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Featured Application: This work can be conjunctly used with the support characteristic curve
of circular tunnels to find the optimum time of the installation of the support system in a way
to restrict the displacements to a specific value. The approach described in this manuscript
facilitates the design of circular tunnels for elasto-plastic, strain-softening rock masses obeying
both Mohr–Coulomb and Hoek–Brown strength criteria.

Abstract: The prediction of the support pressure (Pi) and the development of the ground reaction
curve (GRC) are crucial elements of the convergence–confinement procedure used to design
underground structures. In this paper, two different types of artificial neural networks (ANNs) are
used to predict the Pi of circular tunnels in elasto-plastic, strain-softening rock mass. The developed
ANNs consider the stress state, the radial displacement of tunnel and the material softening behavior.
Among these parameters, strain softening is the parameter of the deterioration of the material’s
strength in the plastic zone. The analysis also presents separate solutions for the Mohr–Coulomb
and Hoek–Brown strength criteria. In this regard, multi-layer perceptron (MLP) and radial basis
function (RBF) ANNs were successfully applied. MLP with the architectures of 15-5-10-1 for the
Mohr–Coulomb criteria and 17-5-15-1 for the Hoek–Brown criteria appeared optimum for the
prediction of the Pi. On the other hand, the RBF networks with the architectures of 15-5-1 for
the Mohr–Coulomb criterion and 17-3-12-1 for the Hoek–Brown criterion were found to be the
optimum for the prediction of the Pi.

Keywords: support pressure; radial displacement; ground reaction curve; circular tunnel; rock mass;
elasto-plasticity; strain-softening; artificial neural network

1. Introduction

Convergence–confinement is a broadly applied method to design underground structures.
In this method, a ground reaction curve (GRC) is applied to evaluate the interaction between
the rock mass and the support system near the tunnel’s face at the time of construction [1–3].
The classical problem of a circular tunnel constructed in the rock mass medium is illustrated in Figure 1b
(according to [4]). This problem uses two well-known rock mass strength criteria: Mohr–Coulomb and
Hoek–Brown. These criteria are usually adopted to investigate the behavior of materials. As described
in references [4–6], the governing equilibrium equation of this problem is as presented in Figure 1d.
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Figure 1. Description of: (a) different zones and corresponding strength parameters; (b) a circular 
tunnel in an elastic-plastic, strain-softening rock mass; (c) corresponding relationships for strength 
parameters; (d) governing equilibrium equation; (e) schematic view of a typical ground reaction curve 
(GRC) and parameters (Hoek–Brown case) affecting on the curve. 

In Figure 1,  is the radial stress, and  represents the tangential (hoop) stress, while the 
distance from the center of tunnel is shown using the  parameter. Thus, compatibility equations are 
simultaneously used to solve the stress–strain around the tunnel. In this regard, a plastic potential 
function and associated/non-associated flow rules are applied to find the governing relationship 
between the radial and tangential plastic strains [1,4,5,7–10,11–13]. The stress–strain around the 
tunnel is also calculated, considering the strength parameters in different zones (the peak, residual, 
and softening parameters), as presented in Figure 1a,c, according to reference [4]. As explained in 
reference [4], using different yield and potential functions, the non-associated flow rule is the 
modeled and adopted as the flow rule in all the cases. Also, starting from the peak strength 
parameters, the deterioration of the strength parameters of the material (referred to as the softening 
behavior of the rock mass around the tunnel) begins and continues. For softening parameter values 
higher than the critical value, the residual parameters are taken into the considerations. As shown in 
Figure 1a,c, ( )  represents each of the strength parameters of the rock mass, and  and ∗ , 
respectively, are the softening and the critical softening parameters. In this figure,  is the far-field 
in situ rock stress. In addition, Mohr–Coulomb and Hoek–Brown strength criteria are commonly 
used as two appropriate criteria to correctly evaluate the post-elastic behavior of rock mass. These 
criteria are, also, broadly applied in the literature for the development of the GRC. Hence, in this 
paper, available solutions with regard to the described problem are gathered, and rigorous datasets 

Figure 1. Description of: (a) different zones and corresponding strength parameters; (b) a circular
tunnel in an elastic-plastic, strain-softening rock mass; (c) corresponding relationships for
strength parameters; (d) governing equilibrium equation; (e) schematic view of a typical ground
reaction curve (GRC) and parameters (Hoek–Brown case) affecting on the curve.

In Figure 1, σr is the radial stress, and σθ represents the tangential (hoop) stress, while the
distance from the center of tunnel is shown using the r parameter. Thus, compatibility equations
are simultaneously used to solve the stress–strain around the tunnel. In this regard, a plastic
potential function and associated/non-associated flow rules are applied to find the governing
relationship between the radial and tangential plastic strains [1,4,5,7–13]. The stress–strain around the
tunnel is also calculated, considering the strength parameters in different zones (the peak, residual,
and softening parameters), as presented in Figure 1a,c, according to reference [4]. As explained in
reference [4], using different yield and potential functions, the non-associated flow rule is the modeled
and adopted as the flow rule in all the cases. Also, starting from the peak strength parameters,
the deterioration of the strength parameters of the material (referred to as the softening behavior of
the rock mass around the tunnel) begins and continues. For softening parameter values higher than
the critical value, the residual parameters are taken into the considerations. As shown in Figure 1a,c,
ω(η) represents each of the strength parameters of the rock mass, and η and η∗, respectively, are the
softening and the critical softening parameters. In this figure, σ0 is the far-field in situ rock stress.
In addition, Mohr–Coulomb and Hoek–Brown strength criteria are commonly used as two appropriate
criteria to correctly evaluate the post-elastic behavior of rock mass. These criteria are, also, broadly
applied in the literature for the development of the GRC. Hence, in this paper, available solutions
with regard to the described problem are gathered, and rigorous datasets for both Mohr–Coulomb
and Hoek–Brown strength criteria are obtained. As presented in the following sections, the collected
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datasets are fed into the different types of artificial neural networks (ANNs). The main reason of ANN
modeling of the tunnels’ support pressure (Pi) is to save time and still obtain high accuracy in the
predicted results. Previously, the evolutionary polynomial regression technique (EPR) was used by the
authors to predict the Pi and to develop the GRC [4]. Nevertheless, there still exist some considerable
prediction errors specially in the case of the Hoek–Brown strength criterion. Thus, we suppose that,
in this case, ANNs may be more accurate. In this regard, available datasets should be sorted in the way
shown in Figure 1e (a typical dataset for the case of the Hoek–Brown strength criterion). As depicted,
each data pair stands for a point in the Ui − Pi space. Ui is the tunnel’s radial convergence and Pi
represents the corresponding required internal Pi. Each of the described data is a function of some
input parameters (the number of input parameters is determined on the basis of the type of the used
strength criterion) and presents the Pi based on the all affecting parameters. For instance, in Figure 1e,
Pi is a function of 17 independent input parameters.

The challenge is to predict the Pi of the internal support system [7–9,14]. The commonly
known ways of Pi prediction employ different rock mass quality systems (e.g., rock mass rating,
RMR; geological strength index, GSI, etc.) [15]. Some of these methods are also based on
numerical codes, theoretical calculations, or coupled semi-analytical solutions [1,4,5,7,10–12,16–20].
Most of the commercial numerical packages, usually, use different finite element/difference codes [21].
These packages first define the element types, the material properties, and the geometry, together
with the boundary and loading conditions. Discrete element packages are, also, used to model a rock
medium containing specific joint sets with pre-defined orientations. All the described approaches
are used to derive the governing differential equations and to present the solutions of the developed
system [5,7,12]. Hence, they first need to be well validated against rigorous, available solutions and
case studies. In addition, some of the existing methods have drawbacks (e.g., some of the available
numerical solutions do not consider the deterioration of the strength parameters or do not correctly
take the plastic straining into consideration [1]). Also, they require an adequate knowledge and
background about the fundamentals and the theory of the convergence–confinement method and
numerical and mathematical techniques. In addition to requiring an expert for the analysis, it is
usually a time-consuming process to obtain the GRC. There are also other complex characteristics in
the original problem which can be taken into the account, for instance, the material softening.

Considering the above, there is still a need to develop new methods for the reliable prediction
of Pi in the elasto-plastic, strain-softening rock mass. In this regard, in this paper, the applicability of
another new intelligent method of ANN modeling to predict the Pi of circular tunnels constructed in
rock masses with different qualities is investigated.

The remainder of the paper is organized as follows. Section 2 presents the description of the
research problems with background information, data acquisition, and the principles of different types
of ANNs. Section 3 is the performance evaluation and compares the performance of ANNs with that
of the previously proposed EPR models. Section 4, summarizes the results of the analyses.

2. Methodology

ANNs are broadly applied in engineering [22–29]. Also, over the last decades, ANNs have
appeared as efficient meta-modelling methods applicable to a wide range of sciences, including material
science and structural engineering [30–32]. An important characteristic of ANNs is that they can be
used to build soft sensors, i.e., models with the ability to estimate critical quantities without having to
measure them [30]. In particular, such alternative models are built after a training process with only a
few available data, selected in a previous phase, to forecast the parameters. This considerably reduces
the time and money needed for the experiments. One of the applicable fields of ANNs described in the
literature is the prediction of the mechanical properties of concrete materials [33,34]. One of the main
benefit of ANNs is that there is no need of any prior knowledge about the nature of the problem [35].
This makes ANNs applicable for a fast and reliable calculation of the Pi by practitioners who are not
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expert in numerical modeling and programming. In this paper, two different types of ANNs, namely,
the multi-layer perceptron (MLP) and the radial basis function (RBF), are applied to predict the Pi.

Data Acquisition

A dataset was compiled from input parameters for the Mohr–Coulomb and the
Hoek–Brown criteria.

The datasets for the Mohr–Coulomb criteria were from reference [8]. A total of 168 independent
input and output parameters and their range of variation are presented in Table 1. Although the datasets
are those adopted from reference [8], the presented ANN models have the following superiority: When
a new dataset is available, ANN helps to have a prediction based on the relationships they have found
between previously used input and output parameters.

Table 1. Input and output parameters and their range of variation used in the prediction of the Pi

(Mohr–Coulomb case).

Parameter Range of Variation Standard Deviation Coefficient of Variation (%)

GSIpeak 21.4–64.9 17.48 34.45
GSIres 15.1–33 6.91 26.20

σci 23–162 60.09 60.49
γ 26–26.7 0.33 1.27
E 1.1–24 10.57 92.47
ϑ 0.25–0.3 0.02 8.27

cpeak 0.34–3.7 1.55 83.51
ϕpeak 24.81–57.8 14.26 33.24
cres 0.27–0.96 0.31 51.67
ϕres 15.69–51 15.42 42.51
mi 10–20 4.47 27.61
ψ 0–14 6.14 90.30
σ0 10.4–26 7.27 41.89
η∗ 0.0465–0.1394 0.037 43.43
Ui 8.86–1263.69 307.86 147.24
Pi 0–2 0.55 71.55

GSIpeak: peak geological strength index, GSIres: residual geological strength index, σci : uni-axial compressive
strength, γ: unit weight, E: Young’s modulus, ϑ: Poisson’s ratio, cpeak : peak cohesion, ϕpeak : peak friction angle,
cres : residual cohesion, ϕres : residual friction angle, mi : mi constant, ψ : dilation angle, σ0 : in-situ rock stress,
η∗ : critical softening parameter, Ui : radial displacement, Pi : support pressure.

It should be noted that, in this table, the unit of Ui is mm, and the remaining parameters follow
the units presented in the nomenclature.

Similar to the Mohr–Coulomb criteria, the dataset for the Hoek–Brown criteria was collected from
the cases studied in references [5,6,9,36] and [14,37]. In total, 547 datasets were applied. Table 2 shows
all the studied input and output parameters together with their range of variation. Differently
from Table 1, in Table 2, the unit of Ui is m.
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Table 2. Input and output parameters and their range of variation used in the prediction of the Pi

(Hoek–Brown case).

Parameter Range of Variation Standard Deviation Coefficient of Variation (%)

ri 3–5.35 0.95 26.78
GSIpeak 25–100 29.52 41.34
GSIres 10–100 35.89 67.07

σci 27.6–75 22.83 42.59
E 1.38–36.51 9.03 112.80
ϑ 0.25 0 0

mpeak 0.5–4.09 0.94 57.06
speak 0.0002–0.0622 0.016 203.39
apeak 0.5 0 0
mres 0.1–1.173 0.29 41.75
sres 0–0.002 0.00077 107.25
ares 0.5–0.6 0.03 5.99

ψpeak 0–30 9.38 84.71
ψres 0–20 5.50 94.45
σ0 3.31–30 6.54 43.53
η∗ 0.004742–100 34.66 216.12
Ui 0–0.282765 0.045 150.29
Pi 0–29.4 5.63 107.80

ri : radius of tunnel, GSIpeak : peak geological strength index, GSIres: residual geological strength index, σci : uni-axial
compressive strength, γ: unit weight, E: Young’s modulus, ϑ: Poisson’s ratio, mpeak : peak m constant, speak : peak
s constant, apeak : peak a constant, mres : residual m constant, sres : residual s constant, ares : residual a constant,
ψpeak : peak dilation angle, ψres : residual dilation angle, σ0 : in-situ rock stress, η∗ : critical softening parameter,
Ui : radial displacement, Pi : support pressure.

The multi-layer perceptron (MLP) ANN is still used by researchers in engineering [38].
The transfer function applied in this study is the TANSIG transfer function, according to the
following formula:

TANSIG(ex) =
2

1 + e(−2ex)
− 1, (1)

where ex is the weighted sum of the inputs for a neuron [39].
The radial basis function (RBF) ANNs are also popular in engineering. In RBF-ANN, by increasing

the Euclidean distance between the input vector and its center, the output attained using the activation
function will tend to zero. The width of RBF controls the decreasing rate of the output. Equation (2)
shows the Gaussian basis function:

yj = exp

−‖→x −→µ j‖
2

σ2
j

, (2)

3. Performance Evaluation

This section reports the evaluation of the performance of ANNs. It was conducted on the basis of
the commonly known coefficient of determination (R2), root-mean-square error (RMSE), and mean
absolute error (MAE) [22,24,27,28,40–47].

3.1. The Mohr–Coulomb Criterion

To evaluate the ANNs’ performances, ANNs with different architectures and neurons were built.
To do this, 70% of the total data fed into an ANN was used as the training dataset. The other remaining
30% was divided into two datasets, with 15% of the data used for cross-validation and 15% for testing.
Then, the ANNs showing the best predictions (in terms of maximum R2 and minimum RMSE and
MAE values) were selected. As shown in Table 3, the 15-5-10-1 and 15-15-1 networks were, respectively,
the best MLP-ANN and RBF-ANN in the prediction of Pi for the Mohr–Coulomb strength criterion.
In this case, the overall performance of MLP-ANN was better than that of the RBF-ANN.
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Table 3. Performance of different multi-layer perceptron (MLP) and radial basis function (RBF) artificial
neural networks (ANNs) in the prediction of the Pi for the testing data series (Mohr–Coulomb case).

Architecture

ANN Type

MLP-ANN RBF-ANN

R2 (%) RMSE (MPa) MAE (MPa) R2 (%) RMSE (MPa) MAE (MPa)

15-3-12-1 94.47 0.126617 0.09375 79.42 0.22383 0.1494
15-3-15-1 93.61 0.136705 0.100808 96.51 0.09361 0.06803

15-5-1 92.17 0.163929 0.102924 65.12 0.346439 0.256144
15-5-10-1 99.48 0.03883 0.02825 77.20 0.3193 0.2607
15-5-15-1 91.98 0.185252 0.128403 69.26 0.320201 0.180665
15-10-1 92.31 0.153122 0.110948 88.89 0.177232 0.142425

15-10-5-1 98.63 0.066325 0.042416 93.37 0.17276 0.124671
15-12-3-1 95.99 0.118647 0.06867 63.24 0.427169 0.340091
15-15-1 98.22 0.075068 0.058276 99.21 0.050576 0.040918

15-15-3-1 93.72 0.164167 0.107004 87.43 0.182931 0.140225
15-15-5-1 99.41 0.0459213 0.028215 81.90 0.255812 0.190918

RMSE: root mean squared error, MAE: mean absolute error.

Figure 2 (as a sample representative of the RBF-ANN) depicts the topology of the best
RBF-ANN developed for the Mohr–Coulomb case (15-15-1 architecture with R2 = 99.21%,
RMSE = 0.050576 MPa, and MAE = 0.040918 MPa). Figure 3a,b show the predicted Pi versus the
calculated Pi.
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Figure 3. (a) ANN-based predicted Pi versus calculated Pi; (b) differences between ANN-based
predicted Pi and calculated Pi for the best MLP-ANN (15-5-10-1) applied to the testing data series for
the Mohr–Coulomb criterion.

Similar to Figure 3a,b, Figure 4a shows a high correlation between the calculated and the
ANN-based prediction for the RBF-ANN in the case of Mohr–Coulomb strength criterion. Figure 4b,
which better describes the occurred errors in the predictions for each sample, is another demonstration
of the high capability of the proposed ANNs.
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predicted Pi and calculated Pi for the best RBF-ANN (15-15-1) for the Mohr–Coulomb criterion.

3.2. The Hoek–Brown Criterion

Similar to the Mohr–Coulomb case, the evaluation of the performance of ANNs was carried out
on the 15% of the whole data series. By investigating different one- and two-layered neural ANNs,
the 15-5-15-1 and 17-3-12-1 architectures were found to be the most efficient ANNs in the prediction
of the Pi of tunnels in the Hoek–Brown case. As indicated in Table 4, the 17-5-15-1 MLP-ANN had
a coefficient of determination of 99.91%, an RMSE of 0.179285 MPa, and a MAE of 0.12516 MPa.
On the other hand, the most accurate RBF-ANN had an R2 = 93.18%, an RMSE = 1.558064 MPa,
and a MAE = 1.078099 MPa. Although the developed ANNs for the Mohr–Coulomb case are more
accurate compared to the Hoek–Brown case in terms of occurred errors, the ANNs suggested for the
Hoek–Brown modeling were still useful and efficient. Also, it was shown that that MLP-ANN are more
rigorous in the prediction of the Pi of circular tunnels excavated in the elasto-plastic, strain-softening,
Hoek–Brown rock mass.



Appl. Sci. 2018, 8, 841 9 of 15

Table 4. Performance of different MLP and RBF ANNs in the prediction of the Pi for the testing data
series (Hoek–Brown case).

Architecture

ANN Type

MLP-ANN RBF-ANN

R2 (%) RMSE (MPa) MAE (MPa) R2 (%) RMSE (MPa) MAE (MPa)

17-3-12-1 99.72 0.268343 0.204655 93.18 1.558064 1.078099
17-3-15-1 93.37 1.36379 0.965679 84.51 2.515467 1.703367

17-5-1 99.63 0.317273 0.233694 78.35 2.570293 1.65224
17-5-10-1 90.37 1.565927 1.24049 89.05 2.165716 1.561432
17-5-15-1 99.91 0.179285 0.12516 87.72 1.810275 1.213031
17-10-1 99.67 0.300537 0.225826 77.64 2.497819 1.639146

17-10-5-1 99.87 0.252432 0.164251 80.62 2.627902 1.729953
17-12-3-1 99.80 0.239714 0.167833 88.72 2.06676 1.310764
17-15-1 99.65 0.322873 0.233356 90.51 1.877567 1.26464

17-15-3-1 99.85 0.20853 0.125573 77.22 3.019557 2.056784
17-15-5-1 99.72 0.307093 0.162638 72.15 3.060725 2.036629

The architecture and the topology of the most efficient MLP-ANN proposed for the modeling of
the Pi in the Hoek–Brown case 17-5-15-1 is shown in Figure 5.
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in Figure 6. As clearly illustrated, the predictions are similar to the exact values of the calculations. 
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For the best constructed MLP-ANN, the predicted and calculated Pi, along with the relative
differences of predictions and calculations for each independent exemplars are, respectively, shown
in Figure 6. As clearly illustrated, the predictions are similar to the exact values of the calculations.
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This result, which was generally observed also for the RBF networks (Figure 7), confirms that both
MLP and RBF ANNs are highly applicable to the determination of the Pi.
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3.3. Comparison with Previously Obtained Models

In this section, the performance of the developed ANNs is compared to that of a previous
artificial intelligence (AI) technique developed by other authors [4], i.e., the evolutionary polynomial
regression (EPR), for the prediction of Pi. In this regard, the testing data series used in each of the
ANNs was fed into the predictive EPR models, and the Pi were approximated. The results of the
comparison between the EPR and the ANN predictions are presented. On the basis of the results, all
the proposed MLP and RBF ANNs predicted the pressures more accurately than the corresponding
EPR models. As an example, Figure 8 compares the results obtained from an EPR model to those
predicted by the 15-5-10-1 MLP-ANN for the case of Mohr–Coulomb criterion and by the 17-5-15-1
MLP-ANN for the case of Hoek–Brown strength criterion. As shown, all the performance’s evaluation
criteria presented higher accuracy in the ANN-based predictions than in the EPR model.
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4. Conclusions and Perspectives

The available classical methods require a broad understanding of the governing mechanisms of
the convergence–confinement method and programming skills to derive the GRC for the elasto-plastic,
strain-softening rock mass. Considering the proven ability of AI techniques in the prediction of the
Pi of circular tunnels [4], the applicability of another intelligent method is investigated in this study
to obtain even more accurate predictions. To do this, the performance of two different ANN types,
namely, MLP and RBF, were evaluated and compared. The described methods were applied to the
GRC development in both the Mohr–Coulomb and the Hoek–Brown rock mass cases.

In this regard, available solutions with regard to the problem were collected, and a total of 168
and 547 datasets were compiled for the Mohr–Coulomb and the Hoek–Brown cases, respectively.
Elastic rock mass properties, peak and residual strength parameters, softening and geometrical
parameters, in situ stress, and the convergence of tunnel were employed as the input parameters to
predict the internal Pi.

After building various one- and two-layer neural networks with the TANSIG transfer function
and assessing the values of the coefficient of determination, root-mean-square error, and mean
absolute error, the following conclusions were obtained:

• The ANN-based method appeared to be a highly performant method, applicable to the the
development of GRC and the estimation of the Pi of circular tunnels;

• The 15-5-10-1 (R2 = 99.48%, RMSE = 0.03883 MPa, and MAE = 0.02825 MPa) and 15-15-1
(R2 = 99.21%, RMSE = 0.050576 MPa, and MAE = 0.040918 MPa) networks were reported as
the best MLP and RBF networks for the Mohr–Coulomb case, respectively;

• For the Hoek–Brown case, the 17-5-15-1 MLP (R2 = 99.91%, RMSE = 0.179285 MPa,
and MAE = 0.12516 MPa) and the 17-3-12-1 RBF (R2 = 93.18%, RMSE = 1.558064 MPa,
and MAE = 1.078099 MPa) architectures were the most accurate proposed neural networks;
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• It was shown that the overall performance of MLP networks was better than that of the RBF
networks for both Mohr–Coulomb and Hoek–Brown cases;

• The results obtained from the comparison between neural network and EPR models proved the
superiority of ANN to the EPR in the prediction of Pi;

• The proposed networks can be effectively applied by design engineers and practitioners
to accurately, time-effectively, and economically obtain the GRC using a new set of data
is available;

• The proposed networks can be successfully applied in conjunction with the support characteristic
curve to calculate the proper time of the installation of the tunnels’ supports;

• Regarding the successful application of ANNs to the problem and as suggestion for future works,
the applicability of other soft computing techniques (e.g., genetic programming, ant or bee colony,
etc.) can be investigated;

• As another perspective of the current research, stress–strain and time-dependent behavior of rock
masses can be studied on the basis of the implementation of viscose constitutive models;

• The formation of damaged zones around the tunnel’s surface (which is the subject of new work by
the authors) and new EPR and ANN methods for the prediction of pressures are other interesting
perspectives suggested by the present paper.
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the conducted research, reviewed, and revised the paper. Ł.S. reviewed, revised, and improved the paper.
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Nomenclature

Symbol Description Unit Symbol Description Unit
ares Residual a constant [-] wj Weight between neurons [-]

apeak Peak a constant [-]
→
x Input [-]

ci Calculated value [-] yj Gaussian basis function [-]
cpeak Peak cohesion MPa γ Unit weight kN/m3

cres Residual cohesion MPa η Softening parameter [-]
ex Weighted sum of the inputs [-] η∗ Critical softening parameter [-]
E Young’s modulus GPa ϑ Poisson’s ratio [-]

GSIpeak Peak geological strength index [-]
→
µ j Center of the Gaussian basis function [-]

GSIres Residual geological strength index [-] σ0 In-situ stress MPa
MAE Mean absolute error [-] σci Uni-axial compressive strength MPa

mi mi constant [-] σj Spread of the Gaussian basis function [-]
mpeak Peak m constant [-] σr Radial stress MPa
mres Residual m constant [-] σθ Tangential stress MPa

n Number of datasets [-] ϕpeak Peak friction angle ◦

pi Predicted value [-] ϕres Residual friction angle ◦

Pi Support pressure MPa ψ Dilation angle ◦

r Distance from the tunnel center m ψpeak Peak dilation angle ◦

R2 Coefficient of determination [-] ψres Residual dilation angle ◦

RMSE Root-mean-square error [-] ωpeak Peak strength parameters [-]
speak Peak s constant [-] ωres Residual strength parameters [-]
sres Residual s constant [-] Ui Radial displacement m & mm

TANSIG Tangent hyperbolic function [-]
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