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Abstract: The energy needed for highly efficient heat transfer has shown a continuous growth,
as the energy reduction. For highly efficient power convection, gas turbine is an important device at
present. But, the design of highly efficient gas turbine is limited by the temperature and the material’s
temperature resistance around the inlet. One part of the inlet need to be protected from burning
out is transition piece. A bionic thermal surface with rib turbulators is designed according to the
turbulence function of alopias’ branchial arches and is evaluated for thermo-protection enhancement
in a simplified gas turbine transition piece using computational fluid dynamics (CFD) simulation.
With the given diameter (Φ = 10.26 mm) of the impinging hole, three different horizontal distances (S)
from impinging holes to the front of first-row rib were solved, which were S1 = 20 mm, S2 = 40 mm,
and S3 = 60 mm, respectively, in case 1. But, the results revealed that S is not a significant influence
factor on heat transfer efficiency. The cooling coefficient increases from 0.194 to 0.198 when the
distance varies from S1 to S3. In case 2, rib turbulator width (W) and height (H) have been studied in
ranges from 0.5 × Φ to 1.5 × Φ. All of the numerical results indicated that the best size of the rib
turbulators could improve the heat transfer efficiency to 32.5%, when comparing with the smooth
surface. All of the comparisons will benefit the structural design of heat transfer, which could be
used for solving more severe problems in thermo-protection.

Keywords: computational fluid dynamics (CFD); numerical simulation; convective heat transfer;
gas turbine; simplified transition piece model; bionic thermal surface

1. Introduction

The energy that is needed for highly efficient transfer has shown a continuous growth, as the
energy reduction. For highly efficient power convection, gas turbine is an important device at
present. In order to enhance power transform efficiency, an available approach always been applied
is increasing the inlet temperature in the gas turbine [1]. The research indicates that the ability of
power conversion on the turbine can be improved by 10% as the inlet temperature increasing 55 K.
However, higher gas temperature will lead to larger thermal loads on the thermal surface in the
transition piece, and will even threaten the working lifespan and the reliability of gas turbine hot
component [2]. Therefore, the cooling technology on such a high temperature components becomes to
be a critical task.
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The transition piece, which is an important component combining the combustor and turbine,
is studied by scholars for heat protection. A. Gallegos Muñoz [3] investigated the geometric construction
of transition piece effected on the contours of temperature and velocity in the outlet section, by using CFD.
Then, structural optimization was carried out by the Genetic Algorithms (GA). The optimized results
indicated that the average inlet gas temperature and the average velocity were decreased by 2.32% and
about 7.73%, respectively.

Wang et al. [4,5] provided the sheath with hundreds of small impingement cooling jets can
enhance the convective heat transfer coefficient by the strong forced convention coolant, which was
installed over the external thermal surface of the transition piece. Both experimental and computational
studies were carried out. A 1/7th section of a circle was designed to simulate a part of the dump
diffuser accommodating one and two half transition pieces. The experimental results showed that the
non-sheathed case provided a 40% reduction in pressure losses when comparing with the sheathed
case, but 35% increase in the maximum surface temperature difference and an increase of 13–22% in
other surface temperature difference, based on the temperature difference of the bulk inlet and outlet
temperature. The CFD results also identified that the addition of the sheath was advised.

Xu [6] considered the coolant hole’s angle and the injection angle of coolant flow effected on the
heat transfer efficiency of impinging. The CFD simulation models were employed and the results
indicated that heat transfer effectiveness was improved with the rising hole’s inclination and injection
angle, since the thermal surface was impinged by more coolant directly. They [7], also investigated that
jet flow with water drop promoted impinging cooling efficiency increasing. They concluded the mass
of 3 × 10−3 kg/s droplets with diameters of 5–35 µm could enhance the 90% cooling effectiveness and
reduce 122 K of surface temperature. For enhancing the impinging cooling efficiency, they [8] designed
pin fins in the coolant chamber to increase the turbulence, and optimized the pin fin diameter and
the distance. After the pin fins were brought in, the numerical reports showed that the temperature
declined of 38.77 K, when comparing to without pin fins. With the mist injecting into the cooling
chamber, the area weighted average temperature got a lower value without excess pressure loss.

The transition piece in the above literature has a smooth thermal surface. However, non-smooth
thermal surfaces may have higher cooling efficiency or better convective heat transfer enhancement.
How to design a surface with excellent thermal protection ability remains a challenge for researchers.
After billions of years of evolution, some biological structures already have excellent properties,
which could provide inspiration for thermal surface designers.

Nowadays, the excellent structure of creatures in natural evolution has provided a lot of
inspiration for engineering. The analysis shows that the non-smooth structural characteristics of the
livings’ surface morphology can change the flow. Cui et al. [9] considered four types of bionic surfaces
of reducing pressure loss, which were riblet-shaped, ridge-shaped, V-shaped, and placoid-shaped,
respectively. Using the Lattice Boltzmann Method (LBM), an order for drag reduction coefficient (η)
was generated, as follows: ηridge > ηV > ηp > ηrib. The results suggested that the ridge-shaped structure
effected on reducing significantly, and the riblet-shaped structure could strengthen turbulence flow.

Hu et al. [10] explored the heat transfer performance of coolant stream coming out for the hollow
shell, which was designed by using the bionic Barchan-dune shaped (BDS) concept. They claimed that
the BDS design could make the coolant stream attach to the test surface more firmly, but with more
friction loss.

Referring to turbulence flow characteristic of creatures’ structure, the thermal protection of
the transition piece may be solved more efficiently. In this paper, inspired by alopias’ gill arch,
a two-chamber rectangular model with rib turbulence is designed for enhancing heat transfer efficiency.
Because the study of the biomimetic thermal surface is in comparison to parameter differences,
the numerical simulations that have turned out to be more available and less expensive than the
contrast experiments are carried out. The CFD method is applied to investigate the flow behavior and
the heat transfer of the coolant flowing in cooling chamber with rib surface.
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2. Bionic Design

To adapt to the marine environment, alopias need to complete respiration by absorbing the scarce
oxygen in the deep water, and the excellent morphology of its gills can help oxygen exchange efficiently.
The gill morphological structures of alopias supercilious is shown in the Figure 1. The branchial arch
of alopias changes the flow directing of the seawater from mouth to gill filament, meanwhile more
turbulence is generated. The oxygen in the flow can be contacted with the capillaries in gill filaments
easily [11]. The formation of turbulence that is inspired by the gill arches can strengthen the absorption
of the oxygen; it is likely that more turbulence may improve the convective heat transfer of the coolant.
In order to seek the correctness of this idea, the thermal surface with ribbed turbulators will be designed
in a simplified gas turbine transition piece.
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Figure 1. Gill morphological structure of Alopias [12].

Since the structure of gas turbine transition piece in operating is complex, the double-chamber
simplified model is designed in this paper. In order to exclude the effect of curvature on the heat
transfer, the simplified model is rectangular, as in Figure 2a. The “X” direction is the coolant streamwise,
and the direction of the gas flow is countercurrent. The flowing length L = 1050 mm and the
width W = 320 mm are used. In the figure, both sides of the below channel in the X axis direction are
non-sealed, which is the mainstream chamber. Contrarily, one side of the above channel as the coolant
chamber is opened, and the other side is closed. The height of coolant chamber and gas chamber are
38 mm and 162 mm, respectively. There are three holes that are distributed in the top surface, and the
diameter of all the holes (Φ) is about 10.26 mm. The length of the rib is 320 mm. The Figure 2b shows
the section of the coolant chamber with two ribs in geometry. The weight and the height of rib are set
as W and H, respectively. The distance from the first-row rib to the closed wall is 420 mm, and the
spacing of the ribs is 25 mm. In case 1, it is considered that the streamwise distance from the holes
to the front of the first-row rib is various, and is set as 20 mm, 40 mm, 60 mm, respectively. In case 2,
nine different sizes of the rectangular ribs are designed for choosing the best one for improvement of
cooling efficiency.
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Figure 2. (a) Picture of the structure of simplified rectangular gas turbine transition piece; (b) Picture of
the section of the coolant chamber with two ribs (the blue section in picture (a)).
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3. Mathematics & Materials

In these cases, each hole angle with different coolant injection orientations are confirmed in the
former researches, so the coolant inlet orientation is orthogonal to the wall. According to the working
condition of one F model gas turbine, the temperature and the mass flux rate of the mainstream flow is
set as 1300 K and 32.72 kg/s, respectively. The turbulence intensity is set at 5%, which can be estimated
based on the mass flow rate, area, hydraulic diameter of the gas inlet, and gas viscosity. In order
to reduce calculation, the number of impact hole was reduced to only three in the coolant chamber.
Therefore, the value of pressure on the jet hole inlet is used as the initial conditions, which is set at
1.821 MPa. The pressure recovery coefficient is given as 0.95, which means that the ratio of pressure
between the inlet and outlet of transition piece with smooth surface. The turbulent intensity on the
coolant inlet is 10%. Details of boundary conditions are ascertained in Table 1 [13]. In the mainstream
chamber, it is assumed that the main streamflow is a mixture of N2, O2, H2O, and CO2, as well as rare
gases. In another chamber, air as the cooling flow is used for all of the simulations. The material of
the thermal surface is using Nimonic 263 (Hucheng industry (Shanghai) Co., Ltd., Shanghai, China),
for which information could be found from internet.

Table 1. Boundary conditions [13].

Component Boundary Conditions Magnitude

Mainstream inlet

Mass flux rate 32.72 kg/s
Gas temperature 1300 K

Turbulent intensity 5%
Hydraulic diameter 0.324 m

Mainstream outlet

Pressure 1.573 MPa
Turbulent intensity 5%
Hydraulic diameter 0.324 m

Convection coefficient 10 W/m2K

Coolant chamber

Air temperature 300 K
Pressure 1.821 MPa

Pressure recovery coefficient 0.95
Turbulent intensity 10%
Hydraulic diameter 0.01026 m

The model is a computational domain that is made up by hexahedron meshes in the software,
ANSYS-ICEM, version 18.0. In Figure 3, the grid sensitivity test for the simplified two-chamber model
with the biomimetic thermal surface are carried out. When the number of cells increase from 2,227,680
to 2,962,080, the area weighted average temperature is declined by 0.3%. The calculation deviation of
temperature is insignificant on further increasing the numbers of cells. Thus, 2,200,000 cells are used
as a grid independent mesh for obtaining the solution variables in our further simulation.

In order to intuitively acquire the quantity of heat that is taken away in the process of heat
exchange in the cooling chamber, the flow rate temperature λ, which is provided as an indicator that is
computed by the product of flow rate and temperature, and it is defined as

λ =
w

Tρ
→
v · d

→
A =

n

∑
i=1

Tiρi
→
v i ·

→
Ai (1)

where ρ is the density of the coolant and
→
v is the facet velocity on the selected field. Also, the heat

transfer coefficient can be defined as
η =

βi − βs

βs
(2)
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which serves as an indicator to value the performance of impinging cooling. In Equation (2), i is the
number of group and s represents the group of smooth thermal surface. Also, β is defined as

β = λout − λin (3)

In Equation (3), λout and λin are the flow rate temperature on the outlet and the inlet surfaces.
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In order to describe the contour of temperature on thermal surfaces and the distributed field
of turbulent kinetic energy in the coolant chamber, this study is using the control-method, which is
a commercial CFD code, ANSYS-FLUENT 18.0. The flows in these simplified calculated models
are steady, Newtonian, three-dimensional, incompressible, turbulent, and behave according to three
fundamental laws: continuity, and the conservation of momentum and energy. The realizable k − ε

turbulence model with the enhanced wall function is chosen to simulate the flow behaviors and the
convective heat transfer enhancement on the biomimetic thermal surface. All of the runs were solved
on a workstation with sixteen cores i7 3.6 GHz CPU. The decreasing of the mass residual by 85%
percentage is chosen to be the standard of convergence tolerance during 2000 solving iterations.

4. Results & Discussion

In this section, the contours of temperature on the thermal surface and the behaviors in the coolant
chamber are present in order to explain the heat transfer efficiency and the mechanism of enhancing
heat transfer. Since the pressure at the inlet of the impingement cooling holes is controllable, the effect
of the rib structure on the pressure loss at the inlet and outlet will not be considered in this paper.

4.1. Comparison of Case 1

To investigate the influence on the streamwise distance from the cooling holes to the front of
the first-row rib, contours of turbulence kinetic energy for different distances are shown as Figure 4,
which presents the process of cooling impingement. The results show that the maximum turbulent
kinetic energy reduced from 21,440 m2/s2 to 20,830 m2/s2, when the space increases 20 mm to 60 mm
in these three groups. It can be sure that the collision of the coolant flow and the turbulent kinetic
energy become weak at the front of the first-row rib, when the horizontal position of the rib is designed
away from the impact cooling hole. But, the total area of turbulent kinetic energy on the thermal
surface is not changed with various streamwise distance.
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According to the above formats, the outlet flow rate temperature is calculated and is shown
in Table 2. Due to the mass flow is conserved, the outlet flow rate temperature (λout) can present
heat taken away in the coolant chamber. In the Table 2, Negative value indicates outflow cooling
chamber direction. The results show that the outlet flow rate temperature is almost the same, when the
streamwise distance increases from 20 mm to 60 mm. So, the quantity of heat exchanged is almost not
affected by different spaces in the coolant chamber. It can be considered that the thermal protection on
the transition piece has not been significantly improved. Therefore, it also can be concluded that the
streamwise distance is not a significant factor affecting the heat transfer coefficient.

Table 2. Data of the outlet flow rate temperature on biomimetic thermal surface in case 1.

N W (mm) H (mm) S (mm) λout (K·kg/s)

1 10 10 20 −110.3
2 10 10 40 −110.3
3 10 10 60 −110.6

4.2. Comparison of Case 2

To investigate the effect of the sizes of rectangular ribs on the thermal surface, the width,
and height of the ribs are both set as 5 mm, 10 mm, and 15 mm in the case 2. From these results,
the excellent structure sizes can be found.

4.2.1. Reflection on Temperature

Based on the results of the numerical simulation, it can be concluded that the flow rate temperature
on the coolant inlet is almost not changed as 50 K·kg/s. But, the outlet flow rate temperature is various
with different groups, which is shown as Table 3. According to the conservation of quality, it is
obviously that the larger the absolute value of λout is, the more heat can be taken away. So, as is
shown in Table 3, the simulation results indicate that the cooling efficiencies on the bionic surfaces
are all clearly improved. In detail, when W = 5 mm and 10 mm, the best cooling efficiency shows on
H = 10 mm. However, when W = 15 mm, the case of H = 10 mm presents the worst. So, the height and
width of the rib are considered that can both strongly influence the cooling performance. That is the
reason why the third group has the best thermal protection effect, while the effect of the sixth group
is very closed to the third. When compared with the result of the smooth thermal surface, the best
cooling efficiency can be improved to 32.5%.

In order to study the thermal protection on the transition piece, the comparisons of temperature
distribution on thermal surfaces are shown as Figure 5. Temperature distributed on the thermal surface
without rib turbulators below the injections is low, but other place is very high; however, the whole
temperature that was distributed on the bionic thermal surfaces with rib turbulators is exhibited
uniformly. In addition, the minimum temperature can be found on the bionic heat transfer surface and
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the data are tabulated in Table 3. The position of the lowest temperature point is mainly influenced by
the height of the ribs. When H = 5 mm, the lowest temperature appears below the impingement cooling
hole, which has no difference with the smooth thermal surface. But, when H = 15 mm, the lowest
temperature is located on the upper rib facet and is closer to the hole. As shown in Table 3, the value
of the lowest temperature declines with H increasing. It is considered that the upper rib facet is closer
to the cooling hole, with H increasing and it can be rushed directly by the air from cooling holes.

Table 3. Data of flow rate temperature and cooling efficiency on thermal surface in case 2.

Group W (mm) H (mm) λout (K·kg/s) Tmin (K) η

1 0 0 −83.6 783
2 5 5 −105.7 601 26.4%
3 5 10 −110.8 532 32.5%
4 5 15 −102.0 467 22.0%
5 10 5 −104.1 610 24.5%
6 10 10 −110.6 529 32.3%
7 10 15 −108.5 479 29.8%
8 15 5 −107.4 593 28.5%
9 15 10 −105.1 566 25.7%

10 15 15 −108.3 474 29.5%
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4.2.2. Reflection on Velocity

To explain the mechanism of enhancing heat transfer, analyzing the flow characteristics is essential
on the thermal surface in a simplified two-chamber. Figure 6 provides information on detailed flow
characteristics above and nearby the rib turbulator arrangement. The result on the section in the
XZ plane (Y = 0 in Figure 2a) indicates that the fluid vector will be altered by the convex surface,
which means that the distribution of fluid has been changed. Most researches point out that the vortex
makes convective heat transfer improvement on the fluid-solid surface. Two vortex can be seen in the
cooling chamber of Figure 6 which were caused by inducing of double-rib structures. One is generated
above the rib, with the other being located between two ribs. The height of rib H is perceived to be the
influence factor. When H = 5 mm, there is amounts of space over the rib remained for vortex growing.
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However, when H increased, the scale of vortex is squeezed. The larger the H is, the flatter vortex
become. Simultaneously, the change of W can also affect the velocity and the generation of vortex,
which indirectly influenced the heat transfer enhancement of convex surface. Overlarge W would
narrow the space between two ribs, which may bring about heat-obstruct effect as ball bearing or make
vortexes hardly exist. Similarly, vortexes cannot effectively cool down the whole space if W is too
small. It is worth noting that oversized H may cause no vortex be found between ribs. In Figure 6,
the result of group 4 (10 × 15) shows almost no vortex during the space of double-rib and the worst
result, which is opposite to all the other results with non-smooth surface.
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4.2.3. Reflection on Turbulence Kinetic Energy

Figure 7 shows the generation of turbulence kinetic energy in the double-chamber model in terms
of contours. It is quite clear that the turbulent kinetic energy is found to be higher at the front of the
first-row rib because of reflux colliding with the inlet impinging coolant. The larger W leads to a closer
distance from the impinging hole to the front surface of the first row that collects more kinetic energy
at the corner of rib. Similar phenomenon can also be produced by increasing H, but it may weaken the
energy spreading on streamwise. It can be observed that turbulence kinetic energy is affected less by
the second-row rib, since the value of velocity from the coolant entrance is too much large and the
first-row rib is too close with the coolant air column.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 10 
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5. Conclusions

In this study, it has been investigated that the convective heat transfer and the coolant flow
characteristics on the biomimetic thermal surface by using the realizable k− ε models. The effect of rib
turbulators position is discussed on the thermal surface, the variable, as well as the height and width
of the rib turbulators is also studied by the comparison. The major findings of the present study are
summarized below:

1. The biomimetic thermal surface inspired by Alopias’ branchial arch can improve jet
impingement cooling.

2. The effect of the streamwise distance from the holes to the first-row rib are studied on the
biomimetic surface. It can be confirmed that the outlet flow rate temperature is almost the same,
when the streamwise distance increases from 20 mm to 60 mm. So, the streamwise distance is not
a significant factor.

3. Since ejected into the cooling chamber at a high speed, the coolant airflow is impacted by the rib
turbulators. The simulation results show that the best size of the rib turbulators can improve the
heat transfer efficiency to 32.5%, When comparing with the results of the smooth thermal surface.

The above conclusion and the fluid characteristics analysis provide a new sight of bionic
structural design on heat transfer, especially for the gas turbine and manufacturing machines,
which confront a similar severe working condition. We hope both of different researcher could
make much deeper research.
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