
applied
sciences

Article

Parallel Improvements of the Jaya Optimization
Algorithm

Héctor Migallón 1,* ID , Antonio Jimeno-Morenilla 2 ID and Jose-Luis Sanchez-Romero 2 ID

1 Department of Physics and Computer Architecture, Miguel Hernández University, Elche,
E-03202 Alicante, Spain

2 Department of Computer Technology, University of Alicante, E-03071 Alicante, Spain;
jimeno@dtic.ua.es (A.J.-M.); sanchez@dtic.ua.es (J.-L.S.-R.)

* Correspondence: hmigallon@umh.es; Tel.: +34-966-658-390

Received: 9 May 2018; Accepted: 16 May 2018; Published: 18 May 2018
����������
�������

Abstract: A wide range of applications use optimization algorithms to find an optimal value,
often a minimum one, for a given function. Depending on the application, both the optimization
algorithm’s behavior, and its computational time, can prove to be critical issues. In this paper, we
present our efficient parallel proposals of the Jaya algorithm, a recent optimization algorithm that
enables one to solve constrained and unconstrained optimization problems. We tested parallel Jaya
algorithms for shared, distributed, and heterogeneous memory platforms, obtaining good parallel
performance while leaving Jaya algorithm behavior unchanged. Parallel performance was analyzed
using 30 unconstrained functions reaching a speed-up of up to 57.6x using 60 processors. For all
tested functions, the parallel distributed memory algorithm obtained parallel efficiencies that were
nearly ideal, and combining it with the shared memory algorithm allowed us to obtain good parallel
performance. The experimental results show a good parallel performance regardless of the nature of
the function to be optimized.

Keywords: Jaya; optimization problems; parallel; heuristic; OpenMP; MPI; hybrid MPI/OpenMP

1. Introduction

Optimization algorithms aim at finding an optimal value for a given function within a constrained
domain. However, functions to be optimized can be highly complex and may present different numbers
of parameters (or design variables). Indeed, many functions have local minima, so finding the absolute
optimal value among the whole range of possibilities can be difficult.

Optimization methods fall into two main categories: deterministic and heuristic approaches.
Deterministic approaches take advantage of the problem’s analytical properties to generate a sequence
of points that converge toward a global optimal solution, these methods depend heavily on linear
algebra, since they are commonly based on the computation of the gradient of the response variables.
Deterministic approaches can provide general tools for solving optimization problems to obtain
a global or an approximate global optimum (see [1]). Nonetheless, in the case of non-convex or
large-scale optimization problems, the issues can be so complex that deterministic methods may not
allow one to easily derive a globally optimal solution within a reasonable time frame. These methods
are within the scope of mathematical programming, being the results of a deterministic optimization
process that is unequivocable and replicable. Well known methods include the Newton method, the
gradient descent method, and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Heuristic
methods are proposed in order to speed the convergence up, to avoid local minimums, and to avoid
restrictions in the functions to be optimized. Heuristic methods can be defined as guided (random)

Appl. Sci. 2018, 8, 819; doi:10.3390/app8050819 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4937-0905
https://orcid.org/0000-0002-3789-6475
https://orcid.org/0000-0001-8766-2813
http://dx.doi.org/10.3390/app8050819
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/5/819?type=check_update&version=1

Appl. Sci. 2018, 8, 819 2 of 18

search techniques that are able to produce an acceptable problem solution, though its adequacy with
respect to the target problem cannot be formally proven.

Heuristic optimization algorithms are usually classified into two main groups: Evolutionary
Algorithms (EA) and Swarm Intelligence (SI) algorithms. Among EA algorithms, worthy of mention
are the Genetic Algorithm (GA), the Evolutionary Strategy (ES), Evolutionary Programming (EP),
Genetic Programming (GP), Differential Evolution (DE), Bacteria Foraging Optimization (BFO), and
the Artificial Immune Algorithm (AIA). Among SI algorithms, worthy of mention are Particle Swarm
Optimization (PSO), Shuffled Frog Leaping (SFL), Ant Colony Optimization (ACO), Artificial Bee
Colony (ABC), and the Fire Fly (FF) algorithm. Other algorithms based on phenomena in nature
have been developed, and these include Harmony Search (HS), Lion Search (LS), the Gravitational
Search Algorithm (GSA), Biogeography-Based Optimization (BBO), and the Grenade Explosion
Method (GEM).

The success of the vast majority of these algorithms is largely based on the parameters they
use, which basically guide the search process and contribute chiefly to exploring the search space.
The proper tuning of an algorithm-specific parameters represents a crucial success factor toward
finding the global optimum. There are other algorithm-specific parameters. In PSO, these include
population size, maximum number of generations, elite size, inertia weight, and acceleration rate; in
ABC, these include onlooker bees, employed bees, and scout bees; in HS, harmony memory, number
of improvisations, and pitch adjusting rate.

Recently, two optimization algorithms, called TLBO (Teacher–Learner Based Optimization) [2]
and Jaya [3], allowing one to dispense with specific parameter tuning have been put forward. In fact,
only general parameters such as the number of iterations and population dimension are required.
The TLBO and the Jaya algorithm are quite similar, the main difference being that TLBO uses two
phases at every iteration (teacher and learner phases), while the Jaya algorithm performs only one.
The Jaya algorithm in particular has sparked great interest that is growing within a range of diverse
scientific areas, see [4–17] among others. Recently, modifications to the Jaya algorithm have been
proposed, increasing the number of scientific application areas, and these modified algorithms include
the elitist Jaya [18], the self Jaya [19], and the quasi-oppositional-based Jaya [20] algorithms.

Some recent works show the advantages of using parallel architectures when executing
optimization algorithms. The authors of [21] implemented the TLBO algorithm on a multicore
processor within an OpenMP (Open MultiProcessing) environment. The OpenMP strategy emulated
the sequential TLBO algorithm exactly, so calculation of fitness, calculation of mean, calculation of
best, and comparison of fitness functions remained the same, while small changes were introduced
to achieve better results. A set of 10 test functions were evaluated when running the algorithm on a
single core architecture, and were then compared on architectures ranging from 2 to 32 cores. They
obtain average speed-up values of 4.9x and 6.4x with 16 and 32 processors, respectively.

The authors of [22] implemented the Dual Population Genetic Algorithm on a parallel architecture.
This algorithm is based on the original GA, but the Dual Algorithm adds a reserve population so
as to avoid premature convergence proper to this kind of algorithm. A set of 8 test functions were
optimized. Although they obtain average speed-up values of 1.64x using both 16 and 32 processors.

The authors of [23,24] analyzed the performance of population-based meta-heuristics using MPI
(Message Passing Interface), OpenMP, and hybrid MPI/OpenMP implementations in a workstation
with a multicore processor to solve a vehicle routing problem. A speed-up near 2.5x was reached in
some cases, although in other cases a speed-up of only 1.0x to 1.5x was obtained.

The authors of [25] present a parallel implementation of the ant colony optimization metaheuristic
to solve an industrial scheduling problem in an aluminium casting centre. The number of processors
was set from 1 to 16. Results indicated that maximum speed-up was achieved when using 8 processors,
but speed-up decreased as the number of processors further increased. A maximum speed-up of 5.94
is obtained using 8 processors, which goes down to 5.45 when using 16 processors.

Appl. Sci. 2018, 8, 819 3 of 18

An field of intense work of the scientific community is artificial intelligence [26], in which
neural-symbolic computation [27] is a key challenge, especially to construct computational cognitive
models that admit integrated algorithms for learning and reasoning that can be treated computationally.
Moreover, deep learning is not an optimization algorithm in itself, but the deep network has an
objective function, so a heuristic optimization algorithm can be used to tune the network. Another
important field is data mining that applies to scientific areas [28–30]a where Jaya can also be applied
further; for example, in [31], data optimization techniques and data mining are used together to
develop a hybrid optimization algorithm.

The above review of the state of the art shows that it is generally feasible to implement
optimization techniques on a parallel architecture. However, there can be drawbacks in cases where
implementations constrain the speed-up increment of parallel solutions when compared to sequential
execution. Therefore, parallel implementation of these kinds of algorithms must be performed carefully
to benefit from the advantages of parallel architectures.

We will now present in Section 2, the recent Jaya optimization algorithm and its advantages.
In Section 3, we will describe the parallel algorithms that have been developed, and in Section 4,
we analyze the latter both in terms of parallel performance and Jaya algorithm behavior. Conclusions
are drawn in Section 5.

2. The Jaya Algorithm

We review here some different studies of the Jaya algorithm and summarize their conclusions.
The author of in [3] tested the performance of the Jaya algorithm, by means of a series of experiments
on 24 constrained benchmark problems. The goal of the algorithm was to get closer to the best solution,
but in so doing it also moves away from the worst solution. Results obtained using the Jaya algorithm
were compared with results obtained by other optimization algorithms such as GA, ABC, TLBO, and a
few others. The superiority of Jaya was shown by means of two statistical tests: the Friedman rank
test and the Holm–Sidak test. The Jaya algorithm came first in the case of the best and mean solutions
for all considered benchmark functions, while TLBO came second. With regard to the results of the
Friedman rank test for the Success Rate solutions obtained, Jaya again came first followed by TLBO.
The Holm–Sidak test provided a difference index related to the results obtained by Jaya and the other
algorithms. This test showed a maximal difference between Jaya on the one hand and GA and BBO on
the other, and a minimal difference with TLBO.

In the same study, Jaya performance was tested further on 30 unconstrained benchmark functions
that are well known in the literature on optimization. Results obtained using Jaya were compared with
results obtained using other optimization algorithms such as GA, PSO, DE, ABC, and TLBO. Mean
results obtained were compared with other algorithms. Jaya obtained better results in terms of best,
mean, and worst values of each objective function and standard deviation.

The authors of [32] applied Jaya to 21 benchmark problems related to constrained design
optimization. In addition to these problems, the algorithm’s performance was studied over four
constrained mechanical design problems. An analysis of the results revealed that Jaya was superior
to, or could compete with, the others when applied to the problems in question. The authors of [33]
showed that Jaya is applicable to data clustering problems. Results demonstrated that the algorithm
exhibited better performance in most of the considered real-time datasets and was able to cluster
appropriate partitions. We want to emphasize that our parallel algorithms do not modify the behavior
of the Jaya algorithm. Moreover, in [15], the authors explore the use of advanced optimization
algorithms for determining optimum parameters for grating based sensors; in particular, Cuckoo
search, PSO, TLBO, and Jaya algorithms were evaluated. The best performance was obtained using
the Jaya algorithm, good results were also obtained using the Cuckoo search algorithm, but it should
be noted that the latter requires tuning the specific parameters of the algorithm to find the global
optimum value.

Appl. Sci. 2018, 8, 819 4 of 18

3. Parallel Approaches

The parallel Jaya algorithm developed is shown in Figure 1. We will describe how the Jaya
algorithm has been implemented in order to identify exploitable inherent sources of parallelism.
Algorithm 1 shows the skeleton of the sequential implementation of the Jaya algorithm. The “Runs”
parameter corresponds to the number of independent executions performed; therefore, in Line 26
of Algorithm 1, the different “Runs” solutions should be evaluated. First, for each independent
execution, an initial population is computed (Lines 7–19), and, for each population member, VAR
design variables can be obtained. It should be noted that the population size is an input parameter of
the optimization algorithm, while the number of design variables is an intrinsic characteristic of the
function to be optimized. The second input parameter is the number of “Iterations,” i.e., the number
of new populations created based on the current population. Once a new population is created, each
member of the current population is compared with its corresponding member of the new population,
and is replaced if it improves the evaluation of the function. A detailed description of this procedure is
shown in Algorithm 2.

Figure 1. Flowchart of the parallel Jaya algorithm.

As said, Algorithm 2 shows the main steps of the “Update Population” function (Line 21 of
Algorithm 1), which is usually executed thousands, or tens of thousands, or hundreds of thousands of
times; that is, almost all the computing time is consumed by said function.

Appl. Sci. 2018, 8, 819 5 of 18

Algorithm 1 Skeleton of the Jaya algorithm
1: Define function to minimize
2: Set Runs parameter
3: Set Iterations parameter
4: Set PopulationSize parameter
5: for l = 1 to Runs do

6: Create New Population:
7: for i = 1 to PopulationSize do

8: for j = 1 to VARS do

9: Obtain 2 random numbers
10: Compute the design variable of the new member Memberi

j {using Equation (1)}
11: if Memberi

j < MinValue then

12: Memberi
j = MinValue

13: end if
14: if Memberi

j > MaxValue then

15: Memberi
j = MaxValue

16: end if
17: end for
18: Compute and store F(Memberi

j) {Function evaluation}
19: end for
20: for l = 1 to Iterations do

21: Update Population
22: end for
23: Store Solution
24: Delete Population
25: end for
26: Obtain Best Solution and Statistical Data

In Lines 20–24 of Algorithm 2, a new member is computed using the Jaya algorithm, i.e., using
Equation (1). It should be noted that this computing uses both the current best and worst solution. In
Equation (1), iterators j, k and i refer respectively to the design variable of the function, the member
of the population, and the current iteration, while r1,k,i and r2,k,i are random numbers uniformly
distributed.

x
′
j,k,i = xj,k,i + r1,k,i

(
xj,best,i −

∣∣∣xj,k,i

∣∣∣)− r2,k,i

(
xj,worst,i −

∣∣∣xj,k,i

∣∣∣) . (1)

As said, the number of design variables for each member of each population (represented by
“VAR” in Equation (2)) depends on the function to be optimized. In most of this study, we used
the Rosenbrock function, as a test function, shown in Equation (2), where the number of design
variables (VAR) is equal to 30. Regarding Algorithm 2, much of the computational cost corresponds to
Lines 18–32. It should be noted that, in Line 22, the best and worst solutions are used, so this procedure
depends on the i iteration. In Line 25 of Algorithm 2, the new member is evaluated using, for example,
Equation (2), which corresponds to the Rosenbrock function. Naturally, the computational cost of
Algorithm 2 can vary significantly depending on the function to be optimized. It should be noted
that the total number of function evalutions depends on both the number of population updates
(“Iterations” parameter) and the population size.

Fmin =
VAR

∑
i=1

[
100

(
x2

i − xi+1

)2
+ (1− xi)

2
]

. (2)

Algorithm 3 shows the skeleton of the shared memory parallel approach of Algorithm 1.
Algorithm 3 focuses on the number of performed population updates (i.e., “Iterations”), distributing
these population updates among the c available processes (r = 1, 2, . . . , c). In Algorithm 3,

Appl. Sci. 2018, 8, 819 6 of 18

∑c
r=1 Iterationsr = Iterations must be satisfied, where Iterationsr is the number of population updates

performed by process r, since a dynamic scheduling strategy has been used the number of populations
updates per thread is not a fixed number. Since this algorithm has been designed for shared memory
platforms, all solutions are stored in memory using OpenMP. Consequently, following parallel
computation, the “sequential thread (or process)” obtains the best global solution and computes
statistical values of all solutions obtained. As aforementioned, the number of iterations performed
by each thread is not fixed, this number depends on the computational load assigned to each core in
each particular execution, the automatic load balancing is implemented using the dynamic scheduling
strategy of the OpenMP parallel loops. It should be noted that the total number of functions evaluations
remains unchanged.

Algorithm 2 Update Population function of the Jaya algorithm
1: Update Population:
2: {
3: {Obtain the current best and worst solution}
4: Fworst = F(Mem1)
5: Indexworst = 1
6: Fbest = F(Mem1)
7: Indexbest = 1
8: for k = 2 to PopulationSize do

9: if Fbest > F(Memk) then

10: Indexbest = k
11: Fbest = F(Memk)
12: end if
13: if Fworst < F(Memk) then

14: Indexworst = k
15: Fworst = F(Memk)
16: end if
17: end for
18: for k = 1 to PopulationSize do

19: old = k
20: for j = 1 to VARS do

21: Obtain 2 random numbers
22: Compute the design variable of the new member NewMj {using Equation (1)}
23: Check the bounds of NewMj
24: end for
25: Compute F(NewM) {Function evaluation}
26: if F(NewM) < F(Memold) then

27: {Replace solution}
28: for j = 1 to VARS do

29: Memold
j = NewMj

30: end for
31: end if
32: end for
33: {Search for current best and worst solution as in Lines 4–17}
34: }

Regarding Algorithms 2 and 3, data dependencies exist in the “Update Population” function
solved in Algorithm 4, which shows the parallel “Update Population” function used in Algorithm 1. It
should be noted that, to solve these data dependencies, Algorithm 4 includes up to 2 flush memory
operations (Lines 3 and 35) and up to 3 critical sections (Lines 18, 26, and 44). It should be noted
that only the “flush” procedure of Line 3 is performed in all iterations, and the rest of the flush and

Appl. Sci. 2018, 8, 819 7 of 18

critical sections depends on the particular and non-deterministic computation. An analysis of data
dependencies of the “Update Population” function reveals that its corresponding parallel function
must be designed for shared memory platforms. It should be noted that the “flush” operations are
performed to ensure that all threads have the same view of memory variables in which current best and
worst solutions are stored. Furthermore, critical sections are used to avoid hazards in memory accesses.
Some optimizations have been implemented in Algorithm 4, improving both the computational
performance and the Jaya algorithm behavior. On the one hand, in Line 25 of Algorithm 4, when a
new global minimum is obtained, it is quasi immediately used by all processes; on the other hand, in
Line 34, the search of the current worst member is performed only by the thread that has removed the
previous worst element.

Algorithm 3 Skeleton of shared memory parallel Jaya algorithm.
1: for l = 1 to Runs do

2: Parallel region:
3: {
4: Create New Population {Lines 7–19 of Algorithm 1}
5: parallel for i = 1 to Iterations do

6: Update Population
7: end for
8: Store Solution
9: Delete Population

10: }
11: end for
12: Sequential thread:
13: Obtain Best Solution and Statistical Data

With respect to Algorithm 4, the computational load of one execution of the “Update Population”
function might not be significant, depending on the computational cost of the function evaluation
(Line 16), which obviously depends on the particular function to be optimized. For example,
in Equation (2), the number of floating point operations is 7 for each iteration of the sum, so only
239 floating point operations have to be performed in each evaluation. Therefore, it is important to
reduce both “flush” processes and “critical” sections, and it should be noted that we have developed
the parallel algorithm avoiding synchronization points. Reducing both the “flush” procedures and
the critical sections besides the automatic load balancing allows one to obtain good results both in
efficiency and scalability. It is worth noting that, due to the large number of iterations performed,
any poorly designed or implemented detail in the parallel proposal can significantly worsenboth the
parallel performance and scalability.

As will be confirmed in Section 4, the good parallel behavior of the shared memory proposal of
the Jaya optimization algorithm encourage the development of a parallel algorithm to be executed in
clusters, in order to be able to efficiently increase the number of processes, reducing, drastically, the
computing time. In order to use heterogeneous memory platforms (clusters) on the one hand, we must
to identify a high-level inherent parallelism; on the other hand, we must to develop a hybrid memory
model algorithm.

As explained in Section 2, and as can be seen in Algorithm 1, the Jaya algorithm performs
several fully independent executions (“Runs”). Therefore, the Jaya algorithm offers great inherent
parallelism at a higher level, but a key aspect must be the load balance. As aforementioned, we have
developed a shared memory algorithm in which we have not used synchronization points and we have
implemented techniques to ensure computational load balancing. The high-level parallel algorithm
must accomplish these objectives and must be able to include the previously described algorithm.

The high-level parallel Jaya algorithm exploits the fact that all iterations of Line 5 in Algorithm 1
are actually independent executions. Therefore, the total number of executions (“Runs”) to be

Appl. Sci. 2018, 8, 819 8 of 18

performed is divided among p available processes, taking into account, however, that it cannot
be distributed statically. The high-level parallel algorithm must be designed for distributed memory
platforms using MPI: on the one hand, we must to develop a load balance procedure; on the other
hand, a final data gathering process (data collection from all processes) must be performed.

Algorithm 4 Update Population function of the shared memory parallel Jaya algorithm
1: Update Population:
2:
3: FLUSH operation over population and best and worst indices
4: for k = 1 to PopulationSize do

5: old = k
6: for j = 1 to VARS do

7: Obtain 2 random numbers
8: Compute the design variable of the new member NewMj
9: if NewMj < MinValue then

10: NewMj = MinValue
11: end if
12: if NewMj > MaxValue then

13: NewMj = MaxValue
14: end if
15: end for
16: Compute F(NewM) {Function evaluation}
17: if F(NewM) < F(Memold) then

18: CRITICAL SECTION to:
19: {
20: {Replace solution}
21: for j = 1 to VARS do

22: Memold
j = NewMj

23: end for
24: }
25: if F(NewM) < F(Membest) then

26: CRITICAL SECTION to:
27: IndexBest = i {Membest = NewM}
28: end if
29: if Indexworst == k then

30: FlagUpdateWorst = 1
31: end if
32: end if
33: end for
34: if FlagUpdateWorst == 1 then

35: FLUSH operation over population
36: FlagUpdateWorst = 0
37: F(Tempworst) = F(Mem1)
38: IndexTempworst = 1
39: for k = 2 to PopulationSize do

40: if F(Tempworst) < F(Memk) then

41: IndexTempworst = k
42: end if
43: end for
44: CRITICAL SECTION to:
45: Indexworst = IndexTempworst {Memworst = MemIndexTempworst

}
46: end if

Appl. Sci. 2018, 8, 819 9 of 18

The hybrid MPI/OpenMP algorithm developed is shown in Algorithm 5 and will be analyzed
on a distributed shared memory platform. First, it should be noted that, if the number of worker
processes desired is equal to p, the total number of distributed memory processes will be p + 1. This is
because there is a critical process (distributed memory process) that will be in charge of distributing
the independent executions among the p available working processes. We call it the work dispatcher.
Although the work dispatcher process is critical, it will be running in one of the nodes with worker
processes, as no significant overhead is introduced in the overall parallel algorithm performance. The
work dispatcher will be waiting to receive a signal of work request from an idle worker process. When
a particular worker process requests a new work (independent execution), the dispatcher will assign a
new independent execution or send an end-of-work signal. In Lines 6–13 of Algorithm 5, it can be
verified that the computational load of dispatcher process is negligible. In Lines 15–24 of Algorithm 5,
the shared memory parallel Jaya algorithm is used, i.e., Algorithm 3 sets the “Runs” parameter
to 1. The total number of processes is equal to tp = p ∗ c, where p is the number of distributed
memory worker processes (MPI processes) and c is the number of shared memory processes (OpenMP
processes or threads). When distributed shared memory platforms (clusters) are used, they are
probably heterogeneous multiprocessors, taking into account that the proposed algorithms include
load balancing procedures at two levels and thatthe load balance is assured. It should be noted that,
if the number of shared memory processes is equal to 1 (c = 1), Algorithm 5 is a distributed memory
algorithm, and, to work with the hybrid algorithm, the number of distributed memory processes must
be equal to or greater than 2, i.e., one dispatcher process and at least one worker process. In all cases,
only worker-distributedmemory processes spawn shared memory threads.

Algorithm 5 Hybrid parallel Jaya algorithm for distributed shared memory platforms
1: Define function to minimize
2: Set Iterations parameter (input parameter)
3: Set population size (input parameter)
4: Obtain the number of distributed memory worker processes p (input parameter)
5: if is work dispatcher process then

6: for l = 1 to Runs do

7: Receive idle worker process signal
8: Send independent execution signal
9: end for

10: for l = 1 to p do

11: Receive idle worker process signal
12: Send end of work signal
13: end for
14: else

15: while true do

16: Send idle worker process signal to dispatcher process
17: if Signal is equal to end of work signal then

18: Break while
19: else

20: Obtain the number of shared memory processes c
21: Compute 1 run of shared memory parallel Jaya algorithm
22: Store Solution
23: end if
24: end while
25: end if
26: Perform a gather operation to collect all the solutions
27: Sequential thread of the root process:
28: Obtain Best Solution and Statistical Data

Appl. Sci. 2018, 8, 819 10 of 18

4. Results and Discussion

In this section, we analyze the parallel Jaya algorithms, presented in Section 3. We analyze
the parallel behavior and verify that the optimization performance of the Jaya algorithm slightly
improves or remains unchanged with respect to the sequential algorithm. In order to perform the
tests, we developed the reference algorithm, presented in [3], in C language to implement the parallel
algorithms, and used the GCC v.4.8.5 compiler [34]. We choose MPI v2.2 [35] for the high-level parallel
approach and OpenMP API v3.1 [36] for the shared memory parallel algorithm. The parallel platform
used was composed of 10 HP Proliant SL390 G7 nodes, where each node was equipped with two Intel
Xeon X5660 processors. Each X5660 included six processing cores at 2.8 GHz, and QDR Infiniband was
used as the communication network.

We will now analyze the parallel behavior of the parallel algorithm described in Algorithm 4,
i.e., the shared memory parallel algorithm. Figure 2 shows results setting the “Iterations” parameter
equal to 30,000 and using populations of 512 members. We observe that parallel efficiency being equal
to, respectively, 100% and 94% when 2 and 11 processes are used, regardless of the value of “Runs.”
We can conclude that, based on results presented in Figure 2, and applying the Rosenbrock function,
for a population size equal to 512, the scalability is almost ideal.

(a) Speed-up

(b) Efficiency

Figure 2. Shared memory parallel Jaya algorithm. Iterations = 30,000, Population = 512. (a) Speed-up
with respect to the sequential execution. (b) Efficiency of the parallel algorithm.

Appl. Sci. 2018, 8, 819 11 of 18

Figure 3 shows parallel behavior related to population size and number of iterations. Regarding
both this figure and the rest of the experiments performed, the number of iterations does not affect
parallel performance, while population size has been observed to be a critical parameter for obtaining
good parallel performance. Results presented in Figure 3 indicate that, in order to obtain good
parallel performance, population size must be greater than 64 members. In particular, in Figure 3,
for population sizes greater than 128 members, the efficiency is always higher than 90%.

Figure 3. Efficiency of shared memory parallel Jaya algorithm. OpenMP processes = 6. Runs = 30.

Figure 4 shows parallel behavior related to the number of independent executions, i.e., the number
of different solutions obtained. As expected, the number of independent executions does not affect the
parallel behavior of the shared memory parallel algorithm. We can conclude that the shared memory
parallel algorithm obtains good parallel results with a minimum population size, and the rest of the
parameters does not affect, or does so very slightly, the parallel performance.

Figure 4. Efficiency of shared memory parallel Jaya algorithm. OpenMP processes = 6. Iterations = 30,000.

The hybrid parallel algorithm developed combines the shared memory parallel algorithm
analyzed and a high-level parallel algorithm based on the distribution, among nodes (multiprocessors),
of the computing load associated with the independent executions that will be carried out. The latter,
described in Algorithm 5, has been developed with MPI, the former with OpenMP. However, in order
to efficiently use all processing units of the parallel platform we mapped, where possible, more than

Appl. Sci. 2018, 8, 819 12 of 18

one MPI process was employed into one computing node. Figure 5 shows the efficiency and speed-up
for the hybrid parallel Jaya algorithm, executed in the heterogeneous memory platform previously
described. It can be seen that the proposed hybrid parallel algorithm offers good scalability. It should
be noted that we obtained a speed-up up to 54.6x using 60 processors of the heterogeneous memory
platform. It is worth noting that the hybrid parallel algorithm exploits two levels of parallelism, and at
both levels it includes load balancing mechanisms.

(a) Efficiency

(b) Speed-up

Figure 5. Hybrid parallel Jaya algorithm. Iterations = 30, 000. Population = 256. Runs = 30. (a) Efficiency
of the parallel algorithm. (b) Speed-up with respect to the sequential execution.

We must bear in mind that the execution of the Jaya algorithm is not a deterministic one, since
Equation (1) depends on a random function. Each experiment in our study was performed by
computing both the sequential and the parallel algorithm systematically and by verifying that the
results obtained were almost identical; i.e., each parallel experiment was preceded by its corresponding
sequential experiment, and we ensured that the difference between both optimal solutions exceeds
10−3. No errors were produced except for experiments with a very low number of function evaluations.
On the other hand, in [3], the author performs an exhaustive analysis of the optimization performance
of the Jaya algorithm.

To finish, we will analyze parallel behavior depending on the functions in question. We used the
same benchmark functions as in [3] listed in Table 1.

Appl. Sci. 2018, 8, 819 13 of 18

Table 1. Benchmark functions and their number of variables (VAR).

ID. Function VAR

F1 Sphere 30
F2 SumSquares 30
F3 Beale 5
F4 Easom 2
F5 Matyas 2
F6 Colville 4
F7 Trid 6 6
F8 Trid 10 10
F9 Zakharov 10
F10 Schwefel 1.2 30
F11 Rosenbrock 30
F12 Dixon-Proce 30
F13 Foxholes 2
F14 Branin 2
F15 Bohachevsky 1 2
F16 Booth 2
F17 Michalewicz 2 2
F18 Michalewicz 5 5
F19 Bohachevsky 2 2
F20 Bohachevsky 3 2
F21 GoldStein-Price 2
F22 Perm 4
F23 Hartman 3 3
F24 Ackley 30
F25 Penalized 2 30
F26 Langerman 2 2
F27 Langerman 5 5
F28 Langerman 10 10
F29 FletcherPowell 5 5
F30 FletcherPowell 10 10

Table 2 shows the results for all functions listed in Table 1, over 30 independent executions,
30,000 iterations, and populations of 256 members. Results shown in Table 2 are sequential
computational time, parallel computational time, speed-up, and parallel efficiency, where 10 MPI
processes and 6 OpenMP processes were used, i.e., using 60 processors of the parallel platform.
It should be noted that, in general, all functions obtained good parallel behavior. In most cases, it is
over 90%, and on average the efficiency is equal to 87%. Considering only functions with efficiency
above the previous average, the average efficiency is 92%. We can increase the efficiency by decreasing
the total number of processes used. It should also be noted that the sequential processing time does
not exceed 12.0 s.

Reducing the number of processes and leaving other parameters unchanged, parallel behavior
improved as expected. Table 3 shows results corresponding to Table 2, with only 2 OpenMP processes,
i.e., using 20 processors, for those functions with lower computational cost. As can be seen in Table 3,
efficiency values improve significantly, as anticipated, taking into account that high-level parallel
algorithms offer better scalability.

It is worth noting that the parallel code has been fully optimized, thus improving parallel
proposals of similar algorithms, and our hybrid proposal includes load balancing mechanisms at two
levels. For example, in [21,22], parallelizing using OpenMP and using 8 processes, the maximum
efficiency achieved is 55% and 56%, respectively, while in the case of [23] it is only 23%. Under these
conditions, our shared memory algorithm and our hybrid algorithm obtains an average efficiency
higher than 90%. There is a recent algorithm, called HHCPJaya presented in [37], which obtains good
results on both parallel and optimization performance. However, this algorithm has some drawbacks:
it does not seem to be a general optimization algorithm, that is, the function to be optimized must be

Appl. Sci. 2018, 8, 819 14 of 18

coded according to the partition at the level of the design variable performed, for example, a function
such as the “Dixon-Price” function cannot be encoded using its general formulation. The method
seems deterministic and not heuristic, because the seed used is always the same and does not use
a random function; the method uses a deterministic function to generate the sequence of random
numbers. When the random function is used instead, the deterministic function the method shows
poor scalability. We present results using worker processes of up to 60. In our implementation, each of
these processes uses a different seed for the generation of the sequence of random numbers; on the
other hand, our algorithms need neither hyperpopulations nor functions with a large number of design
variables.

Table 2. Sequential and parallel Jaya results. Population = 256. Iterations = 30,000. 10 MPI processes.
6 OpenMP processes. Runs = 30.

Function Sequential Time (s) Parallel Time (s) Speed-Up Efficiency

F1 126.0 2.58 48.9 81%
F2 129.9 2.67 48.6 81%
F3 108.5 2.02 53.7 90%
F4 26.7 0.50 53.7 90%
F5 70.2 1.42 49.3 82%
F6 18.4 0.41 44.6 74%
F7 26.6 0.53 50.0 83%
F8 44.7 0.87 51.6 86%
F9 67.7 1.55 43.7 73%
F10 254.9 4.85 52.6 88%
F11 131.9 2.46 53.7 90%
F12 132.4 2.44 54.2 90%
F13 999.9 17.59 56.8 95%
F14 16.3 0.33 49.9 83%
F15 17.3 0.34 51.0 85%
F16 9.4 0.23 41.4 69%
F17 54.9 1.05 52.5 87%
F18 171.8 3.15 54.5 91%
F19 12.4 0.26 48.2 80%
F20 16.2 0.32 51.1 85%
F21 12.0 0.27 44.3 74%
F22 330.3 5.74 57.6 96%
F23 45.5 0.81 56.1 94%
F24 465.6 8.21 56.7 95%
F25 583.8 10.25 56.9 95%
F26 82.9 1.54 53.7 90%
F27 474.4 8.57 55.3 92%
F28 1999.5 34.80 57.5 96%
F29 362.1 6.44 56.2 94%
F30 1471.8 25.81 57.0 95%

Table 3. Sequential and parallel Jaya results. Population=256. Iterations=30000. 10 MPI processes.
2 OpenMP processes. Runs=30.

Function Sequential Time (s) Parallel Time (s) Speed-Up Efficiency

F6 18.5 0.97 19.2 96%
F7 24.4 1.46 16.7 84%

F14 16.7 0.89 18.8 94%
F15 17.2 0.88 19.6 98%
F16 9.0 0.55 16.3 82%
F19 12.0 0.64 18.8 94%
F20 15.9 0.87 18.2 91%
F21 11.9 0.61 19.5 98%

Appl. Sci. 2018, 8, 819 15 of 18

Finally, Tables 4 and 5 present optimization results in terms of the best solution for both sequential
and parallel algorithms. Both tables present results with a low number of function evaluations—about
64,000 in Table 4 and 192,000 in Table 5. As can be seen in Table 4, in experiments where convergence
has not been reached, the majority of parallel results are slightly better than the sequential results.
Table 5 shows that the number of function evaluations is increasing, but is less than 500,000 (the value
used in [3]). In this case, a greater number of functions has reached convergence; in the remaining
functions, the parallel solution is also slightly better than the sequential solution.

It is worth noting that, as aforementioned, Jaya does not require algorithm-specific parameters
and the function to be optimized is encoded using its general formulation. Therefore, the main
characteristic of the function to be optimized in order to obtain good parallel performance should
be the computational load of said function. However, as confirmed by the results shown in Tables 2
and 3, even for low computational cost functions, good parallel behavior is obtained. For example, the
F16 function has very low computational cost and obtains efficiencies of 69% and 82% using 60 and
20 processors, respectively.

Table 4. Sequential and parallel Jaya solutions. Population = 64. Iterations = 1000. 5 MPI processes.
Runs = 30.

Function Optimum OpenMP Best Best OpenMP Best Best
Processes Parallel Sequential Processes Parallel Sequential

F1 0.00000 2 0.00030 0.00163 6 0.00096 0.00233
F2 0.00000 2 0.00006 0.00018 6 0.00019 0.00048
F3 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F4 −1.00000 2 −1.00000 −1.00000 6 −1.00000 −1.00000
F5 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F6 0.00000 2 0.00008 0.00021 6 0.00022 0.00018
F7 −50.00000 2 −50.00000 −50.00000 6 −50.00000 −50.00000
F8 −210.00000 2 −210.00000 −210.00000 6 −210.00000 −210.00000
F9 0.00000 2 0.00017 0.00027 6 0.00003 0.00036
F10 0.00000 2 0.00002 0.00033 6 0.00026 0.00054
F11 0.00000 2 7.71880 24.31500 6 13.37600 33.43700
F12 0.00000 2 0.67569 0.69369 6 0.67506 0.72603
F13 0.99800 2 357.46000 498.07000 6 10.73000 200.70000
F14 0.39800 2 0.39789 0.39789 6 0.39789 0.39789
F15 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F16 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F17 −1.80130 2 −1.80130 −1.80130 6 −1.80130 −1.80130
F18 −4.68770 2 −4.68770 −4.68770 6 −4.68770 −4.68770
F19 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F20 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F21 3.00000 2 3.00000 3.00000 6 3.00000 3.00000
F22 0.00000 2 0.00343 0.00479 6 0.00175 0.00271
F23 −3.86000 2 −3.86280 −3.86280 6 −3.86280 −3.86280
F24 0.00000 2 0.00683 0.02936 6 0.02452 0.04375
F25 0.00000 2 0.00018 0.00107 6 0.00025 0.00113
F26 −4.15580 2 −4.15580 −4.15580 6 −4.15580 −4.15580
F27 −3.34260 2 −3.31040 −3.30630 6 −3.31760 −3.30780
F28 −3.15430 2 −3.06370 −3.06080 6 −3.08460 −3.04290
F29 0.00000 2 0.00001 0.00005 6 0.00002 0.00003
F30 0.00000 2 0.00003 0.00086 6 0.00025 0.00098

As shown in Tables 4 and 5, the optimization behavior of the parallel proposals slightly
outperforms the optimization behavior of the sequential one. Therefore, the conclusions obtained,
through the comparison performed in [3] with respect to other well known optimization heuristic
techniques, can be applied to the parallel proposals analyzed. Functions of very low computational cost

Appl. Sci. 2018, 8, 819 16 of 18

obtain the worst efficiency results, but the efficiencies obtained are higher than 80% for 20 processes,
i.e., even these functions present a very good parallel behavior.

Table 5. Sequential and parallel Jaya solutions. Population = 64. Iterations = 3000. 5 MPI processes.
Runs = 30.

Function Optimum OpenMP Best Best OpenMP Best Best
Processes Parallel Sequential Processes Parallel Sequential

F1 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F2 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F3 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F4 −1.00000 2 −1.00000 −1.00000 6 −1.00000 −1.00000
F5 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F6 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F7 −50.00000 2 −50.00000 −50.00000 6 −50.00000 −50.00000
F8 −210.00000 2 −210.00000 −210.00000 6 −210.00000 −210.00000
F9 0.00000 2 0.00000 0.00000 6 0.00000 0.00000

F10 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F11 0.00000 2 0.00010 0.00751 6 0.04423 0.07421
F12 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F13 0.99800 2 12.67200 25.28900 6 1.03040 36.41000
F14 0.39800 2 0.39789 0.39789 6 0.39789 0.39789
F15 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F16 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F17 −1.80130 2 −1.80130 −1.80130 6 −1.80130 −1.80130
F18 −4.68770 2 −4.68770 −4.68770 6 −4.68770 −4.68770
F19 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F20 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F21 3.00000 2 3.00000 3.00000 6 3.00000 3.00000
F22 0.00000 2 0.00063 0.00206 6 0.00076 0.00141
F23 −3.86000 2 −3.86280 −3.86280 6 −3.86280 −3.86280
F24 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F25 0.00000 2 0.00000 0.00000 6 0.00000 0.00000
F26 −4.15580 2 −4.15580 −4.15580 6 −4.15580 −4.15580
F27 −3.34260 2 −3.34260 −3.34260 6 −3.34260 −3.34260
F28 −3.15430 2 −3.15340 −3.15340 6 −3.15240 −3.15280
F29 0.00000 2 0.00008 0.00014 6 0.00000 0.00001
F30 0.00000 2 0.00000 0.00023 6 0.00033 0.00050

5. Conclusions

The recent Jaya algorithm has been shown to be an effective optimization algorithm. In this study,
we developed parallel algorithms and present a detailed analysis of them. We developed a hybrid
MPI/OpenMP algorithm that exploits inherent parallelism at two different levels. The lower level
is exploited by parallel shared memory platforms, while the upper level is exploited by distributed
shared memory platforms. Both algorithms obtain good results especially in scalability, so the
hybrid algorithm is able to use a large number of processes with almost ideal efficiencies. In the
experiments shown, up to 60 processes are used obtaining almost ideal efficiencies. We analyzed
it using 30 unconstrained functions, obtaining good parallel efficiencies for all the test functions.
In addition, both levels of parallelization include load balancing mechanisms that allow for the
execution of this algorithm in non-dedicated environments, either supercomputing platforms or
low-power computing platforms, without degrading computational performance. It is worth noting
that, on the one hand, the parallel proposals obtain a good parallel performance independently
of intrinsic characteristics of the functions to be optimized; on the other hand, the applicability
of the Jaya algorithm has been proven in many works that apply said algorithm to engineering
and science problems. Construction of computational cognitive models is one of the challenges
computer science will face over the next few decades. These models should support integrated

Appl. Sci. 2018, 8, 819 17 of 18

algorithms for learning and reasoning that are computationally tractable and have some nontrivial
scope. Our future work will focus on the parallelization of the reference algorithm on hybrid parallel
platforms (CPUs/GPUs), adding to the study a wide range of constrained functions, and on the
parallelization of the multiobjective Jaya algorithm.

Author Contributions: H.M., A.J.-M., and J.-L.S.-R. conceived the parallel algorithms; Héctor Migallón designed
and codified the parallel algorithms; H.M. and A.J.-M. analyzed the data; H.M. and J.-L.S.-R. wrote the paper.

Acknowledgments: This research was supported by the Spanish Ministry of Economy and Competitiveness
under Grants TIN2015-66972-C5-4-R and TIN2017-89266-R, co-financed by FEDER funds (MINECO/FEDER/UE).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lin, M.H.; Tsai, J.F.; Yu, C.S. A Review of Deterministic Optimization Methods in Engineering and
Management. Math. Probl. Eng. 2012, 2012, 756023, doi:10.1155/2012/756023.

2. Rao, R.V.; Savsani, V.; Vakharia, D. Teaching-learning-based optimization: A novel method for constrained
mechanical design optimization problems. Comput.-Aided Des. 2011, 43, 303–315, doi:10.1016/j.cad.2010.12.015.

3. Rao, R.V. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained
optimization problems. Int. J. Ind. Eng. Comput. 2016, 7, 19–34, doi:10.5267/j.ijiec.2015.8.004.

4. Singh, S.P.; Prakash, T.; Singh, V.; Babu, M.G. Analytic hierarchy process based automatic generation control
of multi-area interconnected power system using Jaya algorithm. Eng. Appl. Artif. Intell. 2017, 60, 35–44,
doi:10.1016/j.engappai.2017.01.008.

5. Mishra, S.; Ray, P.K. Power quality improvement using photovoltaic fed DSTATCOM based on JAYA
optimization. IEEE Trans. Sustain. Energy 2016, 7, 1672–1680, doi:10.1109/TSTE.2016.2570256.

6. Rao, R.; More, K. Design optimization and analysis of selected thermal devices using self-adaptive Jaya
algorithm. Energy Convers. Manag. 2017, 140, 24–35, doi:10.1016/j.enconman.2017.02.068.

7. Rao, R.V.; Rai, D.P.; Balic, J. A multi-objective algorithm for optimization of modern machining processes.
Eng. Appl. Artif. Intell. 2017, 61, 103–125, doi:10.1016/j.engappai.2017.03.001.

8. Abhishek, K.; Kumar, V.R.; Datta, S.; Mahapatra, S.S. Application of JAYA algorithm for the optimization of
machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with
TLBO, GA, and ICA. Eng. Comput. 2016, 33, 457–475, doi:10.1007/s00366-016-0484-8.

9. Wang, S.H.; Phillips, P.; Dong, Z.C.; Zhang, Y.D. Intelligent facial emotion recognition based on stationary
wavelet entropy and Jaya algorithm. Neurocomputing 2018, 272, 668–676, doi:10.1016/j.neucom.2017.08.015.

10. Ghavidel, S.; Azizivahed, A.; Li, L. A hybrid Jaya algorithm for reliability–redundancy allocation problems.
Eng. Optim. 2018, 50, 698–715, doi:10.1080/0305215X.2017.1337755.

11. Wang, L.; Zhang, Z.; Huang, C.; Tsui, K.L. A GPU-accelerated parallel Jaya algorithm for efficiently estimating
Li-ion battery model parameters. Appl. Soft Comput. 2018, 65, 12–20, doi:10.1016/j.asoc.2017.12.041.

12. Ocłoń, P.; Cisek, P.; Rerak, M.; Taler, D.; Rao, R.V.; Vallati, A.; Pilarczyk, M. Thermal performance optimization
of the underground power cable system by using a modified Jaya algorithm. Int. J. Therm. Sci. 2018, 123,
162–180, doi:j.ijthermalsci.2017.09.015.

13. Choudhary, A.; Kumar, M.; Unune, D.R. Investigating effects of resistance wire heating on AISI 1023 weldment
characteristics during ASAW. Mater. Manuf. Process. 2018, 33, 759–769, doi:10.1080/10426914.2017.1415441.

14. Yu, K.; Liang, J.; Qu, B.; Chen, X.; Wang, H. Parameters identification of photovoltaic models using an improved
JAYA optimization algorithm. Energy Convers. Manag. 2017, 150, 742–753, doi:10.1016/j.enconman.2017.08.063.

15. Gambhir, M.; Gupta, S. Advanced optimization algorithms for grating based sensors: A comparative
analysis. Optik 2018, 164, 567–574, doi:10.1016/j.ijleo.2018.03.062.

16. Dinh-Cong, D.; Dang-Trung, H.; Nguyen-Thoi, T. An efficient approach for optimal sensor placement
and damage identification in laminated composite structures. Adv. Eng. Softw. 2018, 119, 48–59,
doi:10.1016/j.advengsoft.2018.02.005.

17. Singh, P.; Dwivedi, P. Integration of new evolutionary approach with artificial neural network for solving
short term load forecast problem. Appl. Energy 2018, 217, 537–549, doi:10.1016/j.apenergy.2018.02.131.

18. Rao, R.V.; Saroj, A. Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya
algorithm. Energy 2017, 128, 785–800, doi:10.1016/j.energy.2017.04.059.

https://doi.org/10.1155/2012/756023
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.5267/j.ijiec.2015.8.004
https://doi.org/10.1016/j.engappai.2017.01.008
https://doi.org/10.1109/TSTE.2016.2570256
https://doi.org/10.1016/j.enconman.2017.02.068
https://doi.org/10.1016/j.engappai.2017.03.001
https://doi.org/10.1007/s00366-016-0484-8
https://doi.org/10.1016/j.neucom.2017.08.015
https://doi.org/10.1080/0305215X.2017.1337755
https://doi.org/10.1016/j.asoc.2017.12.041
https://doi.org/j.ijthermalsci.2017.09.015
https://doi.org/10.1080/10426914.2017.1415441
https://doi.org/10.1016/j.enconman.2017.08.063
https://doi.org/10.1016/j.ijleo.2018.03.062
https://doi.org/10.1016/j.advengsoft.2018.02.005
https://doi.org/10.1016/j.apenergy.2018.02.131
https://doi.org/10.1016/j.energy.2017.04.059

Appl. Sci. 2018, 8, 819 18 of 18

19. Rao, R.V.; Saroj, A. A self-adaptive multi-population based Jaya algorithm for engineering optimization.
Swarm Evolut. Comput. 2017, 37, 1–26, doi:10.1016/j.swevo.2017.04.008.

20. Rao, R.V.; Rai, D.P. Optimisation of welding processes using quasi-oppositional-based Jaya algorithm. J. Exp.
Theor. Artif. Intell. 2017, 29, 1099–1117, doi:10.1080/0952813X.2017.1309692.

21. Umbarkar, A.J.; Rothe, N.M.; Sathe, A. OpenMP Teaching-Learning Based Optimization Algorithm over
Multi-Core System. Int. J. Intell. Syst. Appl. 2015, 7, 19–34, doi:10.5815/ijisa.2015.07.08.

22. Umbarkar, A.J.; Joshi, M.S.; Sheth, P.D. OpenMP Dual Population Genetic Algorithm for Solving Constrained
Optimization Problems. Int. J. Inf. Eng. Electron. Business 2015, 1, 59–65, doi:10.5815/ijieeb.2015.01.08.

23. Baños, R.; Ortega, J.; Gil, C. Comparing multicore implementations of evolutionary meta-heuristics for
transportation problems. Ann. Multicore GPU Program. 2014, 1, 9–17.

24. Baños, R.; Ortega, J.; Gil, C. Hybrid MPI/OpenMP Parallel Evolutionary Algorithms for Vehicle Routing
Problems. In Proceedings of the Applications of Evolutionary Computation: 17th European Conference
(EvoApplications 2014), Granada, Spain, 23–25 April 2014; Revised Selected Papers; Esparcia-Alcázar, A.I.,
Mora, A.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 653–664.

25. Delisle, P.; Krajecki, M.; Gravel, M.; Gagné, C. Parallel implementation of an ant colony optimization
metaheuristic with OpenMP. In Proceedings of the 3rd European Workshop on OpenMP; Springer:
Berlin/Heidelberg, Germany, 2001.

26. Tran, S.N.; d’Avila Garcez, A.S. Deep Logic Networks: Inserting and Extracting Knowledge From Deep
Belief Networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 246–258, doi:10.1109/TNNLS.2016.2603784.

27. D’Avila Garcez, A.; Besold, T.R.; de Raedt, L.; Földiak, P.; Hitzler, P.; Icard, T.; Kühnberger, K.U.; Lamb, L.C.;
Miikkulainen, R.; Silver, D.L. Neural-Symbolic Learning and Reasoning: Contributions and Challenges.
In Proceedings of the AAAI Spring Symposium—Knowledge Representation and Reasoning: Integrating
Symbolic and Neural Approaches, Palo Alto, CA, USA, 23–25 March 2015; doi:10.13140/2.1.1779.4243.

28. Kamsu-Foguem, B.; Rigal, F.; Mauget, F. Mining association rules for the quality improvement of the
production process. Expert Syst. Appl. 2013, 40, 1034–1045, doi:10.1016/j.eswa.2012.08.039.

29. Ruiz, P.P.; Foguem, B.K.; Grabot, B. Generating knowledge in maintenance from Experience Feedback.
Knowl.-Based Syst. 2014, 68, 4–20, doi:10.1016/j.knosys.2014.02.002.

30. Traore, B.B.; Kamsu-Foguem, B.; Tangara, F. Data mining techniques on satellite images for discovery of risk
areas. Expert Syst. Appl. 2017, 72, 443–456, doi:10.1016/j.eswa.2016.10.010.

31. Chen, T.; Huang, J. Application of data mining in a global optimization algorithm. Adv. Eng. Softw. 2013,
66, 24–33, doi:10.1016/j.advengsoft.2012.11.019.

32. Rao, R.V.; Waghmare, G. A new optimization algorithm for solving complex constrained design optimization
problems. Eng. Optim. 2017, 49, 60–83, doi:10.1080/0305215X.2016.1164855.

33. Kurada, R.R.; Kanadam, K.P. Automatic Unsupervised Data Classification Using Jaya Evolutionary
Algorithm. Adv. Comput. Intell. Int. J. 2016, 3, 35–42, doi:10.5121/acii.2016.3204.

34. Free Software Foundation, Inc. GCC, the GNU Compiler Collection. Available online: https://www.gnu.
org/software/gcc/index.html (accessed on 2 November 2016).

35. MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2. 2009. Available online: http:
//www.mpi-forum.org (accessed on 15 December 2016).

36. OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 3.1. 2011. Available
online: http://www.openmp.org (accessed on 2 November 2016).

37. Michailidis, P.D. An efficient multi-core implementation of the Jaya optimisation algorithm. Int. J. Parallel
Emerg. Distrib. Syst. 2017, 1–33. doi:10.1080/17445760.2017.1416387.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.swevo.2017.04.008
https://doi.org/10.1080/0952813X.2017.1309692
https://doi.org/10.5815/ijisa.2015.07.08
https://doi.org/10.5815/ijieeb.2015.01.08
https://doi.org/10.1109/TNNLS.2016.2603784
https://doi.org/10.13140/2.1.1779.4243
https://doi.org/10.1016/j.eswa.2012.08.039
https://doi.org/10.1016/j.knosys.2014.02.002
https://doi.org/10.1016/j.eswa.2016.10.010
https://doi.org/10.1016/j.advengsoft.2012.11.019
https://doi.org/10.1080/0305215X.2016.1164855
https://doi.org/10.5121/acii.2016.3204
https://www.gnu.org/software/gcc/index.html
https://www.gnu.org/software/gcc/index.html
http://www.mpi-forum.org
http://www.mpi-forum.org
http://www.openmp.org
https://doi.org/10.1080/17445760.2017.1416387
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Jaya Algorithm
	Parallel Approaches
	Results and Discussion
	Conclusions
	References

