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Abstract: The purpose of this research is to study the effect of both transverse impact, and ratio
of outer diameter to thickness of outer steel tube (D/t), on the residual axial bearing capacity of
concrete-filled circular steel tubular columns (CFCSTCs). A total of sixteen samples, including four
samples left untreated for comparison, are experimentally studied to investigate the effect of both
drop-hammer transverse impact height (H), and D/t ratio, on the residual axial bearing capacity
of CFCSTCs. The failure mode, load-displacement curves, load-strain curves, and residual axial
bearing capacity of those samples are extensively investigated. A finite element analysis (FEA) model
is established to predict the effect of D/t ratio on the residual axial bearing capacity of CFCSTCs.
The results indicate that the H and the D/t ratio have noticeable effects on the axial compression
performance of CFCSTCs. Failure mode of samples is commonly local buckling. In addition,
maximum reduction of the axial bearing capacity of columns reaches about 35% compared with that
of untreated columns. The results also show that the bearing capacity of the column increases with a
decreasing D/t ratio of the same diameter (D).

Keywords: concrete-filled circular steel tubular columns (CFCSTCs); transverse impact; bearing
capacity; compression; finite element analysis (FEA)

1. Introduction

Concrete Filled Tube (CFT) structures are widely used in engineering due to their excellent
structural and constructional performance [1,2]; this is especially the case for typical forms of
Concrete Filled Steel Tube (CFST) structures [3–10]. Attention also has been paid to Concrete Filled
Fiber Reinforced Polymer (FRP) Tubes, in view of their anti-corrosion properties, which can be
better adapted to corrosive environments than CFST [11–16]. However, compared with concrete
filled FRP Tubes (CFFT), CFSTs are preferred when involving transverse impacts, because steel
has much better toughness than FRP when subjected to direct impacts. Throughout the whole life
cycle, structures, including the CFTs, may be subjected to transverse impacts from accidental or
deliberate events. Accurate vulnerability assessments are crucial in the design process to ensure the
safety of CFT composite structures when faced with unexpected loads [17]. At present, structural
damage detection [18–20] and health monitoring methods [21–24] have been developed to monitor the
damage status and well-being of a structure in real time. Simultaneously, experimental and numerical
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simulation studies have also been conducted to predict the behavior of structure under unexpected
loads, such as impacts, explosions, and other high dynamic loads [25–29].

In recent years, experimental and theoretical studies on the behavior of CFSTs under transverse
impact have been broadly conducted. Axial impact experiments on twenty-one circular CFST columns
were carried out by Chen et al. [30]. Bambach [31] and Bambach et al. [32] experimentally investigated the
performance of square CFST members subjected to lateral impacts at the beam mid-span. Wang et al. [33–35]
experimentally investigated the impact performance of CFST members and FRP-concrete-steel
double skin tubular members. The failure modes and the time history of the impact forces for
those members under lateral impact were obtained. In addition, an investigation of the behavior of
concrete filled double steel tubular members under lateral impact using ABAQUS 2016 was presented.
Subsequently, the experimental and theoretical studies on the behavior of high-strength concrete-filled
steel tubes under transverse impact loading were conducted by Han et al. [36]. Alam et al. [37,38]
experimentally and theoretically developed a study on the performance and dynamic behavior of
carbon FRP strengthened CFST members subjected to lateral impact.

Apart from the aforementioned work [30–38], some other studies [39,40] have been reported on
CFST members subjected to transverse impact. The majority of these studies demonstrate that CFST
members with different configurations have excellent transverse impact resistance. However, there
is a lack of investigation into the performance of CFST members after exposure to transverse impact
loads. Chen et al. [41,42] conducted research on residual axial bearing capacity, but the sample was
only aimed at hollow steel tubes. Therefore, it is of great importance to investigate the residual bearing
capacity of CFCSTCs after transverse impact.

This paper presents an experimental and theoretical investigation into the residual compressive
bearing capacity of CFCSTCs after transverse impact. In this research, the effects of drop-hammer
transverse impact height (H), and ratio of outer diameter to thickness (D/t) of outer steel tube on the
residual compressive bearing capacity of CFCSTCs after transverse impact load, are experimentally
investigated. Moreover, the failure mode, load-displacement curves, load-strain curves, and residual
axial bearing capacity of those samples are extensively investigated based on the experimental results.
Furthermore, a finite element analysis (FEA) model is developed to predict the residual compressive
bearing capacity of CFCSTCs after transverse impact load with different D/t ratios.

2. Experimental Investigation of Column

2.1. Test Samples

In the test, a total of sixteen CFCSTCs are tested with different drop-hammer transverse impact
heights of (H) and diameter-thickness (D/t) ratio under axial compression force, in which four CFCSTCs
are not impacted for comparison. The samples have H ranging from 0 m to 4 m, and D/t ratios ranging
from 19.9 to 36.5. Table 1 shows the cross-section dimensions, the test parameters and results of all
samples. The definition of some symbols are presented in Figure 1. As shown in Table 1, all samples
are labeled to identify the D/t ratio and H of the samples. For example, the label “C159 ×6-R26.5-H0”
is defined as follows:

• The first part “C159×6” means that the sample is concrete-filled circular steel tubular columns
with the nominal diameter (D) of 159 mm and thickness (t) of 6 mm.

• The second part “R26.5” indicates that the ratio of diameter-thickness (D/t) of the sample is 26.5.
• The following notation “H0” demonstrates that the height of the drop-hammer (H) is 0 m.

The material properties of all samples are shown in Table 2.
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Table 1. Details of samples.

Sample D × t (mm) L (mm) D/t H (m) ∆o (mm) ∆r (mm) Pu (kN)

C159×6-R26.5-H0 159 × 6 2250 26.5 0 0 18.5 1747.2
C159×6-R26.5-H2 159 × 6 2250 26.5 2 29 71.7 1433.3
C159×6-R26.5-H3 159 × 6 2250 26.5 3 41 88.5 1343.2
C159×6-R26.5-H4 159 × 6 2250 26.5 4 52 102.2 1134.8
C159×8-R19.9-H0 159 × 8 2250 19.9 0 0 16.8 2168.6
C159×8-R19.9-H2 159 × 8 2250 19.9 2 15.5 65.6 1977.8
C159×8-R19.9-H3 159 × 8 2250 19.9 3 27.8 82.4 1656.6
C159×8-R19.9-H4 159 × 8 2250 19.9 4 46 99.8 1541.6
C219×6-R36.5-H0 219 × 6 2250 36.5 0 0 7.8 3242.2
C219×6-R36.5-H2 219 × 6 2250 36.5 2 12.5 52.4 3053.8
C219×6-R36.5-H3 219 × 6 2250 36.5 3 16.1 63.6 2998.8
C219×6-R36.5-H4 219 × 6 2250 36.5 4 28.2 74.2 2827.6
C219×8-R27.4-H0 219 × 8 2250 27.4 0 0 5.8 3691.2
C219×8-R27.4-H2 219 × 8 2250 27.4 2 10.8 50.7 3689.2
C219×8-R27.4-H3 219 × 8 2250 27.4 3 13.4 58.5 3598.2
C219×8-R27.4-H4 219 × 8 2250 27.4 4 17 64.6 3551.6

Notes: D, t and L mean the outer diameter of CFST column, the thickness of steel tube and the length of CFST
column respectively; H and ∆o denote the height of drop-hammer and the residual displacement of the mid-span
under transverse impact respectively; ∆r and Pu mean the residual displacement of the mid-span and ultimate
bearing capacity under axial compression respectively.
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Table 2. The material properties.

D × t (mm) f cu (N/mm2) f y (N/mm2) Es (N/mm2)

159 × 6 31.2 294.8 2.06 × 105

159 × 8 31.2 291.2 2.09 × 105

219 × 6 31.2 294.8 2.06 × 105

219 × 8 31.2 291.2 2.09 × 105

Note: fcu denotes the average 28-day compressive strength of core concrete cubes tested; fy denotes average yield
strength of steel tube; Es denotes the modulus of elasticity of steel tube.

2.2. Test Program

2.2.1. Transverse Impact Program

The transverse impact test is performed on a drop-hammer impact test rig with hinged boundary
conditions at both ends. The maximum height of the drop hammer is 7.5 m, and the corresponding
maximum impact velocity is 12.36 m/s. The mass of the drop hammer is 339 kg. Details of the
drop-hammer impact test rig are shown in Figure 2.
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sample was cleaned using a steel wire brush to remove rust or dust. The arrangement of strain gauges 
of the samples is shown in Figure 4. For each sample, four bi-directional strain rosettes with intervals 
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placed in horizontal and vertical directions at 1/2, 1/3 and 1/4 heights of the samples. In order to avoid 
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plates of test setup. During the experiment, the applied load is controlled and measured by the 
electronic load transducer, and the date of deflection and strain are measured at each load step. 
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2.2.2. Axial Compression Program

The axial compression test is carried out on the electro-hydraulic servo universal testing setup
with a maximum capacity of 5000 kN, as shown in Figure 3. Before the test, the outer surface of all
sample was cleaned using a steel wire brush to remove rust or dust. The arrangement of strain gauges
of the samples is shown in Figure 4. For each sample, four bi-directional strain rosettes with intervals
of 90◦ are attached to the outer surface of the sample at mid-span, and six displacement gauges are
placed in horizontal and vertical directions at 1/2, 1/3 and 1/4 heights of the samples. In order to
avoid the end effect, two rigid steel plates are placed between the both ends of the samples and two
bearing plates of test setup. During the experiment, the applied load is controlled and measured by
the electronic load transducer, and the date of deflection and strain are measured at each load step.
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Figure 4. Arrangement of strain gauges of the sample. Numbers (1 to 8) are labels of strain gauges.

2.3. Transverse Impact Test Results and Discussions

Photographs of the samples after transverse impact tests are shown in Figure 5. The test results
of all sixteen samples are shown in Table 1. It can be seen that in the transverse impact test, the
residual displacement of the mid-span (∆o) increases with an increase in the drop hammer height
(H). In addition, the outer diameter (D) and thickness (t) of the steel tubes have noticeable effect on
the impact performance. The ∆o reduces with increasing D or t. The typical impact force (F)-time
(T) curves of all samples under transverse impact test are shown in Figure 6. It can be known that
the trends of F-T curves can be divided into three stages. Firstly, the impact force reaches the peak
value rapidly at the moment of impact; this process is defined as the peak stage. Subsequently the
impact force descends to stationary stage, and the value of force remains steady; therefore, this period
is described as the stationary stage. With the impact energy dissipation, the impact force gradually
descends to zero; this last stage is called the unloading stage. It also can be seen that the peak value
and amplitude of the impact force increase with the increasing impact height.
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(c) C219×6-R36.5-H2 to H4; (d) C219×8-R27.4-H2 to H4.
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Figure 6. Impact force (F) versus time (T) curves of samples in impact test. (a) C159×6-R26.5-H2 to H4;
(b) C159×8-R19.9-H2 to H4; (c) C219×6-R36.5-H2 to H4; (d) C219×8-R27.4-H2 to H4.

2.4. Axial Compression Test Results and Discussions

2.4.1. Basic Behavior

The test results of all samples are presented in Table 1. Figure 7a,b show the residual bearing
capacity (Pu) and mid-span lateral displacement (∆r) with the variations of H and the cross-section
dimensions respectively. It can be seen from Table 1 and Figure 7a that for CFCSTCs, the residual
bearing capacity (Pu) decreases with the increasing H. Furthermore, for samples with same D and
t, the highest Pu is obtained by the sample that is not subjected to impact loading before the axial
compression test, while the lowest Pu is achieved by the sample with H of 4 m. It also can be found that
for C159×6-R26.5-H0 to H4 samples, the reduction of Pu is 35%. However, for C159×8-R19.9-H0 to H4,
C219×6-R36.5-H0 to H4, C219×8-R27.4-H0 to H4, the reduction of Pu is 29%, 13% and 4%, respectively.
This means that the influence of H on Pu is obviously smaller as a result of the increasing D or t.
In addition, under the same H, the Pu decreases with increasing D/t ratio under the same D, while the
Pu decreases with decreasing D/t ratio under the same t. It may be observed that a larger D or t can
significantly improve the flexural rigidity, and thus Pu can be increased.

It can be noted from Table 1 and Figure 7b that under axial compression, the residual mid-span
lateral displacement (∆r) increases with increasing H. In addition, under the same H, ∆r increases
with increasing D/t ratio under the same D, while ∆r decreases with an increasing D/t ratio under
the same t. This may attribute to the fact that the capacity to resist deformation of CFCSTC can be
improved significantly by increasing the t or D.
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2.4.2. Failure Modes

In axial compression tests, the failure modes of samples with different H and D/t ratios are shown
in Figure 8. It can be seen that failure modes can be divided into two serials. Mode 1 is the local
buckling occurs at the impact location, where the deformation shape of the sample is like a “C”; Mode 2
is the local buckling happens at the upper and underside zone of mid-span, where the deformation
shape of the sample is like an “S”. Mode 1 most likely occurs on samples with bigger H, while Mode 2
commonly occurs on samples with lower H or with bigger D/t ratios under the same t or with lower
D/t ratios under the same D. Furthermore, the crack never appears when the failure occurs.
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2.4.3. Load-Displacement Curves

The typical load-displacement curves of all samples are shown in Figure 9. The vertical axis
denotes the axial force (P) and the horizontal axis denotes the vertical displacement (∆v). The ultimate
bearing capacity (Pu) under compression is presented in Table 1. As shown in Figures 7a and 9c, it can
be concluded that with the increasing D, both the Pu and the vertical displacement corresponding to
Pu increase, whereas the influence of H on the P-∆v curves decreases significantly. Similar results may
be obtained, as shown in Figure 9b,d. It may be observed that the capacity to resist impact is improved
by a large D, and thus, the residual bearing capacity after transverse impact cannot be significantly
influenced by the drop hammer height.

Comparing Figure 9a,b, it can be noted that with the increasing t, both the Pu and the initial
slope of the P-∆v curve increase, while the vertical displacement corresponding to Pu decreases.
Similar results may be obtained, as shown in Figure 9c,d. It may be due to the fact that the capacity to
resist deformation of CFCSTC can be improved by increasing the t. However the difference resulting
from the t is not more evident than that of the D, which may be due to the fact that the effect of t on the
behavior of CFCSTC is less than that of D.

2.4.4. Load-Longitudinal Strain Curves

C159×6-R26.5 was used as an example to analyze the relationship between axial compression
load and longitudinal strain (P-εL), as shown in Figure 10, in which negative and positive value denote
compressive and tensile strain respectively. It can be noted that the trends of P-εL curves can be divided
into three stages. Firstly, the εL increases linearly with the increasing P and the εL is relatively small;
therefore, this process is defined as the elastic stage. Subsequently, the εL increases nonlinearly with
the increasing P, and this period is termed the elastic-plastic stage. With the increasing P until the
maximum value is reached, the growth rate of εL is greater than the increment speed of P, and the
deformation increases significantly, so this last stage is called the plastic stage. Most of strain gauges
points enter the plastic state when the P reaches to the maximum value.
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Figure 9. Axial force versus vertical displacement (P-∆v) curves of samples. (a) C159×6-R26.5-H0 to
H4; (b) C159×8-R19.9-H0 to H4; (c) C219×6-R36.5-H0 to H4; (d) C219×8-R27.4-H0 to H4.

By comparing the εL curves of C159×6-R26.5 samples under different H, it can be found that
for an undamaged sample, i.e., C159×6-R26.5-H0, the maximum compressive strain at yield load
is about 2620 µε, which is greater than the yield strain of steel. It may be explained that under the
synergistic action of core concrete, the compressive strength of CFCST structure is much higher than
that of steel structures. In addition, the undamaged sample is almost under compression during the
whole deformation process, and before entering into plastic stage, the εL values of all points are very
close, which reflects the phenomenon that the sample is vertically and uniformly compressed.

Nevertheless, for the damaged samples, i.e., C159×6-R26.5-H2 to H4, the P-εL curves increases
linearly before the loading reaches to 0.7–0.75 Pu. After that, the sample enters the elastic-plastic stage
and at the concave side in the middle of the column (i.e., the position where the strain gauge 5 is
attached), the compressive growth rate of εL is the fastest. Meanwhile, at the convex side in the middle
of the column (i.e., the position where the strain gauge 1 is pasted), the εL is the compressive strain
at the initial stage of loading, and after the sample yields, εL gradually decreases to 0 and eventually
becomes the tensile strain.

2.4.5. Load-Transverse Strain Curves

The axial compression load versus transverse strain (P-εT) curves of the C159×6-R26.5 sample is
shown in Figure 11. Comparing the curves of Figure 10, it can be generally found that the transverse
strain (εT) is smaller than the longitudinal strain. It can be found from Figure 11 that at the initial
loading, the transverse strain increases slowly, due to the fact that the constraint of outer steel tube
to core concrete is a relatively weak. With the increasing P, the constraint effect of steel tube on core
concrete is strengthened. After entering the elastic-plastic stage, the transverse deformation of concrete
is greater than that of the steel tube, resulting in the extrusion of outer steel tube by concrete and the
rapid increase of εT.
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Figure 10. Typical axial force versus longitudinal strain (P-εL) curves of C159×6-R26.5-H0 to H4.
(a) H = 0 m; (b) H = 2 m; (c) H = 3 m; (d) H = 4 m.

It also can be found from Figure 11 that the εT of undamaged samples (i.e., C159×6-R26.5-H0) is
less than that of damaged samples. In addition, for undamaged samples before entering into plastic
stage, the εT values of all points are basically the same, which also reflects the fact that the sample is
vertically and uniformly compressed. For damaged samples, i.e., C159×6-R26.5-H2 to H4, except εT at
the position where the strain gauge 2 is pasted from the tension strain to compression strain, the εT at
the other position are tension strains during the whole deformation process; this may be due to the
different deformation rates of steel tube and core concrete. At the concave side in the middle of the
column (i.e., the position where the strain gauge 6 is attached), the εT is almost the biggest, which is
consistent with the position where the longitudinal strain gauge 5 is attached. With the increase of H,
most of εT is larger, and the deformation rate of sample is higher.
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Figure 11. Cont.
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3. Finite Element Analysis (FEA) of Column

3.1. Detail of the Column Model

A finite element analysis (FEA) model is established using the commercial software ABAQUS
2010/Explicit [43] to further investigate the bearing capacity of CFCSTCs. Suitable modeling must be
done properly to evaluate the axial behavior of the CFCSTCs after transverse impact. A simplified
nonlinear finite element method is developed for CFCSTCs with different D/t ratio under axial loading.

3.1.1. Finite Element Type and Mesh

In the model, the 8-node reduced-integration brick solid element (C3D8R) provided by
ABAQUS [43] is adopted to simulate the steel tube, the core concrete, and the steel plates, as proposed
by Tao et al. [44] and Classen et al. [45]. A fine mesh is used to develop the model to ensure the
simulation effectiveness. The details of the CFCSTC model are shown in Figure 12.
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Figure 12. A finite element analysis model of CFCSTC (concrete-filled circular steel tubular columns).

3.1.2. Material Model

The elastic–plastic model in ABAQUS [43], including elastic and plastic parts, is applied to
express the constitutive relationship of steel. The elastic part requires the modulus of elasticity (Es)
and Poisson’s ratio to be 2.06 × 105 N/mm2 and 0.2 respectively. The plastic part requires the input of
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a true stress-plastic strain relationship, acquired by transforming the one introduced by Han et al. [36]
in this paper.

The concrete damage plasticity (CDP) model provided by ABAQUS [43], including elastic part and
plastic part, is used to express the constitutive relationship of a concrete structure under compression
and tension. The elastic part requires the modulus of elasticity (Es) and Poisson’s ratio. The modulus

of elasticity (Es) can be obtained by the equation of 4700
√

f ′c , proposed in [46], where f ′c is the cylinder
compressive strength of concrete. Poisson’s ratio is set to 0.2. The plastic part contains the concrete
under compression and tension, and it can be obtained from Han et al. [36].

The evolutions of tension (dt) and compression (dc) damage variables in CDP model can be used
to express the concrete damage induced by plastic deformation. The dt and dc can be calculated using
the equations, as proposed by Birtel and Mark [47].

Five parameters in CDP model, including the dilation angle of 30◦, the eccentricity of 0.1, the
f b0/f c0 of 1.16, the K of 0.6667 and the viscosity parameter of 0.0005, are used to describe the yield
function and plastic flow procedure of concrete.

3.1.3. Concrete to Steel Interfaces

The contact models in ABAQUS [43], including normal and tangential directions, is used to model
the interface properties between concrete and steel. In the normal direction, a hard contact model
is used. A Coulomb friction model is applied in the tangential direction and the dynamic friction
coefficient of 0.6 and static friction coefficient of 0.5, proposed in [33,48–51], are used for the interface
between the steel tube and core concrete. In addition, the *TIE option in ABAQUS is adopted to
simulate the welding lines between steel tube and steel plates.

3.1.4. Boundary Conditions and Load Application

The model is divided into three parts: the steel tube, the core concrete, and the steel plates.
The steel plates can be regarded as elastic rigid plates, and modulus of elasticity and Poisson’s ratio are
1× 1012 N/mm2 and 0.0001 respectively. All translational displacements (UX, UY and UZ) of the bottom
steel plate are constrained, as shown in Figure 12. The impact load (F) is imposed on the mid-span of
the columns using the *PREDEFINED FIELDS option in the first step and axial compressive load (P);
this is then imposed onto the top steel plate using *LOAD option in the second step.

3.2. Verification of the FEA Model

The stress and deformation of CFCSTC with different H are shown in Figure 13. It can be seen
from Figure 13 that the FEA model can predict the local buckling of column. Figure 13a shows that with
the increasing P, the stress develops from the middle area where the buckling occurs towards the ends
of sample. Similar behavior can be seen from Figure 13b, while there is a difference that the biggest
stress is at the impact location. Through the FEA results, it also can be seen that for C219×8-R27.4-H0,
local buckling occurs at the upper and underside zone of mid-span, while for C219×8-R27.4-H4 the
deformation only occurs at the mid-span. In addition, deformation increases with the increment of H,
and the results obtained by FEA model are in generally good agreement with the test results.
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Figure 13. Stress and deformation distribution. (a) C219×8-R27.4-H0; (b) C219×8-R27.4-H4.

3.3. Parametric Study

Sample C219×8-R27.4-H0, which is presented in Section 2 of this paper, is selected as a typical
example for the analysis in this section. The basic parameters of this sample are: D × t = 219 mm ×
8 mm, L = 2250 mm, f y = 291.2 N/mm2, f cu = 31.2 N/mm2, H = 0 m. Three samples with different
diameter-thickness (D/t) ratio are simulated to analyze the effect of the D/t ratio on the performances
of the columns. The change of the D/t ratio is realized by changing t with D = 219 mm. The force-time
(P-T) curves of simulated results, and the ways in which variations of D/t ratio affect the bearing
capacity of the samples are shown in Figures 14 and 15 respectively. It can be concluded that the
bearing capacity of the CFCSTCs can be increased by decreasing D/t ratio on the premise that diameter
(D) is constant.
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4. Conclusions and Future Work

The following conclusions may be drawn within the limitations of the research:

(1) Failure mode of CFCSTCs under axial compression can be divided into two serials. Mode 1 is
that local buckling occurs at the impact location; Mode 2 is that local buckling happens at the
upper zone and underside zone of mid-span. Mode 1 most likely occurs on samples with bigger
H, while Mode 2 easily occurs on samples with lower H or with bigger D/t ratio under the same t
or with lower D/t ratio under the same D.

(2) The transverse impact height of drop-hammer (H) and D/t ratio have noticeable effects on the
axial compression performance of CFCSTCs. Bearing capacity (Pu) decreases with the increasing H.
For samples with same D and t, the highest Pu is obtained by the undamaged sample, while the
lowest Pu is achieved with the sample with H of 4 m. The maximum reduction of Pu reaches about
35%, compared with that of undamaged columns. The influence of H on Pu is obviously smaller
with increasing D or t. Moreover, the residual mid-span lateral displacement (∆r) increases with
increasing H. In addition, under the same H, the Pu decreases with increasing D/t ratio under the
same D, while decreases with decreasing D/t ratio under the same t; conversely, ∆r increases with
increasing D/t ratio under the same D, but decreases with increasing D/t ratio under the same t.

(3) For P-∆v curves of CFCSTCs under axial compression, both the Pu and the vertical displacement
corresponding to Pu increase with the increasing D, whereas the influence of H on the P-∆v

curves decrease significantly with the increasing D. Furthermore, with the increasing t, both the
Pu and the initial slope of the P-∆v curve increase, while the vertical displacement corresponding
to Pu decreases.

(4) A three-dimensional FEA model is proposed to predict the response of CFCSTC under axial
compression. A reasonably good agreement is achieved between the predicted and the
experimental results in terms of deformation and stress distribution.

Future research will involve conducting the experiment on the performance of CFCSTC with
axial load under transverse impact, and then analyzing the residual bearing capacity. Lastly, through
theoretical analysis and numerical simulation, simple design calculations can be proposed.
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