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Abstract: Aiming at a massive multi-input multi-output (MIMO) system with unknown channel
path number, a sparse adaptive compressed sensing channel estimation algorithm is proposed,
which is the block sparsity adaptive matching pursuit (BSAMP) algorithm. Based on the joint sparsity
of subchannels in massive MIMO systems, the initial set of support elements can be quickly and
selectively selected by setting the threshold and finding the maximum backward difference position.
At the same time, the energy dispersal caused by the non-orthogonality of the observation matrix
is considered, and the estimation performance of the algorithm is improved. The regularization of
the elements secondary screening is deployed, in order to improve the stability of the algorithm.
Simulation results show that the proposed algorithm can quickly and accurately recover massive
MIMO channel state information with unknown channel sparsity and high computational efficiency
compared with other algorithms.
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1. Introduction

Massive MIMO (multiple-input multiple-output) technology is one of the key technologies of
next-generation mobile cellular networks, which can form a massive antenna array by providing a
large number of antennas at the cell base station. It will greatly improve the channel capacity and
spectrum utilization and has become a hotspot in the field of wireless communications in recent
years [1]. In a massive MIMO system, a precise channel state information (CSI) is critical, which is
directly related to the system signal detection, beamforming, resource allocation and so on. The number
of base station antennas in massive MIMO systems has reached hundreds of thousands, which greatly
deepens the complexity of system data processing. Therefore, in order to make full use of the potential
advantages of massive MIMO technology, the more efficient and low complexity channel estimation
algorithms are worthy of further study. Massive MIMO has various merits over the conventional
MIMO. First, it uses a large number of antennas at the BS due to which the simplest coherent-combiner
and linear-precoder can be used for signal processing such MF or ZF. Second, increasing the number
of antennas increases the system capacity substantially using the channel-reciprocity features and
without increasing feedback-overhead. Third, the reduced power benefits in the uplink/downlink
(UL/DL) provide the feasibility to shrink the cell-size, which can be used in micro and pico-cells.

The massive multi-input multi-output (MIMO) system has doubled the capacity of the
communication system without increasing the signal bandwidth and signal transmission power
and is regarded as the core technology of 5G wireless communication. Channel estimation is the key
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technology in the physical layer of massive MIMO systems. Its accuracy directly affects the system
performance under fading channels.

In massive MIMO systems, accurate Channel State Information (CSI) is required to utilize the full
potential of MIMO systems [2,3]. However, such accurate CSI is not available in real communication
environment [4]. With the increasing number of antennas, the receiver has to estimate more channel
coefficients, which effectively increases the pilot overhead, computational complexity and reduces
the overall throughput of the system [5]. This is a challenging issue which has been addressed
in [3–6]. Literature [7–15] shows that the massive MIMO channel has sparse characteristics which can
be utilized for computationally-efficient channel estimation. Classical channel estimation methods
include least-square (LS) algorithm [16], minimum mean-squared error (MMSE) algorithm [17],
linear minimum mean square error (LMMSE) [18] and so on. The actual radio channel has a certain
multi-sparseness [19]. In recent years, a large number of researchers applied compressive sensing to
the pilot-aided channel estimation, e.g., in [20,21]. Research shows that compressed channel estimation
achieves better performance based on the same number of pilots in sparse channels.

Compressed sensing channel estimation algorithms orthogonal matching pursuit (OMP) [22],
regularization orthogonal matching pursuit (ROMP) [23], and subspace pursuit (SP) [24] are currently
used. The above algorithms need to predict the channel sparsity. However, the channel sparsity
in the actual communication environment is usually unknown, which greatly limits the application
of the above algorithm. The sparsity adaptive matching pursuit (SAMP) algorithm can recover
sparsity-unknown channels [25], but the algorithm has a high dependence on the iterative steps,
resulting in the pursuit of high performance and at the same time, greater computational complexity.

Massive MIMO systems need to deal with a huge amount of data, and the traditional
compression-aware channel estimation algorithm is difficult to strike a balance between estimation
performance and computational complexity. The literature [26] shows that in a massive MIMO system,
the sub-channels between different transmitting and receiving antenna pairs have the same sparse
support set. In [27], an adaptive and structured subspace pursuit algorithm (ASSP) is proposed
for massive MIMO channel estimation. Because of its step-by-step approach, achieving sparseness
adaptation and the deficiencies have been underestimated, and the computational complexity is high.

This paper proposes a sparsity-adaptive channel estimation algorithm based on the joint sparsity
feature of a massive MIMO channel. When the channel sparsity is unknown, a block sparse adaptive
channel estimation algorithm is proposed, which is block sparsity adaptive matching pursuit (BSAMP).
By setting the threshold and finding the maximum backward difference position, the support set
element is preliminarily selected. The element is secondarily selected by regularization to improve the
accuracy of the selected element. The proposed solution can be applied to any scenario of the massive
MIMO channel in which the sparse attributes are utilized for effective channel estimation. The key
factor is to set the threshold value and determine the position of the non-zero elements in the support
set. The simulation results show that this method can obtain better channel estimation performance
with lower complexity under the condition of unknown sparsity.

Notations: Lowercase and upper-case boldface letters denote vectors and matrices, respectively;
(·)T , (·)H , and (·)−1 denote the transpose, conjugate transpose, and inverse of a matrix, respectively.

2. Sparse Multipath Channel Model

In a base station (BS) equipped with M transmitting antenna MIMO systems, the transmitting
end sends orthogonal frequency-division multiplexing (OFDM) signals, and the length of each OFDM
signal transmitted by each antenna is N, where P(0 < P < N) carriers are selected as the pilot for channel
estimation, and the channel length L. The pilot pattern of the ith transmit antenna is p(i), i = 1, 2, ..., M,
where, p(i)∩p(j) = ∅, If i 6= j. After the channel is transmitted, the receiving end receives the pilot signal
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corresponding to each antenna as y(p(i)), i = 1, 2, ..., M. Abbreviate y(p(i)) as y(i), the basic channel
model can be expressed as:

y(i) = D(i)F(i)h(i) + m(i), i = 1, 2, L, M (1)

among them, D(i) = diag{p(i)} is a diagonal array of selected pilot patterns, m(i) is a Gaussian White
Noise with mean 0 and variance σ2, F(i) is a P × L sub-matrix of a Fourier, corresponding to the
dimensions N × N discrete Fourier transform (DFT) matrix pilot line elements and the first L columns,
h(i) = [h(i)(1), h(i)(2),..., h(i)(L)]T is the channel impulse response (CIR) corresponding to the ith antenna.
Make A(i) = D(i)F(i), Then, Equation (1) can be further expressed as:

y(i) = A(i)h(i) + m(i), i = 1, 2, L, M (2)

Definition 1. supp{h(i)} = {l: |h(i) (l) |> pth, 1 ≤ l ≤ L} is the ith sub-channel support set index, and pth is
the noise threshold. The research shows that for longer signal transmission distance, the antenna array size
of the BS is very small, the delay dispersion characteristics of subchannels between different transmitting and
receiving antenna pairs in massive MIMO system are consistent and have approximately the same channel delay.
The delay model shows the same sparse support set of sub-channels between different transmitting antennas and
users [12], that is:

supp{h(i)} = supp{h(j)}, i 6= j (3)

Because the rate of change of channel gain is much larger than the rate of change of delay, the gain
coefficients of each subchannel are different, but the positions of nonzero taps of different subchannels
are the same, showing a joint sparse characteristic. Based on this characteristic, designing an
appropriate recovery algorithm can achieve a more accurate and quick estimate of channel information.

3. Sparse Adaptive Matching Pursuit Algorithm

3.1. Sparseness Estimation

Using compressed sensing to solve channel estimation can be equivalent to solving the following
l0 norm minimum problem.

ĥ = arg min‖h‖0, subject to‖y−Ah‖2 ≤ ε (4)

among them, ‖h‖0 is the vector l0 norm of the vector h for the number of non-zero elements.
Literature [28] has proved that when satisfied:

‖h‖0 <
1
2

spark(A) (5)

Only the channel impulse response (h) can be restored. Among them, spark(A) is the least linearly
related column number in matrix A; it is easy to see 2 ≤ spark(A) ≤ rank(A) + 1. Since matrix A is
P × L partial Fourier matrix and P < L, then ‖h‖0 < 1

2 (P + 1).
Because of the sparseness of the impulse response of the wireless communication channel, most

of the energy is concentrated on a few taps while a small part of the energy distribution is below the
noise threshold. The number of non-zero taps is much smaller than the channel length L. Making full
use of the sparse characteristics of the channel, we can use fewer pilot symbols to get the ideal channel
estimation effect, so as to improve the spectrum utilization. An appropriate amount of pilot overhead
satisfies Equation (5), so
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K =

{
P
2 , P is even

P+1
2 , P is odd

(6)

Based on the above analysis, the number of non-zero taps in the channel vector does not exceed K,
and at least L − K elements can be regarded as noise. Therefore, we first estimate the sparseness
and then select the elements within this range. At higher signal-to-noise ratios, since the gain
coefficients of the channel taps are higher than the noise amplitudes, the restored vector elements are
arranged in descending order. The difference between adjacent elements is then used to determine
the number of elements selected for this iteration and to further estimate the sparsity. The elements
that precede the largest backward difference are selected for the support set because they may carry
channel information.

When the observation matrix satisfies certain conditions, the sparse signal restoration problem
can be equivalent to the following convex optimization problem. Define the observation matrix A,
the RIP parameter δk is the minimum value δ that satisfies Equation (7):

(1− δ)‖h‖2 ≤‖Ah‖2 ≤ (1 + δ)‖h‖2 (7)

among them, h is the sparse signal for k, if δk < 1, the observation matrix A satisfies the kth order
RIP [29]. When matrix RIP parameters δk <

√
2−1, the reconstruction problem can be transformed into

the following l1 norm minimum problem.

ĥ = arg min‖h‖1, subject to‖y−Ah‖2 ≤ ε (8)

Due to partial Fourier matrix RIP parameters δk < 1
2 [30], the regularization process based on

convex optimization is introduced to improve the stability of the algorithm [23].

3.2. Sparse Multipath Channel Estimation

Aiming at the joint sparseness presented by the massive MIMO channel, the transformed channel
vector is defined as w = [w1

T, w2
T,..., wL

T]T, where wi = [h(1)(i), h(2)(i),..., h(M)(i)]T, i = 1, 2, ..., L,
the i sub-block for w. At this point, the non-zero elements in the converted channel vector will
be concentrated [31]. Correspondingly, the received pilot signal is warped z = [z1

T, z2
T, ..., zpT]T.

Among them, zi = [y(1)(i), y(2)(i), ..., y(M)(i) ]T, i = 1, 2, ..., P. Do the same for noise, n = [n1
T, n2

T,
..., nP

T]T, where ni = [m(1)(i), m(2)(i), ..., m(M)(i)]T, i = 1, 2, ..., P. Considering all transmit antennas,
the received signal can be expressed as:

z = Bw + n (9)

among them, B = [B1, B2, ..., BL]; Bi = [a(1)(i), a(2)(i), ..., a(M)(i)], i = 1, 2, ..., L is the ith sub-block
of matrix B, a(M)(i) is the ith column of the matrix A(M). In the case of unknown channel sparsity,
the compressed sensing is used to estimate w in Equation (9), so multiply both sides of Equation (9)
simultaneously by BH, where BH is the conjugate transpose of the matrix B.

BHz = BH(Bw + n) = (I + BHB − I)w + BHn
=w + (BHB − I)w + BHn

(10)

among them, I denote ML × ML unit matrix. Due to the matrix B, there is no strict orthogonality;
therefore, BHB − I denote a nonzero matrix with a small elemental value. Consider the dispersion
of energy caused by the non-orthogonality of the observed matrix n′ = (BHB − I)w + BHn, Then,
Equation (10) can be expressed as:

BHz = w + n’ (11)
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During iteration, define an ML × 1 vector R.

R = |BHr| (12)

among them, r denotes iterative residuals, its initial value is z, |·| represents the absolute value of
the elements in BHr. Now, define the element in vector T as the sum of the squares of each set of M
elements in the vector R

T(j) = ∑
j×M
(j−1)×M+1|R(i)|

2,

i = 1, 2, . . . , ML; j = 1, 2, . . . , L
(13)

where R(i) is the ith element in vector R, T(j) is the jth element in vector T. Correct T Elements in
descending order to get the vector Ts. According to the analysis in Section 3.1 the upper limit of
channel sparsity is K. After the first iteration, the last L-K elements in Ts are only generated by n’ in
(11). So the energy of the next L-K elements is set as the threshold f. The non-zero tap energy in the
channel is greater than the threshold f. So in Ts, only elements above this threshold are likely to be
included in the support set.

At higher signal-to-noise ratios, since the gain coefficient of the channel tap is higher than the
noise amplitude, at each iteration of the algorithm, Ts of the element amplitude produces a larger
rate of change; then the element before this position has to carry channel information. Therefore,
calculating the maximum backward difference between adjacent elements determines the number of
elements selected in this iteration, and the elements before this position are selected for the support
set because they may carry channel information. In order to further improve the accuracy of the
selected elements, the regularization process based on convex optimization is adopted to ensure that
the selected element energy is larger than the energy of the unselected elements [23], and the noise is
filtered out to support the set.

From the above analysis we can see that the sparseness estimation of BSAMP algorithm
first estimates the sparsity upper limit by setting the threshold according to the actual physical
characteristics of the channel, that is to say, the maximum sparsity will not exceed the number of
pilots so as to ensure that the channel taps will not miss selection. Sparseness is further estimated by
finding the maximum difference location in this range to distinguish channel taps and noise. Unlike
other compression-aware algorithms, only the influential factors associated with Gaussian white noise
are considered BHn. The BSAMP algorithm not only considers BHn but also considers the energy
dispersion due to the non-orthogonality of the observation matrix (BHB − I)w impact algorithm
performance. In addition, the BSAMP algorithm uses a regularization method to filter the elements in
the support set for secondary screening, which improves the accuracy of the support set. Therefore,
the BSAMP algorithm has better estimation performance than other algorithms.

The massive MIMO system needs to recover the larger channel dimension, and the sub-channel
presents joint sparseness. The BSAMP algorithm takes advantage of channel block sparse features,
greatly reducing the number of iterations. In the meantime, there are multiple element-selected support
sets in each iteration, and the problem that the traditional step-based adaptive algorithm relies on
iterative step-size is avoided. Therefore, the BSAMP algorithm has lower computational complexity.

The specific BSAMP algorithm process is as follows in Algorithm 1.
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Algorithm 1 BSAMP Algorithm

Input receive pilot signal z, Observation matrix B, The number of antennas M
Output channel estimate h′.
Initialize the block support set location index S1 = ∅, Support set location index S2 = ∅, h′ = 0, The threshold
f = E {[Ts (i)]2, i = K + 1, K + 2, ..., L}, r = z.
Iteration process
1: Calculate vector T, arrange the elements in T in descending order to obtain a vector Ts and the
corresponding index set S1.
2: Select the elements in Ts larger than the threshold f and set the element number to m; if m= 0, exit;
otherwise, go to Step 3.
3: Select the vector Ts(1:m + 1) and the maximum backward difference between adjacent elements is labeled
as t.
4: Regularize the elements in the vector Ts(1:t). make u = Ts (1:t), J = S1(1:t), All elements in u follows
|u(i)| ≤ 2|u(j)|, i, j ∈ J Divided into a number of groups, select the energy of the largest group of a selected
support set. The location of the selected elements is indexed V , and if the length of the vector V is U,
S2 = S2∪[(V(k) − 1) M + 1: V(k)M], k = 1, 2, L, U.
5: According to the location index S2, find the matrix of the corresponding columns in the observation
matrix BS2 .

6: Solve the estimated channel using the least square method h′ =
(
BS2

HBS2

)−1BS2
Hz.

7: Update the residual r = z − BS2 h′, make S1 = ∅, V = ∅
8: Return to Step 1.

4. Simulation Results

The MATLAB (2017a, MathWorks, Natick, MA, USA, 2017) simulator is used for the analysis.
Table 1 mentioned the main simulation setup parameters for the proposed system. In the simulation,
the system has 500 transmit antennas, using 64QAM modulation and low-density parity-check (LDPC)
coding (coding efficiency 5/8). Each transmit antenna sends an OFDM signal with a signal length N of
256, with a cyclic prefix length of 64. The OFDM signals transmitted by each transmitting antenna have
16 pilot symbols, and all the algorithms use the same pilot distribution method. The pilot positions are
randomly distributed and the pilots of different antennas are orthogonal to each other. The channel
length L is 60, and the number of channel multipath is a random integer [5,8]. The multipath amplitude
follows the Rayleigh distribution, and the multipath positions follow a random distribution.

Table 1. Simulation Parameters. LDPC: low-density parity-check; OFDM: orthogonal frequency-
division multiplexing.

Parameter Value/Type

Number of transmit antennas 500
Modulation 64QAM

Encoding Scheme LDPC
Coding Efficiency 5/8
Signal length (N) 256

Cyclic Prefix 64
OFDM Pilot Symbols 16
Channel Length (L) 60

Figure 1 shows the mean square error (MSE) performance of each channel estimation algorithm
at different signal-to-noise ratios when the pilot number is 16.
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Figure 1. Comparison of mean square error of each algorithm under different signal to noise ratios
(SNRs). MSE: mean square error; LS: least-square; SP: subspace pursuit; OMP: orthogonal matching
pursuit; SAMP: sparsity adaptive matching pursuit; ASSP: adaptive and structured subspace pursuit;
BSAMP: block sparsity adaptive matching pursuit.

As can be seen from the Figure 1, the performance of BSAMP algorithm proposed in this paper
is superior to other algorithms. This is because the LS algorithm fails when the pilot number is less
than the channel length, while the OMP and SP algorithms need to set their iteration times to half
the number of pilots when the channel sparsity is unknown, reducing the accuracy of the algorithm.
SAMP algorithm and ASSP algorithm do not need prior information such as the sparsity of the
channel. However, the SAMP algorithm and the ASSP algorithm realize the adaptive process by using
a fixed increment step, which easily causes over-estimation and under-estimation, which is slightly
less than the estimation accuracy. The proposed BSAMP algorithm not only considers the effect of
Gaussian white noise on the system performance but also considers the energy dispersion caused by
the non-orthogonality of the observed matrix, which has better performance than the above algorithm.
Figure 2 shows the systematic bit error rate (BER) for each channel estimation algorithm at different
signal-to-noise ratios when the number of pilots is 16. As can be seen from the Figure, the BSAMP
algorithm using the system BER has the best performance. When the SNR is 30 dB, the system BER
reaches 4.187 × 10−5.
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Figure 3 compares the throughput between the proposed BSAMP algorithm with literature [32,33]
algorithms versus the number of antennas. It is clear from the Figure 3 that, as the number of
antennas (M) increases, the throughput of all the algorithms improves. Moreover, the proposed
BSAMP algorithm outperforms the other algorithms and the rate gap between them increases with
increasing number of antennas.

Figure 4 compares the throughput of the proposed BSAMP algorithm with literature [32,33]
algorithms versus the SNR. It is clear from the Figure 4 that, as the SNR increases, the throughput of
each algorithm increases. Moreover, the proposed BSAMP algorithm shows overall better throughput
as compared with the reference [32,33] algorithms. Furthermore, the rate gap between the proposed
BSAMP algorithm and the literature [32,33] algorithms increases as the SNR increases, which makes
the BSAMP algorithm superior in low and high SNR communication environments. The throughput
levels of literature [32,33] are more closely related and show approximately same characteristics for
different levels of SNR.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 13 
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Figure 5 shows the MSE performance of each channel estimation algorithm under a different
number of pilots when SNR is 30 dB. As can be seen from the Figure, as the number of pilots increases,
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the performance of each recovery algorithm is improved. Under the same number of pilots, the ASSP
algorithm is significantly better than other channel estimation algorithms due to the joint sparseness of
MIMO channels. At the same time, BSAMP does not need to rely on the iterative steps to achieve the
sparsity adaptive process. The BSAMP algorithm effectively eliminates the influence on the estimation
accuracy due to improper step selection in the iterative process, which has better performance than
the ASSP algorithm. When the number of pilots is 16, the performance of the BSAMP algorithm is
equivalent to that of ASSP with 18 pilots. On the other hand, the LS shows the worst channel estimation
performance while the SP and OMP have approximately similar MSE. The SAMP algorithm indicates
better performance than the OMP, SP, and LS but is less effective than the ASSP and BSAMP algorithms
as the MSE gap among them increases with increasing number of pilots. In summary, it is concluded
from Figure 3 that, to obtain the required MSE and better channel estimation performance, the LS, SP,
OMP, SAMP and ASSP algorithms need more pilots than the proposed BSAMP algorithm, which makes
them less effective and application-oriented. Therefore, the proposed BSAMP algorithm shows overall
better performance. Figure 6 shows the comparison of the proposed BSAMP algorithm and the
asymptotic results. It is clear from the figure that the proposed algorithm shows close performance
with the asymptotic results which makes it an attractive candidate from the practical perspective in
wireless communications.
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Figure 7 shows the systematic BER of each channel estimation algorithm under different pilots
when SNR is 30 dB. As can be seen from the Figure, under the same pilot number, the BSAMP algorithm
performance is far superior to that of other algorithms. When the pilot number is 24, the system BER
reaches 1.066 × 10−5.
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Table 2 shows the different sparse channel recovery algorithms. It can be seen that the BSAMP
algorithm is comparable in computational complexity to the LS algorithm but much lower than other
compression aware algorithms. Due to the larger channel vector dimension and unknown channel
sparsity, too many iterations result in higher computational complexity for OMP and SP algorithms.

Table 2. Comparison of average running time of different sparse signal recovery algorithms. LS:
least-square; OMP: orthogonal matching pursuit; SP: subspace pursuit; SAMP: sparsity adaptive
matching pursuit; ASSP: adaptive and structured subspace pursuit; BSAMP: block sparsity adaptive
matching pursuit.

Sparse Channel Recovery Algorithm Average Runtime (s)

LS 0.02328
OMP 2.28870

SP 1.10690

SAMP 93.3930
ASSP 15.3610

BSAMP 0.01284

The SAMP algorithm does not take advantage of the joint sparseness of the MIMO channel and
gradually approximates the channel sparsity by a fixed step, which takes a lot of time. The ASSP
algorithm also has the problem of increasing the iterative step length steadily, but it takes advantage
of the joint sparseness of the channel and reduces the computation time compared with SAMP.
The BSAMP algorithm proposed in this paper can achieve the sparsity adaptive process without
setting the step size and greatly reduces the number of iterations of the algorithm. It takes full
advantage of the joint sparseness of the channel and can recover the information of multiple antennas
simultaneously in each iteration, thus having lower computational complexity.
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5. Conclusions

This paper proposes a BSAMP algorithm with adaptive sparsity-based on the joint sparsity of
sub-channels in massive MIMO systems. The algorithm chooses the support elements as the first
choice by setting the threshold and finding the maximum backward difference position. The element
is secondarily selected by regularization to improve the accuracy of the selected elements. The MSE,
BER and throughput analysis is performed against the SNR and number of pilots. The proposed
BSAMP algorithm is compared with LS, OMP, SP, SAMP, ASSP, and reference [32,33] algorithms,
and the corresponding system parameters are analyzed for performance evaluations. The algorithm
complexity analysis was also performed, which clearly estimated that the proposed BSAMP algorithm
has a 0.01284 s average runtime, which is much smaller than the other algorithms such as the average
runtime of SAMP algorithm, which is 93.3930 s and the ASSP algorithm which has an average
runtime of 15.3610 s. With such a computationally-efficient behavior, the proposed BSAMP algorithm
provides efficient sparse channel estimation capability for 5G massive MIMO systems which also
enables us to deploy it in practical usage scenarios. Theoretical analysis and simulation results show
that the BSAMP algorithm has good channel estimation performance, high throughput and low
computational complexity as compared to other algorithms. This research work can further be
extended by incorporating the proposed BSAMP algorithm in TDD, FDD Massive MIMO for Energy
Efficiency Analysis versus different performance metrics such as the distance between the BS and
mobile users, antenna element spacing and hardware impairments.
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