE. The maximum error are resulted when vehicle was moving under dense 

trees and majority of the received observations were corrupted.  

Table 5. Analysis of position errors from three algorithm for moving scenario. 

Figure 13. Estimated position errors when during driving under trees (zoomed in).

However, the circumstances are quite different for NLoS (non-line of sight) conditions i.e., driving
under trees. During NLoS conditions, other than Gaussian errors are dominant such as multipath,
signal diffraction or reflection etc. We cannot say that the standalone positioning accuracy of the
proposed scheme is very high (Figure 13b), however there is a significant improvement in positioning
accuracy in comparison to LSE and WLSE.

Positioning error for moving scenario from three algorithms are analyzed in Table 5. Maximum
and RMS (root mean square) position errors from the proposed estimation algorithm are significantly
lower than LSE and WLSE. The maximum error are resulted when vehicle was moving under dense
trees and majority of the received observations were corrupted.
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Table 5. Analysis of position errors from three algorithm for moving scenario.

Error
Algorithm LSE WLSE Proposed

min 1.4615 3.3358 2.6673
max 535.8151 266.4498 94.1103

mean 111.6460 39.3734 10.7022
std 144.4107 54.1297 11.8657

RMS 182.5304 66.9329 15.9787

10. Conclusions and Future Perspectives

A novel, real-time GNSS positioning estimator is presented in this paper for land vehicles in
challenging environments. The proposed estimation procedure is based on robust MM estimation
theory. The presence of outlier observations in GNSS measurements significantly affect the positioning
results. This method is capable of approximating the user position with accuracy and reliability in
the presence of outlying observations by using the most trusted observations for position estimation
and excluding outliers. The proposed algorithm is compared against LSE and WLSE algorithms in
terms of 90% positioning accuracy. Extensive field and simulation tests are carried out to analyze
the performance of the proposed scheme in diverse environments. Results demonstrate that the
proposed scheme could be a promising scheme for GNSS-based positioning with high accuracy under
diverse conditions, especially in harsh and challenging environments, because LSE and WLSE are
also capable to provide similar accuracy in normal outlying free environments, however they are
not able to maintain the accuracy in challenging environments. For future extensions, we plan to
explore the applications of the algorithm in more complex GNSS-based positioning architectures such
as vector-based GNSS tracking receivers and fusion of GNSS measurements with other sensors such
as IMU (Inertial Measurement Unit) and vision sensors to further improve the positioning accuracy.
We also want to explore the application of the proposed estimation scheme (especially therobust
initialization stage) for integration with the EKF (Extended Kalman Filter) in order to enhance the
filter performance.
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Appendix A

Relative efficiency for different breakdown points using Tukey bisquare function

Table A1. Relation between Efficiency and Break Down Point (BDP).

BDP Efficiency ff K

50% 28.7% 1.547 0.1995
45% 37.0% 1.756 0.2312
40% 46.2% 1.988 0.2634
35% 56.0% 2.251 0.2957
30% 66.1% 2.560 0.3278
25% 75.9% 2.973 0.3593
20% 84.7% 3.420 0.3899
15% 91.7% 4.096 0.4194

0.10% 96.6% 5.182 0.4475
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Appendix B

Iterative Reweighted Least Squares Algorithm (IRWLS)

1. Defined convergence constant kcc and calculate initial estimate using weighted least squares

using X0 =
(
HTΣH

)−1ΣHTρ

2. Compute initial residual vector using r0 = ρ−HX0

3. Calculate initial standardized residuals;
^
r s,0 = r0

s0

4. Tukey bi-weight function type1 with tuning constant α is applied.

a. wl,0 = 1 if
∣∣∣^r s,l

∣∣∣ < α

b. wl,0 = 0 if
∣∣∣^r s,l

∣∣∣ ≥ α

5. Σ0 = diag
({

wl,0 : l = 1, 2, . . . , n
})

6. while

a. Xi =
(
HTΣi−1H

)−1HTΣi−1ρ

b. If ‖Xi−Xi−1‖
‖Xi‖

< kcc; break

c. If ‖Xi−Xi−1‖
‖Xi‖

≥ kcc; continue

d. ri = ρ−HXi

e. si = 1.4826×median|ri|
f.

^
r s,i =

ri
si

g. Calculate Σi = {w1,i, . . . , wn,i} using Tukey bi-weight function type 2. n is the number
of observations.

wl,i =




1−

(
^
r

l
s,i

α

)2
 2 ∣∣∣∣^r l

s,i

∣∣∣∣ ≤ α

0
∣∣∣∣^r l

s,i

∣∣∣∣ > α

Here l = {1, . . . , n}
h. go to step a.

7. end

Appendix C

Let nm = n + m are the total number of observations and nsub is the number of observations in

one subsample and N =

(
nm
nsub

)
are the total number of subsamples. For nsub ≤ nm, subsampling

is described with the following steps,

1. Select P =
{

p1, p2, . . . , pN
}

subsamples of size nsub and N =

(
nm
nsub

)
number of subsamples.

{(Hk, ρk) : k ∈ P}, P ⊂ {1, . . . , nm}, #(P) = nsub

2. Compute initial estimate for each subsample using weighted least squares estimation (WLSE)

Xpk =
(

HT
pk

Σpk
Hpk

)−1
Σpk

HT
pk

ρpk

Here
{

pk : k = 1, . . . , N
}

are the subsamples.
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