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Abstract: In this paper, a gas-kinetic Bhatnagar–Gross–Krook (BGK) scheme is developed for
simulating natural convection in a rotating annulus, which arises in many scientific and engineering
fields. Different from most existing methods for the solution of the incompressible Navier–Stokes
(N–S) equations with the Boussinesq approximation, compressible full N–S equations with allowable
density variation are concerned. An appropriate BGK model is constructed for the macroscopic
equations defined in a rotating frame of reference. In particular, in order to account for the source
(non-inertial) effects in the BGK model, a microscopic source term is introduced into the modified
Boltzmann equation. By using the finite volume method and assuming the flow is smooth,
the time-dependent distribution function is simply obtained, from which the fluxes at the cell interface
can be evaluated. For validation, a closed rotating annulus with differentially heated cylindrical walls
is studied. A conventional N–S solver with the preconditioner is used for comparison. The numerical
results show that the present method can accurately predict the variation of the Nusselt number
with the Rayleigh number, but no preconditioning is required due to its delicate dissipation property.
The computed instantaneous streamlines and temperature contours are also investigated, and it is
verified that the Rayleigh–Bénard convection in a rotating annulus is very similar to that in a classical
stationary horizontal enclosure.

Keywords: gas-kinetic scheme; BGK model; source term; natural convection; rotating annulus;
Rayleigh–Bénard convection

1. Introduction

Natural convection in rotating annuli has attracted a great deal of attention due to its widespread
presence in both scientific and industrial applications [1]. A common example is the sealed rotating
cavity formed between two compressor or turbine disks and inner and outer cylinders, where natural
convection could occur if the temperature difference exists between the surfaces. Depending on
the direction of the heat flux inside the cavity, there are two major situations [2,3]. One is axial heat flux
configuration, which refers to a cavity with insulated cylindrical walls and differentially heated disks,
and the other is radial heat flux configuration, which contains insulated disks and differentially heated
cylindrical walls. In both situations, the convective flows are induced by the centrifugal buoyancy
force and the Coriolis force, leading to diverse flow structures and heat transfer properties. This
work mainly focuses on the radial heat flow, and investigations can be made in an annulus provided
that the flow is invariant in the axial direction (also referred to as the Taylor–Proudman theorem).
In this case, like in the flow between two horizontal plates with the lower one heated, the well-known
Rayleigh–Bénard convection can also appear in the rotating annulus with the outer surface heated [4].
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During the past decades, a lot of numerical studies have been carried out on natural
convection in rotating cavities or annuli. For example, Bohn et al. [5] studied the basic behavior of
the buoyancy-induced flow in a simplified cavity with axial heat transfer. In their work, the complete
steady-state N–S equations with some assumptions are solved by using the Semi-Implicit Method for
Pressure Linked Equations (SIMPLE) pressure correction method. It is found that fluid motion and
heat transfer can be attenuated by the Coriolis forces. King et al. [6] expressed the incompressible N–S
equations with the Boussinesq approximation in streamfunction–vorticity and velocity–vorticity
formulations for the two-dimensional (2D) and 3D computations, respectively. The governing
equations are solved using second-order finite difference approximations in space and are advanced
in time using the Du Fort–Frankel method. Through the computations for a rotating annulus with
radial heat transfer, they obtained the streamlines and isothermals at different Rayleigh numbers.
Hasan et al. [7] also solved the N–S equations subject to the Boussinesq approximation and studied
the 2D dynamics of gravity and centrifugally-driven convection in a horizontal rotating cylinder.
Later, they discussed the role of Coriolis force in the evolution of a two-dimensional thermally driven
flow in a rotating enclosure of arbitrary geometry [8]. Sun et al. [9] used two different solvers to
perform the 3D simulations for thermal convection in a closed rotating cavity with inclusion of
side walls: one is a commercial code “Fluent” with the SIMPLE algorithm, and the other one is a
compressible code “Hydra” with a low-speed preconditioner. The computed Nusselt numbers showed
good agreements with the correlations obtained from Bohn et al. [3]. For more numerical studies on
the buoyancy-induced flows in rotating cavities with either an axial throughflow or a radial inflow,
one may refer to [10] and references therein.

All the numerical studies mentioned above are based on solving macroscopic N–S equations,
from which a lot of theoretical and experimental investigations are verified. In recent years, the use
of Boltzmann-type methods such as the lattice Boltzmann method (LBM) and the gas-kinetic scheme
(GKS) for convective flows have become increasingly popular. Particularly, the Bhatnagar–Gross–Krook
(BGK) model based GKS (BGK scheme for short) has been proven to give accurate N–S solutions for
low speed flows [11–13], despite it was originally developed for compressible flows [14,15]. As an
example, Xu et al. [16] constructed a gas-kinetic BGK model for the incompressible N–S equations with
thermal effects, where the flow field and temperature field are described by two coupled BGK models.
By using the developed method, they studied the Rayleigh–Bénard thermal convection between
horizontal plates. Tian et al. [17] simulated the 2D compressible convection by using a developed
multidimensional BGK scheme with inclusion of the gravitational force effects. The predicted critical
Rayleigh numbers agree with those from the linear analysis. The importance of including the source
effect in the BGK model and the necessity of treating the source term consistently with the flux
calculation have been demonstrated in detail. Similar to the method of Xu et al. [16], by describing
velocity and temperature fields independently, Wang et al. [18] developed a thermal and coupled
discrete unified gas-kinetic (DUGKS) scheme for the Boussinesq flows. The computed results show
that the coupled DUGKS can well describe the convection phenomena from laminar to turbulent
flows, with Rayleigh number up to 1010. Recently, they extended it for 3D natural convection in a
differentially heated cubical cavity [19].

The above numerical examples by using the BGK scheme are all about buoyancy-induced flows
in stationary enclosures. As for convection in rotating cavities, however, there seems to be a lack of
systematic studies. Therefore, several important issues are addressed here for the development and
application of the present method. Firstly, unlike most existing evolution models for the incompressible
N–S equations, we derive a single BGK model for the compressible full N–S equations, where
the density is calculated by the ideal gas law. This is due to the fact that in practical high-speed
engines, large temperature differences exist leading to a much higher Rayleigh number (possibly
greater than 1012) and the Boussinesq approximation may become invalid [4]. The derived model
can be more general than the Boussinesq-based incompressible flow model. Secondly, it is known
that the application of compressible N–S solvers to extremely low-speed flows could suffer due to
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two difficulties: one is the accuracy degradation due to the inappropriate numerical dissipation in
upwind schemes, and the other is the low convergence rate due to the system stiffness. However,
it is herein shown that the accuracy of the developed BGK scheme would not be greatly affected
when modeling low-speed thermal flows. This is actually not surprising since the BGK scheme has
a delicate dissipation mechanism [15]. The latter difficulty currently seems difficult to be perfectly
resolved and some discussion will be presented. Thirdly, for the rotating fluid applications, a rotating
frame of reference is usually used, thus the non-inertial effects (also referred to sources of buoyancy
force) should be considered in constructing the BGK model. In the recent work of Zhou et al. [20],
a moving reference frame based BGK scheme (MRF–BGK) was developed for 2D viscous flows around
arbitrarily moving bodies, where the source effects are accounted for by adding specifically-designed
particle acceleration terms into the Boltzmann equation. It is proven that with such a gas evolution
model, the N–S equations formulated in a moving frame can be correctly recovered. However,
the formulations of the part of fluxes resulted from these acceleration terms can be complex and also it
is difficult to obtain the explicit expression of the distribution function. Since this is not the only choice
for considering the source effect, as pointed out in [21], we overcome these drawbacks by replacing
the particle acceleration terms with a simple microscopic source term, which is derived directly from
the macroscopic source terms.

This paper is organized as follows. In Section 2, we introduce the macroscopic equations for
natural convection in a closed rotating annulus. Then the construction of the corresponding BGK
model with emphasis on the derivation of the microscopic source term is presented. Following
common procedures, the numerical scheme for solving the BGK model is also described. In Section 3,
the developed method is applied to a rotating annulus and validated through comparisons with other
methods. Some discussions concerning the predicted flow structures and heat transfer are given in
detail. The last section is the conclusion.

2. Numerical Method

2.1. BGK Model for Natural Convection in a Rotating Annulus

For the sake of simplicity, let us consider a constant Cartesian rotating frame of reference where
the rotation axis coincides with the z− coordinate axis. For the 2D convective flow in radial–tangential
plane, the following compressible full N–S equations are derived from the conservation laws:

∂ρ
∂t +∇ · (ρvr) = 0
∂ρvr

∂t +∇ · (ρvrvr + pI) = ∇ · τ − ρω× (ω× r) + 2ρω× vr
∂ρEr

∂t +∇ · ((ρEr + p)vr) = ∇ · (k∇T + τ · vr)

, (1)

where ρ, p, Er, T, k are the density, pressure, relative total energy, temperature and thermal conductivity
coefficient, vr is the vector of relative velocities, ω is the vector of angular velocities, r is the position
vector, and τ is the viscous stress tensor. The last two terms on the right side of momentum equations
represent the centrifugal and Coriolis forces, respectively. Note that the Boussinesq approximation is
not used here and these two source terms are related to buoyancy effects. Although many numerical
methods are based on solving Equation (1), it is not convenient for us to construct the BGK model
because the relative quantities are used as conservative variables and an extra Er needs to be introduced.
For this reason, a simple relation between absolute and relative velocities v = vr + ω× r is substituted
into Equation (1) and then we get the N–S equations for the absolute velocity formulation:

∂ρ
∂t +∇ · (ρvr) = 0
∂ρv
∂t +∇ · (ρvvr + pI) = ∇ · τ − ρω× v

∂ρE
∂t +∇ · (ρEvr + pv) = ∇ · (k∇T + τ · v)

, (2)
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where E is the total energy. In this formulation, the centrifugal and Coriolis forces are simplified to
a single source term (−ρω × v). Although the above two equations are mathematically identical,
the present BGK scheme is developed for Equation (2).

As demonstrated in [16,17], it is necessary to include the source effects in the BGK model. In our
previous work [20] for simulating 2D flows around arbitrarily moving bodies [20], a moving reference
frame-based BGK scheme was used and the source effects were accounted for by including a particle
acceleration term. This extra term was mainly reflected in three aspects: particle trajectory, construction
of the initial state f0, and construction of the equilibrium state g. Therefore, the final flux function
could be quite complex. Also, because the calculations for the particle acceleration-related terms are
indirect, it is difficult to obtain the explicit expression of f . In this work, we adopt an alternative way
by introducing a simple source term ωs (ω is the magnitude of the vector ω), which is computationally
more efficient. From a physical point of view, the use of ωs indicates that an external force is directly
applied to f at the cell interface. In other words, at each time step, starting from an initial state
f0, the distribution function f first approaches to a local equilibrium state g under the combined
effects of particle transport and collision. Then the extra term ωs drives f to be close to a “new”
local equilibrium state. Through the updated f , the source effects can be naturally included in
the flux evaluation. The determination of s is described below by using the method of undetermined
coefficients. To start with, the modified Boltzmann equation is first written as

∂ f
∂t

+ ξx
′ ∂ f
∂x

+ ξy
′ ∂ f
∂y

= − 1
τ
( f − g) + ωs, (3)

where f is the gas distribution function, g is the equilibrium distribution function, and τ is the particle
collision time. The parameters ξx

′ and ξy
′ are defined as ξx

′ = ξx − ue and ξy
′ = ξy − ve, where ξx and

ξy are (absolute) particle velocities, ue and ve are components of the vector of entrainment velocities
ve = v− vr = ω× r. All f , g and s are functions of space (x, y), time t, particle velocities (ξx, ξy) and
internal variables ζi(i = 1, 2, · · · , K). The number of dimensions K is equal to 3 for diatomic gas in
the 2D case. The equilibrium state g is usually defined as a Maxwellian:

g = ρ

(
λ

π

) K+2
2

e−λ((ξx−u)2+(ξy−v)2+ζ2), (4)

where λ is related to p and ρ through the relation λ = ρ/2p. The notation ζ2 = ζiζi is used. From
the Chapman–Enskog expansion, the source term s should be designed to satisfy the following equation
in order to ensure that the BGK model (Equation (3)) correctly recovers the governing macroscopic
equations (Equation (2)): ∫

ωsϕdΞ = [0,−ρ(ω× v), 0]T , (5)

where the notation dΞ = dξxdξydζ1dζ2 · · · dζk has been used, and ϕ is the vector of the collision
invariants

ϕ =

[
1, ξx, ξy,

1
2
(ξ2

x + ξ2
y + ζ2)

]T
. (6)

Let us rewrite Equation (5) in components:

∫
ωs


1
ξx

ξy
1
2 (ξ

2
x + ξ2

y + ζ2)

dΞ =


0

ρωv
−ρωu

0

. (7)
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On the right side of the above equation, ω is a constant. The momentum densities ρu and ρv can
be related to f or g from the following relation:

W =


ρ

ρu
ρv
ρE

 =
∫

f


1
ξx

ξy
1
2 (ξ

2
x + ξ2

y + ζ2)

dΞ =
∫

g


1
ξx

ξy
1
2 (ξ

2
x + ξ2

y + ζ2)

dΞ. (8)

The comparison between Equations (7) and (8) indicates that s probably has a form similar to f or
g. Obviously, constructing the extra source term s related to the gas distribution function f is closer
to the physical reality. However, from computational (mathematical) perspective, difficulties would
be encountered in numerically solving the BGK model, since it will be difficult to explicitly construct
s. Instead, the assumption that s could be expressed as Maxwellian-type functions like g is used in
the present work, although this is not the only choice. This treatment was also motivated from Xu’s
work for the Euler equations with heat transfer [21], where the extra source term was constructed
as the difference between two Maxwellian-type functions. Physically, it should be noted that this
assumption could be appropriate for the concerned smooth flow problem; however, in cases where
non-equilibrium effects dominate, it may have a significant effect. Considering that the zero-order and
second-order moments of s are equal to zero, it is thus assumed to have the form

s = s1 − s2 = ρ
(

λ
π

) N+3
2 e−λ((ξx−us1)

2+(ξy−vs1)
2+ζ2) − ρ

(
λ
π

) N+3
2 e−λ((ξx−us2)

2+(ξy−vs2)
2+ζ2) , (9)

where us1, vs1, us2 and vs2 are undetermined quantities. Substituting the expression of s into Equation (7)
and noticing Equation (8), we get several algebraic equations for evaluation of these quantities:

us1 − us2 = v
vs1 − vs2 = −u

us1
2 + vs1

2 − us2
2 − vs2

2 = 0
. (10)

Obviously, there is not only one solution for the above set of equations. For the simplest one,
we have

us1 = 1
2 v, us2 = − 1

2 v, vs1 = − 1
2 u, vs2 = 1

2 u . (11)

Note that the current method to determine s can also be used for other hyperbolic conservation
laws with source terms.

2.2. Gas-Kinetic BGK Scheme for the Time-Dependent Solution f

Within the finite volume framework, the BGK scheme aims at evaluation of the time-dependent
gas distribution function f at each cell interface, from which the numerical fluxes can be computed.
For a general structured mesh, we take the i− direction face xi+1/2,j = (xi+1/2,j, yi+1/2,j) between cells
(i, j) and (i + 1, j) as an example, and for convenience, the x− and y− directions are assumed to be
the normal and tangential directions to the local cell interface, respectively. The generalized solution f
of the BGK model with the presence of a source term (Equation (3)) at the cell interface xi+1/2,j and at
time t can be written as

f (xi+1/2,j, t, ξ, ζ2) = 1
τ

∫ t
0 e−(t−t′)/τ

(
g(x(t′), t′, ξ, ζ2) + τωs(x(t′), t′, ξ, ζ2)

)
dt′

+e−t/τ f0(x(0), ξ, ζ2)
, (12)

where the particle trajectory is described by x(t′) = xi+1/2,j − ξ′(t− t′), and the vectors of absolute
and relative particle velocities ξ and ξ′ are defined as

ξ = (ξx, ξy)
T , ξ′ = (ξ ′x, ξ ′y)

T = (ξx − ue, ξy − ve)
T . (13)
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The solution f describes the gas evolution process, starting from an initial gas distribution function
f0 and approaching the equilibrium state g. The source term τωs seems to have an effect of driving f
away from the equilibrium state, which is similar to the preparation of the macroscopic initial data in
the reconstruction stage. Below we will show how to evaluate the three unknowns f0, g and s. For
simplicity, the location of the cell interface xi+1/2,j = (0, 0) is used.

In the study of natural convection, the flow is usually supposed to be smooth, i.e., no
discontinuities exist. Therefore, based on the Chapman–Enskog expansion and to the second order
accuracy [12], the initial state f0 can be constructed as

f0(x(0), ξ, ζ2) = g0 +
∂g0
∂x x + ∂g0

∂y y− τ
(

∂g0
∂t + ξ ′x

∂g0
∂x + ξ ′y

∂g0
∂y −ωs0

)
= g0

[
1− aξ ′xt− bξ ′yt− τ(A + aξ ′x + bξ ′y)

]
+ τωs0

, (14)

where a and b are related to derivatives of g0 in space and A is related to the derivative of g0 in time.
Both the equilibrium state g0 and the source term s0 are defined at the cell interface and at time t = 0,
which can be calculated from Equations (4) and (9) and the reconstructed macroscopic variables. For
example, a second-order interpolation for conservative variables W = [ρ, ρu, ρv, ρE]T is used here:

W i+1/2,j =
1
2
(W i,j + W i+1,j), (15)

from which all the necessary macroscopic quantities at the cell interface are obtained. Based on
the Taylor expansion of the Maxwellian distribution function, the slopes a, b and A can be expanded
as a linear combination of the collision invariants ϕα (α = 1 ∼ 4):

a = aα ϕα = a1 + a2ξx + a3ξy +
1
2 a4(ξ

2
x + ξ2

y + ζ2)

b = bα ϕα = b1 + b2ξx + b3ξy +
1
2 b4(ξ

2
x + ξ2

y + ζ2)

A = Aα ϕα = A1 + A2ξx + A3ξy +
1
2 A4(ξ

2
x + ξ2

y + ζ2)

, (16)

where all the unknowns aα, bα and Aα are local constants. The coefficients aα and bα can be determined
from the derivatives of Equation (8) in space, i.e.,∫

g0aα ϕαϕdΞ =
(

∂W
∂x

)
i+1/2,j∫

g0bα ϕαϕdΞ =
(

∂W
∂y

)
i+1/2,j

. (17)

The gradients of W at the cell interface are calculated by applying the Green–Gaussian theorem
to the auxiliary control volume; see Section 4.2 of [22] for the detailed implementation.

As for the coefficients Aα, due to the fact that the non-equilibrium parts in f0 (terms involving τ)
have no direct contributions to the conservative variables, they can be determined from the following
relation: ∫

g0 Aα ϕαϕdΞ = −
∫

g0(aα ϕαξ ′x + bα ϕαξ ′y)ϕdΞ + ω
∫

s0ϕdΞ, (18)

where the terms on the right side have been already calculated.
For a smooth flow, the equilibrium state g around (xi+1/2,j = (0, 0), t = 0) is obtained from a

second-order expansion in space and time:

g(x(t′), t′, ξ, ζ2) = g0(1 + At′ + ax + by) = g0[1 + At′ − aξ ′x(t− t′)− bξ ′y(t− t′)]. (19)

Like the equilibrium state g, the source term s is assumed to have the form

s(x(t′), t′, ξ, ζ2) = s10[1 + As1t′ − as1ξ ′x(t− t′)− bs1ξ ′y(t− t′)]
−s20[1 + As2t′ − as2ξ ′x(t− t′)− bs2ξ ′y(t− t′)]

, (20)
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where s10 and s20 are defined at the cell interface and at time t = 0. They can be calculated using
Equations (9) and (15), and we have s0 = s10 − s20. Then all the slopes in s are expanded as follows:

as1 = as1,α ϕα, as2 = as2,α ϕα

bs1 = bs1,α ϕα, bs2 = bs2,α ϕα

As1 = As1,α ϕα, As2 = As2,α ϕα

. (21)

The unknown coefficients in the above relations are obtained by comparing the Taylor expansions
of Equations (4) and (9), e.g., for as1,

as1,4 = a4

as1,2 = −0.5a3

as1,3 = 0.5a2

as1,1 = a1 + a2u + a3v + 0.5a4(u2 + v2)− as1,2us1 − as1,3vs1 − 0.5as1,4(u2
s1 + v2

s1)

, (22)

and for as2,
as2,4 = as1,4

as2,2 = −as1,2

as2,3 = as1,3

as2,1 = as1,1

. (23)

Since aα(α = 1 ∼ 4) have already been gained, as1,α and as2,α can be calculated with little
computational effort. The other coefficients bs1,α, bs2,α, As1,α and As2,α have the same forms as
Equations (22) and (23).

The reason we assume that s is expanded in the form of Equation (20) can be explained below.
From a mathematical point of view, it is constructed in such a way as to consider the time and space
variations around the cell interface. Therefore, the constructed s at the cell interface has a second-order
accuracy in both space and time, which is consistent with f and g. Because s is entirely determined by
the time-dependent variables ρ, p, u, v as shown in Equations (9) and (20), and there is a one-to-one
correspondence between conservative variables and f , Equation (20) is suitable for both stationary
and unsteady solutions. From a physical point of view, we know that the key point of the BGK scheme
is to accurately evaluate f at the cell interface. When there is no source term, the distribution function
is evolved through particle transport and collision around the cell interface, i.e., starting from an initial
state f0 and then approaching to g within each time step. However, for the cases with source effects,
not only particle transport and collision exist, but also the source term ωs acts as an external force to
drive f to a “new” local equilibrium state, which distinguishes it from g. In other words, the “new”
local equilibrium state becomes g + τωs, therefore we expand s in space and time in a similar way to g.

Substituting f0, g and s into Equation (12), the solution f of the constructed BGK model can be
written as

f (xi+1/2,j, t, ξ, ζ2) = g[1 + (t− τ)A− τ(aξ ′x + bξ ′y)]

+τωs10[1 + χ1 As1 + χ2(as1ξ ′x + bs1ξ ′y)]

−τωs20[1 + χ1 As2 + χ2(as2ξ ′x + bs2ξ ′y)]

, (24)

with the definitions of χ1 = t− τ + τe−t/τ and χ2 = (t + τ)e−t/τ − τ. The collision time τ is computed
by τ = µ/p, where µ denotes the viscosity coefficient at the cell interface for a laminar flow.

2.3. Evaluations of Numerical Fluxes and Update of Flow Variables

Finally, the time-dependent numerical fluxes across the boundary can be evaluated by

Fi+1/2,j =
∫

ξ ′xϕ f (xi+1/2,j, t, ξ, ζ2)dΞ (25)
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Because the BGK model only recovers the N–S equations with a fixed Prandtl number Pr = 1,
in order to simulate flows with an arbitrary Pr, the heat flux correction is applied [23]. Similarly,
the fluxes across the j− direction face xi,j+1/2 = (xi,j+1/2, yi,j+1/2) can be evaluated following the above
process. By using the finite volume method, we obtain the update of flow variables over a time step ∆t
for each cell (i, j), i.e.,

∆ρ

∆(ρu)
∆(ρv)
∆(ρE)

 = − 1
Ω

∫ ∆t
0

[
(F∆S)i+1/2,j − (F∆S)i−1/2,j + (F∆S)i,j+1/2 − (F∆S)i,j−1/2

]
dt + ∆t


0

ρωv
−ρωu

0

, (26)

where Ω is the control volume, ∆S is the length of face in the 2D case, and ∆t is the size of each time
step. The step size ∆t is determined by the common CFL condition. The isothermal (with possible
different temperatures) and no slip boundary conditions are applied to inner and outer surfaces.

3. Numerical Results and Discussions

3.1. Problem Description

The computational model presented by King et al. [6] is a closed rotating annulus with the ratio of
inner radius ri to outer radius ro being 0.5 and the Prandtl number Pr being 0.7 for air. It is again used
here for validation of the developed BGK scheme. Apart from the dimensionless parameters provided
therein, in order to keep the numerical results comparable and repeatable, some constant quantities
with dimensions used in our computations are given in Table 1.

Table 1. Several constant quantities with dimensions used in the numerical computations.

Quantity Constant Value

Inner radius ri 100 mm
Outer radius ro 200 mm

Reference length rm = 0.5(ri + r0) 150 mm
Reference temperature Tre f = 0.5(Th + Tc) 288.15 K
Volume expansion coefficient β = 1/Tre f 3.47041× 10−3 K−1

Kinematic viscosity ν 1.46072× 10−4 m2/s
Thermal diffusivity α = ν/Pr 2.08674× 10−4 m2/s

There are two important dimensionless parameters for convective flows, the Rayleigh number Ra
and the rotational Reynolds number Re, which are defined as

Ra =
ω2rm(ro − ri)

3β∆T
να

, Re =
ωrmd

ν
. (27)

Supposing that Ra and Re are known, from the definitions in Table 1, three unknowns exist in
the above two relations, including the rotational speed ω, the temperature difference ∆T = Th − Tc

and the axial gap between disks d. With an extra assumption for the buoyancy parameter
β∆T = 1.1 Ra−0.114, the computational state can be uniquely determined from given Ra and Re.
Although the assumption was originally introduced for flows obeying the Boussinesq approximation
(usually β∆T < 0.3 is required), it is still used here for consistency. However, it is noticed that
the present method is also applicable to flows with a wider range of β∆T since the ideal gas law
is adopted. In the current 2D computation, d is only used to define Re and is assumed to be a
constant, therefore from the above relations, different sets of Ra and Re should be specified to satisfy
the relationship Ra1.114 ∝ Re2. For example, the natural convection in the rotating annulus at Rayleigh
number from 103 to 109 are herein simulated, corresponding to Reynolds number ranging from 67 to
148,152.
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Before showing the convection results, we would like to first present two special axisymmetric
cases: one is the rotating annulus without temperature difference where the induced flow is also
referred to as the rotating Couette flow, the other one is the stationary annulus with only conduction
occurring. Since “exact” solutions for these two cases are available, both of them are simulated to
quantitatively verify the basic capability of the method.

For the former case, the linearized theory gives “exact” radial distributions of circumferential
velocity vc and pressure gradient ∂p/∂r as

vc(r) = ωr, ∂p(r)/∂r = ρω2r, (28)

where the radial location r falls between ri and ro. Although the solutions are actually independent
of Reynolds number, in the computation Re is taken as 67 leading to ω = 0.06372 rad/s. A uniform
grid with a size of 101× 51 in circumferential and radial directions is used, which is fine enough
through the mesh independence study. As shown in Figure 1, good agreements are found between
the “exact” and numerical results. The difference between the computed maximum and minimum
densities in the whole flow field is on the order of 10−8 and stays nearly constant, indicating a very
small compressible error. However, it is found that very slight pressure oscillation exists near inner and
outer surfaces (see Figure 1b). The possible reason is due to the stiffness of the pressure term, which
seems to be inevitable when applying a compressible solver for low speed flows. Fortunately, this
small oscillation has very little impact, and with an increase of Re, the oscillations would disappear.

Figure 1. Radial distributions of (a) circumferential velocity vc; (b) pressure gradient ∂p/∂r for
the rotating Couette case.

For the second stationary case (ω = 0), the heat transfer is caused by only conduction. The pure
conduction solution gives an “exact” radial distribution of temperature as follows:

Tcond(r) = Tc + (Th − Tc)
ln(r/ri)

ln(ro/ri)
, (29)

where Th = 351.39 K and Th = 224.91 K are used. The computation is performed on the same grid as
above. Figure 2 shows the comparison between the theoretical and numerical results, and excellent
agreement is achieved.
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It is seen that the BGK scheme gives accurate solutions for these two basic cases. The computed
logarithmic profile of the temperature together with the linear profile of velocity is used as the initial
conditions for the subsequent unsteady simulations. Three grids with different sizes are used, i.e.,
a uniform 101× 51 grid for Ra < 106, a uniform 201× 101 grid for 106 ≤ Ra < 108, and a uniform
201× 201 grid for Ra ≥ 108. The step size ∆t is selected as 1× 10−7 (corresponding to a CFL number
of 0.025). The reason for choosing such small value will be demonstrated in Section 3.4.

For comparison, a compressible N–S solver with the Weiss-Smith preconditioner is also applied.
The fluxes are evaluated from the preconditioned Roe upwind scheme. Because the preconditioned
N–S equations are not conservative for unsteady flows, the dual-time stepping approach has to be
employed in order to obtain a time-accurate solution. The size of physical time step is 2 × 10−5.
A five-stage Runge–Kutta scheme is used for the update of solution in pseudo time, where the number
of pseudo time steps is fixed at 50.

3.2. Nusselt Numbers

In heat transfer problems, the Nusselt number is an important dimensionless parameter to
measure the intensity of convection, which is defined as the ratio of the total heat transfer rate to
that due to conduction alone. According to Equation (29), the local Nusselt number Nulocal at the hot
(outer) wall is given by

Nulocal =
−k
(

∂T
∂r

)
r=ro

−k
(

∂Tcond
∂r

)
r=ro

=
ln(ro/ri)ro

Th − Tc

(
∂T
∂r

)
r=ro

, (30)

where the temperature gradient is calculated using a simple finite difference approximation. The global
Nusselt number Nu can be obtained by integrating Nulocal over the cylinder surface, which gives

Nu =
1

2π

∫ 2π

0

ln(2)ro

Th − Tc

(
∂T
∂r

)
r=ro

dθ. (31)

Figure 3 shows the computed variations of Nu with time t at different Rayleigh numbers. Also
presented are the results from the N–S solver. It is observed that for Ra ≥ 104 a convective flow has
been developed from the initial pure conduction and pure rotating flow, since all the predicted Nusselt
numbers are reaching final values larger than 1 after a short transition process. The convective flow
can be seen more clearly from the flow patterns shown in the next section. In fact, the critical value
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of Ra for this rotating annulus case is between 103.2 and 103.3, which is close to the value of 1708 for
the Rayleigh–Bénard convection between horizontal plates.
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It is also observed from Figure 3 that both numerical methods predict a time-independent Nu for
Ra ≤ 106 and a time-dependent one for Ra ≥ 106.1. This transition range is very close to the result of
King et al. [4]. For each case with Ra ≤ 106, the converged Nusselt numbers from the two methods
agree well with each other, and for each case with Ra ≥ 106.1, the computed time-averaged values
show also good agreement. Particularly, approximately periodic oscillations occur for Ra = 106.1 and
Ra = 107, and the oscillations change to irregular states for Ra ≥ 108. Although the computations
started from the same initial condition, the predicted convective flow from the BGK scheme seems to
develop earlier.

Figure 4 shows the computed variation of (time-averaged) Nu with Ra, together with those from
literatures. Note that the computed results from the BGK scheme and the N–S solver are very close
to each other. For clarity, we only show the results from the BGK scheme, and their consistency
can be clearly seen in Figure 3 (time-independent values for Ra ≤ 106 and time-averaged values
for Ra > 106.1). This indicates that, for the current rotating annulus case, the accuracy of the BGK
scheme is comparable to that of the N–S solver; both are based on the full compressible N–S equations.
However, when comparing the present results (from both methods) with that from King et al. [6] by
using an incompressible solver with the Boussinesq approximation, obvious discrepancies are found
for Ra > 106.5. Currently, these discrepancies are not fully understood. As far as the authors are
concerned, besides the numerical reasons, the density effect can be a possible physical reason. As we
all know, the density is treated as a constant in the Boussinesq approximation-based solver, while in
the current flow solvers, the density is calculated from the ideal gas law. For small Ra, the velocity
and kinetic energy are small, thus very little difference is found. However, with the increase of Ra,
the compressible effect may become more and more important. The semi-empirical correlation from
Hollands et al. [24] for Rayleigh–Bénard convection is also shown in Figure 4 for comparison. Both
the present and King’s results are found to deviate from it at higher Ra, and the former predicts lower
Nusselt numbers while the latter overpredicts the values
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3.3. Flow Pattern

It has been shown from the above numerical results that a steady-state flow field can be obtained
for Ra ≤ 106 and the convective flow becomes unstable for Ra ≥ 106.1. Figures 5 and 6 show
the streamlines (based on relative velocities) and temperature contours, respectively. For Ra ≤ 106,
they do not change with time, while for Ra ≥ 106.1, they are obtained at a certain time, i.e., at t = 2 for
Ra = 107, at t = 0.05 for Ra = 108 and at t = 0.02 for Ra = 109.
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As shown in Figure 5, several cyclonic and anti-cyclonic pairs of vortices (convective roll pairs)
are observed in the rotating cavity, which is similar to the Rayleigh–Bénard convection in a stationary,
horizontal enclosure. The number of these vortex pairs not only varies with Ra, but also varies with
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time at higher Ra. This irregular number is changing within the range of 4 to 6, which is same as
the observation in [6]. With the increase of Ra, the convective rolls become more distinguished from
each other and the symmetry of the flow structure is broken. Also for Ra ≥ 107, extra secondary
vortices are found among the primary rolls, occurring as a result of flow instability.

As for the temperature contours shown in Figure 6, similar thermal roll pairs start to appear
at Ra = 105 and gradually break down at Ra = 108. The number of these pairs is equal to that of
convective roll pairs for each Ra. When Ra is higher than 108, the thermal mixing is obvious, leading
to chaos thermal structures. It is argued that the flow vacillation should be responsible for the lack of
coherence in the temperature contours.

3.4. Effect of Step Size ∆t

Different from the used N–S solver where the (physical) time step size is not a sensitive parameter
to affect the simulation results, in the BGK scheme ∆t needs to be carefully determined. A direct
reason is that ∆t and τ = µ/p are decoupled in the BGK scheme, but ∆t only and the ratio between
them are involved in the evaluations of time-dependent distribute function f and fluxes F as shown
in Equations (24) and (25). Physically, it is required that ∆t/τ should be within a reasonable range
in order to correctly reflect the physical reality. For the low-speed viscous flow, sufficient particle
collisions ∆t occur at the cell interface and thus ∆t should be greatly larger than τ. However, a too
large ∆t could lead to violation of the stability condition. On the other hand, a small ∆t may decrease
the computational efficiency and even implies rarefied flow, where the present Maxwellian-based BGK
scheme no longer works. In Xu’s work for Rayleigh–Bénard simulation [16], they kept the collision time
τ to be around 10−1∆t. Su et al. [11] suggested that ∆t/τ is about 10~100 for any practical simulations.

To clearly show the effect of ∆t on the simulation result, we study the steady-state case with
Ra = 104 by using four different step sizes corresponding to the ratio ∆t/τ of 10, 50, 100 and 200.
As shown in Figure 7, for ∆t/τ = 10 and 50, a stable Nu is obtained equaling to 2.5019 and 2.5131,
respectively. The difference between them is about 0.2%. But, for ∆t/τ = 100, a periodic oscillation
appears and it seems not to decay with time. Although its time-averaged value still agrees well with
the previous stable values, this oscillation is physically not true. When ∆t/τ = 200 is used, a more
intensive oscillation is found with the larger amplitude and higher frequency, which provides further
evidence that the “fake” oscillation is entirely due to the numerics. Therefore it is concluded that when
using the present BGK scheme for such low-speed thermal flows, ∆t cannot be chosen as large as for
subsonic/transonic flows. The current used step size ∆t = 1× 10−7 leads to the value of ∆t/τ ≈ 50,
which is a suitable choice.Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 18 
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4. Conclusions

The accuracy of the developed BGK scheme has been proven to be at least as high as that of
the conventional preconditioned N–S solver. No preconditioning is required in the BGK scheme,
while without it the original N–S solver cannot give reasonable results or even produces floating
errors. This corroborates the delicate dissipation mechanism in the BGK scheme for low-speed thermal
flows. Besides, the computational effort for each time step is also reduced by more than one-third
as compared with the N–S solver. There are mainly two reasons. One is that the preconditioning
significantly increases the computational cost for unsteady flows due to the necessity to employ a
dual-time stepping approach. Another reason is that the BGK scheme is a single-stage method and
less calculation is required for the flux evaluation. However, due to the small step size ∆t used in
the BGK scheme, more computational time steps are needed in order to gain a complete time history of
the Nusselt number Nu; for example, in this case, the number of time steps needed is four times that
of the N–S solver. Therefore, in terms of the total CPU time cost, the current method shows a slight
deficiency. In fact, as compared with regular incompressible solvers, both methods can be less efficient
for low-speed flows, which are not well resolved. But for the rotating annulus in practical high-speed
engines, there exist situations where the compressibility effects cannot be ignored, for example, when
a larger temperature difference is encountered or when the forced convection with a higher inlet flow
rate is considered. For these cases, the incompressible solvers may suffer from accuracy degradation,
while the present BGK scheme still works.

Currently, the turbulence effect is not modeled, which limits the scope of the Rayleigh number. In
order to simulate more practical natural convection with a higher Rayleigh number, relevant work
is being conducted. Also, as demonstrated previously, the used approach, by replacing the general
acceleration term with a simple form of the source term, has its limitations, e.g., it may not be
suitable for non-equilibrium flows or other complex flows [25]. This also leaves us much room for a
follow-up study.
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