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Abstract: Communications technologies are an integral part of efficient monitoring and reliable
control in smart grids, but enhanced reliance on these technologies heightens the risk of cyber
assaults. Recently, a new type of stealth, or covert, assault in smart grid networks has been
discovered, which cannot be ascertained by legacy bad-data detectors using state estimation. Due to
the delay-sensitive nature of smart grid networks, swift detection of abnormal changes is immensely
desired. In this paper, we propose two Euclidean distance-based anomaly detection schemes for
covert cyber-assault detection in smart grid communications networks. The first scheme utilizes
unsupervised-learning over unlabeled data to detect outliers or deviations in the measurements.
The second scheme employs supervised-learning over labeled data to detect the deviations in the
measurements. Unlike the classic detection test, the proposed schemes tackle an unknown sample
with low computational complexity, leading to a shorter decision time. To improve detection accuracy
and further reduce the computational complexity and the associated time delay, we employ a genetic
algorithm-based feature selection method to choose the distinguishing optimal feature data subset
as input to both of the proposed schemes. The evaluation is carried out through the standard IEEE
14-bus, 39-bus, 57-bus and 118-bus test systems. Simulation results show that compared to the existing
feature extraction-based detection schemes, the proposed schemes show significant improvement in
covert cyber deception assault-detection accuracy.

Keywords: anomaly detection; cyber assaults; Euclidean distance; feature selection; genetic algorithm;
smart grids; state estimation

1. Introduction

The emerging smart grid (SG) concept as a cyber-physical complex organization is being
implemented through a composition of communications networks overlaying traditional power
systems. Due to the electrical energy flow’s vital dependency on communications technologies in the
SG, its vulnerability to new malicious types of cyber attack is very high. Nation states are apprehensive
about power grid privacy and security. Therefore, vigorous and secure communications management
is essential to all aspects of the SG. The security, privacy and integrity of data and the information
network have become a prime focus of research activities in SGs. Traditionally, bulk storage of the
generated electricity is not possible, and hence, its generation should be closely equated to consumption;
otherwise, there can be a deviation in the electrical quantities. Thus, the power control center (PCC)
needs to monitor the power network closely to make sure that the operation of the power system is
safe and reliable. State estimation (SE) is a fundamental approach employed in an energy management
system (EMS) to monitor states in power networks.
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Fundamental elements (generation, transmission and consumption) of a power system, along with
communications links, are illustrated in Figure 1. Distributed sensors, actuators and meters designated
as remote terminal units (RTUs) are employed in electric power grids to aggregate measurements,
including bus power insertions and branch power flows. These measurements are combined at the
PCC via communications links and are further used to estimate the states (i.e., bus voltage angles).
These state variables form the basis of suitable decisions by the EMS about auto-generation control
(AGC) and optimal power flow (OPF) to keep electric power systems in a safe operating zone. On the
one hand, the existence of a communications infrastructure is compulsory for the realization of
efficient monitoring and intelligent control in the framework of an SG, but the communications
infrastructure is prone to malicious cyber-assault threats [1–3], due to certain incentives for the attacker.
Unidirectional flow of information in legacy power networks (i.e., from RTUs to PCC) makes it more
important to study a particular type of malicious user behavior that attempts to target the integrity of
the measurement data by inserting a deceptive bias value into the SE. Such malicious activity goes
mostly undetected by bad-data detection (BDD) systems in the legacy PCC. We term this kind of
attack a covert cyber deception (CCD) assault, but it is also known as a false data injection (FDI)
attack, a cyber stealthy deception (CSD) attack, and so on [4]. Identification and removal of the
susceptibilities or anomalies injected by a CCD assault are critically important because of their negative
impacts on the safety and reliability of SGs. Methods reported in the literature to mitigate the effects
of CCD assaults on SGs can be broadly divided into two classes: (1) protection-based defense; and
(2) detection-based defense. M. Ozay et al. [5] utilized a variety of machine learning-based schemes
to detect the CCD assault in SG. Sandeep et al. [6] proposed joint-transformation-based scheme to
detect CCD assault. They utilize the Kullback–Leibler distance to find out the difference between
probability distributions obtained from measurement variations. However, they did not employ feature
selection (FS)-based techniques in their work to tackle the dimensionality issue with increasing power
system sizes. Esmalifalak et al. [7] used the PCA-based feature extraction (FE) technique to tackle the
dimensionality issue in the state estimation-measurement feature (SE-MF) dataset and then employed
a statistical method-based anomaly detection (AD) mechanism to detect the CCD assault. Unlike the
existing schemes, in this paper, we focus on the selection of the discriminating features from the SE-MF
dataset utilizing genetic algorithm (GA) to tackle the curse of dimensionality [8]. The optimal features
selected from the SE-MF dataset are then used as input by the two proposed Euclidean distance
(ED)-based AD schemes for the detection of a CCD assault. Contrary to the FE-based approach, the
proposed FS-based method does not alter the original representation of the data.



Appl. Sci. 2018, 8, 772 3 of 21

Consumption GenerationTransmission/Distribution

PCC

State 

Estimator

OPF AGCEMS

SCADA

Control 

Commands

RTURTU RTU

Data Integrity 

Attack

Bad

Data

Detector

Measurements Measurements

Data Integrity 

Attack

Control

Commands

Measurements

Data Integrity 

Attack

Figure 1. Covert cyber deception assault in a smart grid communications network. PCC, power control
center; OPF, optimal power flow; AGC, auto-generation control; RTU, remote terminal unit.

1.1. Motivation

Normal data are consistent with physical laws, like Kirchhoff’s current and voltage laws,
whereas the compromised data that are affected by a CCD assault are inconsistent with these
laws. Therefore, normal and compromised data will have different distributions and will, therefore,
tend to form different clusters. These clusters would be distinguishable in a feature space of suitable
dimensions. This fundamental distinction inspires the distance-based anomaly detection schemes
for the detection of CCD assaults. Unsupervised anomaly detection (AD) techniques are persuasive
at differentiating between data that have different underlying distributions, particularly when the
data are not labeled. Similarly, supervised anomaly detection techniques can be employed to detect
the anomalies in the labeled data. Thousands of sensors or RTUs are employed in power grids,
spanning over a vast geographical area. Practically, defense mechanism can be designed to protect a
limited set of critical RTUs and corresponding measurement features (MFs). Therefore, in the context
of SG cyber-security, the selection of distinctive features from the SE-MF dataset becomes a promising
strategy to detect the CCD assault and tackle the curse of dimensionality [8].

1.2. Related Works

The benefits and risks involved in utilizing communications technologies alongside legacy
electrical power systems have been widely reviewed [9–13]. Intrusion into a communications network
by a pernicious user who is aiming to target the integrity of the data can have a catastrophic impact
on the secure and reliable operation of an SG [14–16]. Therefore, in the context of the security of SGs,
understanding the nature of the assault and identification of compromised data has been the focus of
research in electric power systems. The conventional state estimator in a PCC utilizes BDD to single
out and disassociate the bad data for state estimation. However, Liu et al. [17] demonstrated that a
smart attacker who has information on the network topology can realize the construction of a set of
falsified data that can dodge legacy BDD. This type of attack is known as an unobservable (or covert)
cyber assault. Many schemes considering the construction of intrusion assaults against state estimation,
and the subsequent defense measures against them, have been discussed in the literature [4,13–21].
Li et al. [18] proposed a decentralized conjunctive rule-based majority voting algorithm to detect
compromised or assaulted phase measurement units. Huang et al. [19] proposed cumulative sum
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hypothesis test-based bad-data detection in a state estimator. Xie et al. [22] demonstrated that a data
integrity assault can methodically result in a considerable economic loss in real-time market operations.
Similarly, Esmalifalak and colleagues [23] studied the fiscal impact of a false data injection attack on
electric power market operations. An encryption-based security mechanism integrated into power
system devices was proposed [24] to improve the security of the power system against FDI attacks.
Methods reported in the literature to mitigate the effects of CCD assaults on SGs can be broadly divided
into two classes: (1) protection-based defense; and (2) detection-based defense. Thousands of sensors
or RTUs are employed in power grids, spanning over a vast geographical area. Practically, defense
mechanism can be designed to protect a limited set of critical RTUs and corresponding measurement
features (MFs). Therefore in the context of SG cyber-security and computational complexity, the
selection of distinctive features becomes a promising strategy to detect the CCD assault in real time [5].
Sandeep et al. [6] proposed a joint-transformation-based scheme to detect CCD assault. They utilized
the Kullback–Leibler distance to find out the difference between probability distributions obtained
from measurement variations. However, they did not employ feature selection (FS)-based techniques
in their work to tackle the dimensionality issue with increasing power system sizes. Esmalifalak et al.
[7] used the PCA-based FE technique to tackle the dimensionality issue in the SE-MF dataset and then
employed a statistical method-based AD mechanism to detect the CCD assault.

In summary, existing works on CCD assault detection in SGs only have generally considered
feature extraction or transformation [5–7] in the context of cybersecurity and the curse of dimensionality.
To the best of our knowledge, the selection of distinguishing features from the SE-MF dataset in the
context of SG security is still an open problem.

1.3. Contributions

In this paper, we focus on the selection of the discriminating features from the SE-MF dataset
utilizing the genetic algorithm (GA) to tackle the curse of dimensionality [8]. The optimal features
selected from the SE-MF dataset are then used as input by the two proposed Euclidean distance
(ED)-based AD schemes for the detection of a CCD assault. Contrary to the FE-based approach,
the proposed FS-based method does not alter the original representation of the data. The main
contributions of this paper can be summarized as follows:

• We study intelligently-crafted CCD assaults on the SE-MF dataset, and we investigate how such
an assault goes undetected in legacy systems that use bad-data detectors.

• To tackle the increasing computational complexity with the growing sizes of power systems,
we use GA for the selection of independent and discriminating features from the SE-MF dataset.
The selection of discriminative features leads to lower computational costs, a shorter time delay
and improved accuracy.

• First, we propose an ED-based AD scheme to detect the presence of outliers in the unlabeled
SE-MF dataset. Next, we extend the first scheme to propose a detection mechanism for the labeled
SE-MF dataset. In both schemes, the optimal features selected through the GA are employed as
input.

• We use the IEEE standard 14-bus, 39-bus, 57-bus and 118-bus test systems to evaluate the efficiency
of the proposed schemes. The performance evaluation shows that the proposed schemes provide
better accuracy, in comparison to existing AD-based schemes.

1.4. Paper Organization

The remainder of this paper is organized as follows. In Section 2, we present the system model
and explain the behavior of a CCD assault in SG networks. In Section 3, we first describe the GA-based
FS mechanism and then describe the two proposed ED-based AD schemes to detect CCD assaults.
Simulation results are presented in Section 4. We conclude the paper in Section 5. Table 1 lists the
abbreviations used throughout the paper, and Table 2 lists and CCD assault notations and concepts.
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Table 1. Nomenclature.

Abbreviation Term Abbreviation Term

AD anomaly detection GA genetic algorithm
AGC auto-generation control MF measurement features
BDD bad-data detection NCA neighborhood component analysis
CCD covert cyber deception OPF optimal power flow
CSD cyber stealthy deception PCA principle component analysis
EC evolutionary computation PCC power control center
ED Euclidean distance PSO particle swarm optimization

EMS energy management system ROC receiver operating characteristic
FDI false data injection RTU remote terminal unit
FE feature extraction SE state estimation
FS feature selection SG smart grid

Table 2. Average number of features selected by GA.

Standard IEEE Bus System States Features Selected Features

14-bus 13 53 23
39-bus 38 130 61
57-bus 56 216 111

118-bus 117 489 233

2. Covert Cyber Deception Assault

State estimation at the PCC is the essential instrument for ensuring the reliable and sustainable
functioning of electrical power networks [25]. As illustrated in Figure 1, the measurement data
collected from RTUs via communications networks are used by the state estimator to determine the
system states over time. The problem with state estimation is how to approximate power system state
variables based on the measurement data.

2.1. Legacy Bad-Data Detectors in PCCs

The measurement data and the state variables are related through the following alternating AC
power flow observation model:

Zmeter = h(δ) + e, (1)

where h(δ) is a non-linear relationship between measurement data, Zmeter, and the state vector δ;
e = [e1, e2, ..., em]T is the Gaussian measurement noise vector with standard deviation σ. Using a linear
or direct current (DC) power flow model, the observation model in (1) becomes further simplified with
a small sacrifice of accuracy, as follows [26,27]:

Zmeter = Hδ + e. (2)

In a DC power flow problem, the Jacobian matrix H can be approximated as follows:

H =
h(δ)
hδ

∣∣∣∣
δ=0

, (3)

where H is composed of topology and impedance data only. One objective of (2) is to determine
the estimated state, δ̂, that is the best fit for the meter measurements. In other words, we can
say that the best estimated value can minimize estimation weighted least square (WLS) error,(

Zmeter−Hδ̂
)T

Ω
(
Zmeter−Hδ̂

)
. By applying the WLS statistical estimation criteria, the estimated voltage

phase angle is given as follows:

δ̂ = (HTΩH)−1HTΩZmeter= WZmeter, (4)
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where W=(HTΩH)−1HTΩ and Ω is a diagonal matrix where diagonal elements are Ωii = σ−2, with σ−2
i

being the variances of meter errors. Noise in the wireless medium, faulty meters or malicious user behavior
(like CCD assaults) can be potential sources for abnormal data in estimated measurements. Current power
systems use a residual-based detector for BDD to protect state estimation [28]. The difference between
observed meter measurements Zmeter and estimated measurements Ẑ is the residual, R, and it is expressed
as follows:

R = Zmeter − Zestimated = (I −M)Zmeter. (5)

The expected value and the co-variance of the residual are:

E(R) = 0,
cov(R) = (I − A)R.

(6)

The BDD present in the PCC performs the l2-norm test [28] to compare the results with a
predefined threshold. The hypothesis of not being attacked is accepted if we have:

max
i
|Ri| ≤ λ, (7)

where Ri is the component of residual vector R and λ is the threshold.

2.2. The Covert Cyber Deception Assault

Familiar with the topology of H matrix, an attacker can initiate an assault by altering the value
of the meter measurements. Let Zassault = Zmeter + a, where a ∈ R,m×1 denotes the malicious data
injected into the meter measurement data vector. If the malicious user constructs vector a as follows:

a = Hc, (8)

where c ∈ R,m×1 is any arbitrary non-zero vector, the legacy BDD cannot detect such an assault.
The reason is as follows. Let δ̂assault denote the estimate of state variables using assaulted meter
measurements Zassault, i.e.,

δ̂assault = WZmeter + Wa = δ̂ + WHc = δ̂ + c. (9)

Now, the l2 norm for the assaulted measurement Zassault residual is as follows:

‖Rassault‖2 = ‖Zassault−Hδassault‖2
=
∥∥(Z + a)−H(δ̂ + c)

∥∥
=
∥∥(Z−Hδ̂

)
+ (a−Hc)

∥∥
2 =

∥∥(Z−Hδ̂
)∥∥

2
= ‖R‖2.

(10)

The residual calculated with assaulted measurements is the same as it is for normal measurements.
Hence, Zassault will be able to deceive the BDD statistical test presented in (8) and will change the system
states, resulting in crucial operational failures [4,17]. This sort of assault is termed an unobservable
(or covert) attack [4]. Under these assumptions, the observation model in the presence of the CCD
assault can be described as follows:

Zassault = Hδ + a + e, (11)

where a is the non-zero assault vector.
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3. CCD Assault Detection Using Euclidean Distance-Based Anomaly Detection Schemes

In this section, we discuss a two-tier mechanism for the detection of CCD assaults in the SE-MF
dataset. The curse of dimensionality [8] increases the computational complexity when measurement
features grow with increased sizes of the power systems. Moreover, all of the SE-MF dataset attributes
would not be equally supportive in leading to plainly distinguishable clusters in the feature space;
this can have a negative impact on the performance of a detection method. Therefore, first, we use the
FS-based approach to select an optimal subset of features that would result in more tightly-packed
and distinctly-separable clusters of vectors of chosen features in the resulting subspace. Through FS,
we also can reduce the measurement and storage requirements at the PCC, as well as the training and
prediction times [29]. The selected optimal features are then employed as input to the two ED-based
AD schemes (EDADS-1 and EDADS-2) to detect CCD assaults in SG communications networks.
When the class labels are not given in the SE-MF dataset, we utilize the proposed EDADS-1 to identify
the outliers as potential assaults. On the other hand, when the data are supplemented with class labels,
we propose EDADS-2 to distinguish between the normal and compromised data. In the following
subsections, we explain the GA and the proposed detection schemes.

3.1. Dimensionality Reduction Using Genetic Algorithm-Based Feature Selection

The goal of FS is to choose a subset of features (from a given set of features) that yields minimum
classification error. Works reported on dimensionality reduction affirm that FS techniques retain data
characteristics for interpretability. Furthermore, overfitting due to fewer redundant data is reduced
and modeling accuracy is improved with FS methods [29–34]. The interrelationship between numerous
dimensionality reduction approaches (encompassing feature subset selection) and FE with different
flavors of PCA techniques was studied. Janecek et al. [30] analytically tested the effects of these
methods on classification accuracy with two different types of datasets (email data and drug discovery
data). The results revealed that feature transformation using PCA is highly sensitive to the type of data.
Generally, FS methods can be divided into three categories: filters, wrappers, and embedded/hybrid
methods. Wrapper methods are advantageous over filter approaches due to them giving better
performance since they use the target classifiers such as K-nearest neighbors and support vector
machine for feature selection. For a large dataset, however, wrapper methods are computationally
expensive. The filter approach is known to be more computationally efficient than wrapper methods
and performs well with large dataset [29,35]. In this paper, considering the delay-sensitive nature and
increasing sizes of power systems, we use a filter-based FS mechanism that is independent of any
learning algorithm or classifier. Working as a preprocessor in the paper, the filter-based FS will select
features by considering their scores in different statistical tests for correlation with the outcome variable.
We use GA to select the subset of features from the SE-MF dataset that is the best at discriminating
compromised data from normal data. GA has been widely used for FS purposes in the machine learning
and is considered suitable for large combinatorial problems [30,31,36]. However, recently, particle
swarm optimization (PSO) and other evolutionary and metaheuristic algorithms have gained the
attention of researchers due to their lesser complexity and simplicity. PSO may be a promising method
for FS and an interesting topic for future works in SG security. The GA emulates biological evolution
and Darwinian selection [36]. The evolution mechanism of living beings is believed to follow natural
selection, i.e., living species that are better suited to their environment thrive, whereas species that
are at a disadvantage in their environment go extinct. Following the same principle, GA improves a
given solution by incrementally choosing better possible solutions, while eliminating worse solutions.
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The quality of each solution is calculated using a fitness value function based on the objective function.
The m-dimensional set of SE-MF vector data in Rn is given as input to GA as follows:{

X(m)
1 , X(m)

2 , ..., X(m)
k

}
where Xi

(m) =
[

x1 x2 , ..., xm−1 xm

]
,

∀i ∈ {1, 2, ..., k} .

(12)

GA yields a set of n-dimensional vectors in subspace Rn, described as:{
X(n)

1 , X(n)
2 , ..., X(n)

k

}
where Xi

(n) =
[

x1 x2 , ..., xn−1 xn

]
,

∀i ∈ {1, 2, ..., k} .

(13)

It is notable that the GA reduces the dimensionality of each vector in the set without affecting
the cardinality of the set of vectors in Equation (14), i.e., n << m. The selected dimensions are chosen
to optimize the fitness function. Hence, n << m denotes an instance of the feature vector in the
subspace that optimizes the fitness function. Fitness function F, which is adopted in this paper, is
given as follows:

F =
C̄
S̄

. (14)

In (14), C̄ is the mean compactness of classes and is expressed as follows:

C̄ =
1
L

L

∑
i

Ci
′, (15)

where the mean separability, denoted by S̄ in (14), is the separation between any two classes in an
L-class problem, obtained as follows:

S̄ =
2

L (L− 1)

L

∑
i 6=j

Sij. (16)

In this paper, we are dealing with a binary classification problem. Therefore, L = 2, i.e., normal
and compromised SE-MF measurement data. GA finds a feature subspace that would minimize the
ratio of the mean values of inter-class separability and intra-class compactness, defined as follows and
illustrated in Figure 2.

• Inter-class separability: measures how well separated two different clusters are from each other.
• Intra-class compactness: indicates how well clustered the sample vectors are for a given class.

To measure the compactness of a given class, GA calculates the mean or centroid, µ(i), of class i as
follows:

µ = 1
N (X1 + X2 + ... + XN) . (17)

Here, N is the total number of samples of class i. After that, the compactness of class i is
determined by finding the mean value of the Euclidean norm, as follows:

Ci =
1
N

N

∑
j=1

∥∥∥Xj − µ(i)
∥∥∥. (18)
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The Euclidean distance between the centroids of two classes describes the separability between
the two classes i and j. It is determined as follows:

Sij =
∥∥∥µ(i) − µ(j)

∥∥∥ . (19)

Figure 2. The concept of compactness and separability.

GA encodes the SE-MF data into chromosomes, which goes through crossovers and mutations.
Thus, new generations of chromosomes are yielded, which substitute for their parents, provided
they are healthier, i.e., their fitness or objective function value is smaller. This process is iterated
over many generations until there is no further improvement in the fitness function [29]. A binary
encoding scheme is used to represent the features or attributes of the SE-MF dataset as chromosomes.
A chromosome is simply a string of binary ones and zeroes, where one indicates that a certain
SE-MF feature is selected and zero means it is rejected. The index of each one and zero in the
chromosome corresponds to a distinct SE-MF attribute. In the beginning, the GA randomly selects
different subsets of the SE-MF. In other words, a primary population of chromosomes (a string of
ones and zeroes) initiates the algorithm. A new population of chromosomes is created by subjecting
the primary (parent) chromosomes to crossover and mutations. Two parent chromosomes exchange
information or swap fragments at randomly-chosen crossover points during the crossover process.
However, during the mutation process, the bits are flipped at randomly-selected positions in a
chromosome. Then, based on their respective fitness function value, chromosomes are ranked in
the evaluation process. Finally, the chromosomes that minimize the proposed fitness function are
selected to produce new chromosomes. This process is repeated for many generations until there is no
further decrease in the value of the proposed fitness or objective function.

3.2. Euclidean Distance-Based Anomaly Detection Scheme 1

For a large number of given data points, the datasets that vary significantly from the average of the
data are called outliers or anomalies. Anomaly detection is a class of machine learning applications, and
it has many areas of utilization, such as data cleaning, diagnosis, fraud detection, intrusion detection,
and so on. Different types of anomaly detection techniques have been proposed in the literature, such as
model-based, distance-based and statistical-based methods [37]. Considering the scenario where the
class labels are not provided in the SE-MF dataset, we propose an ED-based anomaly detection scheme
(EDADS-1), depicted in Figure 3. The measurement samples are periodically collected at the PCC
via the RTUs installed in different locations of the electrical power network. The historical dataset is
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formulated at the beginning. During the FS process, the optimal features of the SE-MF dataset are
selected through GA. Then, the optimal features dataset is divided into training and testing subsets.
It is worth mentioning that the training and testing subsets carry both normal and compromised data.
In Step 1, centroid vector Cd = {µ1, µ2, ..., µn} is calculated by finding the mean, µr, of all the features

of the training data subset, where µr =
a
∑

i=1

X(r)
Ri
a , ∀r ∈ {1, 2, ..., n}. In Step 2, the Euclidean distance

between each sample and the centroid is calculated to form a distance vector, DR = {DR1, DR2, ..., DRa},

where DRp =

√
n
∑

i=1

{(
µi − X(i)

Rp
)2
}

, ∀p ∈ {1, 2, ..., a}. In Step 3, average distance DR_avg =
a
∑

i=1

DRp
a

is calculated. The average distance can be considered a virtual boundary around the normal dataset.
In the testing phase, the Euclidean distance of each sample is calculated from its centroid to form

distance vector DT = {DT1, DT2, ..., DTb}, where DTq =

√
n
∑

i=1

{(
µi − X(i)

Tq
)2
}

, ∀q ∈ {1, 2, ..., b}.

Finally, the test is performed to identify the new test point as being normal (if DTq < DR_avg) or an
outlier (if DTq > DR_avg).

The proposed EDADS-1 algorithm has appreciably low computational complexity grounded in
the fact that calculation of the distance of one sample is required to identify the new data point as
being normal or a potential CCD assault. Additionally, it has the ability to identify the outliers in the
SE-MF dataset as a potential assault even though the class labels are provided. Moreover, with the
increased historical SE-MF dataset, the average distance DR_avg becomes closer to the actual value, and
the detection is more accurate.

3.3. Euclidean Distance-Based Anomaly Detection Scheme 2

Using the Euclidean distance-based method, we can detect a CCD assault with improved accuracy
when the labels (normal versus compromised) are given in the SE-MF dataset. In this subsection,
we explain the second proposed scheme, EDADS-2, shown in Figure 4. In the beginning, the GA
is applied to select the optimal features subset from the SE-MF historical dataset. The resulting
optimal features data subset consisting of compromised and normal data is divided into the training
dataset, XR =

{
X(n)

R1 , X(n)
R2 , ..., X(n)

Ra

}
, where X(n)

Rp ∈ X, ∀p ∈ {1, 2, 3, ..., a} ; and the testing dataset,

XT =
{

X(n)
T1 , X(n)

T2 , ..., X(n)
Tb

}
, where X(n)

Tq ∈ X, ∀q ∈ {1, 2, 3, ..., b}. The labels are used to select the

normal set, XRN =
{

X(n)
RN1, X(n)

RN2, ..., X(n)
RN f

}
, where XRNs ∈ XR,∀s ∈ {1, 2, 3, ..., f}, and f is the number

of training samples designated as normal. In Step 1, the centroid of the training data subset designated

as normal, with the help of labels, is calculated to form vector Cd = {µ1, µ2, ..., µn}, where µr =
f

∑
i=1

X(r)
RNi
f ,

∀r ∈ {1, 2, ..., n}. It is pertinent to mention here that for EDADS-2, the centroid is calculated taking into
account the normal training samples only. On the other hand, for the proposed EDADS-1, the centroid is
calculated including both normal and compromised samples. In Step 2, the Euclidean distance between
each sample and the centroid is calculated to form distance vector DR =

{
DRN1, DRN2, ..., DRN f

}
where DRNs =

√
n
∑

i=1

{(
µi − X(i)

RNs
)2
}

,∀s ∈ {1, 2, ..., f}. In Step 3, the elements of distance

vector DR, are sorted into descending vector SDRN =
{

SDRN1, SDRN2, ..., SDRN f

}
, SDRN ⊆ DRN

to choose the first 10% of its elements, which are at the farthest distance from the centroid, to
make the vector µDRN =

{
SDRN1, SDRN2, ..., SDRN(0.1× f )

}
. Employing vector µDRN, average distance

DR_avg =
0.1× f

∑
i=1

SDRNi
0.1× f of each sample from the centroid is calculated. Finally, when a new test sample

arrives, it is identified as being normal (if DTq ≤ DR_avg) or an outlier (if DTq > DR_avg). EDADS-2 also
has low computational complexity and may identify a new test sample as an outlier or normal in a very
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small amount time because it only has to calculate the distance of one sample to compare it with the
average distance.

Feature 

Selection

Feature Selection (GA)
Calculation and  Assignment

of Fitness Value

SE-MF

 Dataset

Normal Data

Yes 

Outlier

No 

Step-I (Centroid)

Step-III (Average Distance)

Step-II (Train Distance)

Optimal Features

Training DatasetTesting Dataset

Decision

Test Sample Distance

Proposed

EDADS-1

Figure 3. Flowchart of the Euclidean distance-based anomaly detection Scheme 1, EDADS-1.
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Feature 
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Feature Selection (GA) Calculation and Assignment of Fitness Value

SE-MF 
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Normal Data

Yes 

Outlier

No 

Step-III (Average Distance)

Step-II (Train Distance)

Optimal Features

Training DatasetTesting Dataset

Decision

Test Sample Distance

Proposed

EDADS-2

Step-I (Centroid)

Training Dataset Classified as Normal

Figure 4. Flowchart of the Euclidean distance-based anomaly detection Scheme 2, EDADS-2.

4. Experimental Results

In this section, we evaluate the performance of the proposed EDADS-1 and EDADS-2.
We performed the simulations using MATLAB 2017b. The proposed schemes were evaluated
through experiments using the standard 14-bus, 39-bus, 57-bus and 118-bus IEEE test systems.
Experiments’ results have been averaged over 20 iterations for each case bus system. Figure 5 illustrates
the IEEE 39-bus system [38], also known as the New England 10-machine system. Because of space
limitations, figures for the other IEEE bus systems employed for testing in this work are not included.
To simulate the operation of the power network, we used the Matpower 6.0 toolbox [39] to generate the
configuration of these test systems (especially the Jacobian matrix). We employed the AC power flow
model and used DC power flow analysis to approximate the state vectors and measurement dataset.
In a B-bus system, state variable vector δ ∈ Rn is composed of (B− 1) bus voltage phase angles, and
the meter measurement vector consists of active power injections into the buses and branch active
power flows. To conduct a fair comparison with a real-world power network scenario, we used the
stochastic loads with uniform load distributions similar to [7], i.e., in the range [0.9× B0 − 1.1× B0],
where B0 is the base load. In these simulations, the active power measurement features, including the
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active power injections into the buses and active power flows on the branches, are the input to the GA
for the selection of optimal features.

Figure 5. Standard IEEE 39-bus system (New England 10-Machine System [38]).

4.1. GA-Based Feature Selection

In the paper, we set the number of chromosomes in each population as 50 and the maximum
number of generations as 80, respectively, for GA-based feature selection. Stochastic universal sampling
(SUS) is used as the selection operator, and uniform crossover is employed. The crossover rate is 0.63
and the mutation rate 0.018. Because the GA randomly selects different subsets of the SE-MF dataset
to create a primary population of chromosomes, we iterate the GA 30 times and choose only those
features that were selected more than 70% in 30 iterations. Table 3 lists the average number of selected
features from the application of the GA to the SE-MF dataset for various IEEE standard systems.

4.2. 3D Representation of the Proposed EDADS-1 and EDADS-2

In this subsection, a 3D pictorial representation of the proposed schemes (EDADS-1 and EDADS-2)
is illustrated with Figures 6 and 7, respectively. To represent the workings of the proposed schemes,
we use three features of the standard IEEE 57- and 118-bus systems. In Figure 6, the centroid
(indicated in the figure) is calculated using training data consisting of normal and compromised
optimal features. The average of the distances of all the samples from the centroid defines a virtual
boundary, as shown in Figure 6. The data points lying outside of the virtual boundary are termed
anomalous data or outliers. However, in Figure 7, the centroid (indicated in the figure) is calculated
on the basis of data labeled as normal only. The distances of all the samples from the centroid are
sorted in descending order, and then, the first 10 percent distances (farthest from the centroid) are
chosen to calculate their average distance from the centroid. The average distance defines a virtual
boundary as shown in Figure 7. The samples lying out of the boundary are considered as outliers. Basic
performance metrics used in this work, i.e., accuracy, F1 score and receiver operating characteristic
(ROC) curves, are shown in the following subsections.
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Figure 6. Three-dimensional representation of the proposed EDADS-1 with three features for standard
IEEE 14- and 39-bus systems. (a) IEEE 14-bus system; (b) IEEE 39-bus system.

(a) (b)

Figure 7. Three-dimensional representation of the proposed EDADS-2 with three features for standard
IEEE 57- and 118-bus systems. (a) IEEE 57-bus system; (b) IEEE 118-bus system.

4.3. Receiver Operating Characteristic Curves

Figures 8 and 9 illustrate the ROC curves for the proposed EDADS-1 and EDADS-2, respectively,
employing the standard IEEE 14-, 39-, 57- and 118-bus systems for testing. The ROC curve is obtained
by plotting the false positive rate (FPR) versus the true positive rate (TPR). FPR is defined as the
probability that normal data are identified as compromised. It is used as a measure of specificity in
our detection scheme. The sensitivity of our scheme is defined as the probability that compromised
data are identified as assaulted. TPR is used as a measure of sensitivity. From Figures 8 and 9, we can
see that the area under the curve is closer to 1one in all cases. This means that the detection accuracy
of the proposed schemes is near one, which validates its good performance. In the next subsections,
we elaborate on the accuracy and F1 score for the proposed schemes.
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(a) (b)

(c) (d)

Figure 8. The ROC curves of the proposed EDADS-1 in standard IEEE 14-, 39-, 57- and 118-bus systems.
(a) IEEE 14-bus system; (b) IEEE 39-bus system; (c) IEEE 57-bus system; (d) IEEE 118-bus system.

4.4. Accuracy

Calculating the accuracy is a standard way to evaluate the anomaly detection algorithms. It is
a single-number summary of the performance of the proposed algorithm and can be calculated
as follows:

Accuracy =

(
∑ TP + ∑ TN

TotalPopulation

)
, (20)

where true positive (TP) corresponds to the samples that the proposed algorithm detects as positive
samples and that are, in fact, positive. Similarly, true negatives (TNs) are the points that the proposed
algorithm detects as negative samples and that are, in fact, negative.

Figure 10 shows the accuracy of the proposed schemes (EDADS-1 and EDADS-2) for various
IEEE standard bus systems according to a varying number of training samples. The efficiency of
the learning algorithm can be improved by increasing the amount of learning data. We compare
the performance of the proposed scheme with that of the statistical model–based anomaly detection
method [7] in which the FE technique for dimensionality reduction was utilized and further that of
the neighborhood component analysis (NCA) technique, respectively. NCA is a supervised learning
method for classifying multivariate data into distinct classes according to a given distance metric over
the data. The results show that the proposed FS-based schemes (EDADS-1 and EDADS-2) have higher
CCD assault detection accuracy. EDADS-2 exhibits slightly higher performance than EDADS-1 since
it only employs the normal features for training, utilizing the labeled data. Hence, the average of all
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the distances of test samples is close to the value that is required to accurately separate the normal
class from the compromised one. It is also shown from Figure 10 that accuracy in detection increases
with the increasing number of training data samples. In addition, the NCA-based FS technique has
low detection accuracy as compared to the proposed schemes. However, the NCA-based FS scheme
performs better than the statistical-based method [7].

(a) (b)

(c) (d)

Figure 9. The ROC curves of the proposed EDADS-2 in standard IEEE 14-, 39-, 57- and 118-bus systems.
(a) IEEE 14-bus system; (b) IEEE 39-bus system; (c) IEEE 57-bus system; (d) IEEE 118-bus system.
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(a) (b)

Figure 10. The CCD assault detection accuracy of the proposed EDADS-1 and EDADS-2 in standard
IEEE 14-, 39-, 57- and 118-bus systems with varying number of training samples. (a) Accuracy of
EDADS-1; (b) accuracy of EDADS-2.

4.5. F1 score

Next, we utilize the F1 score as another metric of detection accuracy. The F1 score is considered
a measure of the precise detection or classification of the subject dataset. The F1 score is obtained
as follows:

F1 = 2
(

Pr × Re

Pr + R

)
, (21)

where Pr is precision and is calculated as follows:

Pr =

(
TruePositive

PredictedPositive

)
. (22)

True positive corresponds to samples that the proposed algorithm detects as positive samples
and that are, in fact, positive. Predicted positives may include both compromised and normal sample
points, but the algorithm detects them all as positive. Re is recall, calculated as follows:

Re =

(
TruePositive

ActualPositive

)
. (23)

Figure 11 shows the F1 score of the proposed schemes for different IEEE standard bus
systems. The F1 score of the statistical model-based anomaly detection method [7] employing FE for
dimensionality reduction is included for comparison. The proposed schemes are also compared with
the NCA-based scheme. It is obvious that the proposed FS-based schemes have a higher F1 score for
all test cases, whereas the FE-based scheme requires many historical samples from the SE-MF dataset
for learning to achieve a higher F1 score. The proposed EDADS-2 has a higher F1 score than EDADS-1
due to the reason that it employs only normal data samples for training. Hence, the average of the
distances of the normal training samples from their centroid is close to the value required for accurately
separating the normal class from the compromised class. The performance of the NCA-based scheme is
lower than that of proposed schemes; however, it performs better compared to the FE-based scheme [7].

Next, to investigate the impact of several compromised load profiles (compromised samples),
we consider different numbers of compromised load profiles, i.e., 24, 30, 36, 40, 45 and 60. The SE-MF
dataset load profile is comprised of 360 samples collected through sensors or RTUs at regular intervals
of four minutes over 24 h. We use 75% of the data for training and the rest of the samples for testing.
Figure 12 shows the F1 score as a measure of the accuracy of the proposed FS-based proposed detection
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schemes for standard IEEE 14-, 39-, 57- and 118-bus systems. Figure 12 shows that the FS-based
proposed methods have an accuracy of more than 90% for all the employed test systems.

(a) (b)

Figure 11. F1 score of the proposed EDADS-1 and EDADS-2 in standard IEEE 14-, 39-, 57- and 118-bus
systems with varying numbers of training samples. (a) F1 score of EDADS-1; (b) F1 score of EDADS-2.

(a) (b)

Figure 12. F1 score of the proposed EDADS-1 and EDADS-2 in standard IEEE 14-, 39-, 57- and 118-bus
systems with varying numbers of compromised load profiles. (a) EDADS-1; (b) [EDADS-2.

4.6. Execution Time Comparison

In this subsection, we compare the execution time of the proposed schemes with that of the
existing schemes. Table 3 shows that the proposed schemes (EDADS-1 and EDADS-2) consume less
time for feature selection and anomaly detection as compared to the existing schemes. The feature
selection time of the two proposed schemes is similar because both schemes utilize GA. However,
the detection time of EDADS-2 is slightly less than that of EDADS-1. The reason is that EDADS-2
utilizes only normal features for training from the test data. On the other hand, EDADS-1 employs
all the features from the test data for training because the data are unlabeled for this case. Table 3
shows that for NCA, the execution time is higher than the proposed schemes. Table 3 clearly shows
that the FE technique [7] employing PCA requires more time. The PCA-based approach achieves the
dimensionality reduction by transforming original samples with binary values into new samples with
numeric values while making the execution time much longer than other schemes.
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Table 3. Comparison of the CPU time for different schemes.

Standard Proposed EDADS-1 Proposed EDADS-2 FE with PCA FS with NCAIEEE Bus System (FS + Detection) (FS + Detection) FE + Detection

14 0.1149 (s) 0.1147 (s) 2.0134 (s) 0.3125 (s)
39 0.1316 (s) 0.1299 (s) 4.3417 (s) 0.5313 (s)
57 0.2322 (s) 0.2317 (s) 7.5121 (s) 0.8013 (s)

118 0.5179 (s) 0.5177 (s) 10.7925 (s) 1.0130 (s)

5. Conclusions

In this paper, we propose two FS-based anomaly detection schemes for the detection of CCD
assaults in SG communications networks. In the proposed schemes, GA is employed for the
selection of discriminative and distinguishing features from historical SE-MF datasets. The selected
optimal features are used as the input for two Euclidean distance-based anomaly detection schemes
(EDADS-1 for unlabeled data and EDADS-2 for labeled data) to detect anomalies/outliers in the
smart-grid SE measurement samples. To validate the performance of the proposed schemes, we utilize
the standard IEEE 14-bus, 39-bus, 57-bus and 118-bus systems. In addition, we utilize data that are
collected from active power injections into the buses and active power flow measurements in the
branches as the learning data and study the accuracy of our detection methods under CCD attack.
The test results show that the proposed ED-based FS schemes have reasonably improved detection
accuracy, compared to PCA-based FE and NCA-based FS schemes in the occasional operational
environment. The low computational complexity of the proposed schemes enables the identification
of outliers or anomalies in a short time. In the future, we will model our work by considering more
diverse attack scenarios, and we will incorporate a learning mechanism to automatically update the
Euclidean distances with incoming test data to improve the detection accuracy.
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