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Abstract: This paper studies learning frameworks for energy-efficient data communications in an
energy-harvesting cognitive radio network in which secondary users (SUs) harvest energy from
solar power while opportunistically accessing a licensed channel for data transmission. The SUs
perform spectrum sensing individually, and send local decisions about the presence of the primary
user (PU) on the channel to a fusion center (FC). We first design a new cooperative spectrum-sensing
technique based on a convolutional neural network in which the FC uses historical sensing data
to train the network for classification problem. The system is assumed to operate in a time-slotted
manner. At the beginning of each time slot, the FC uses the current local decisions as input for the
trained network to decide whether the PU is active or not in that time slot. In addition, legitimate
transmissions can be vulnerable to a hidden eavesdropper, which always passively listens to the
communication. Therefore, we further propose a transfer learning actor–critic algorithm for an SU
to decide its operation mode to increase the security level under the constraint of limited energy.
In this approach, the SU directly interacts with the environment to learn its dynamics (i.e., an arrival
of harvested energy); then, the SU can either stay idle to save energy or transmit to the FC secured
data that are encrypted using a suitable private-key encryption method to maximize the long-term
effective security level of the network. We finally present numerical simulation results under various
configurations to evaluate our proposed schemes.

Keywords: actor–critic; cognitive radio network; data encryption; energy efficiency; spectrum sensing

1. Introduction

Cognitive radio is one of the effective solutions to the problem of spectrum scarcity in wireless
communications networks. Secondary users (SUs) with cognitive capability can utilize the spectrum
bands licensed to primary users (PUs) for reliable and effective data transmission [1]. To achieve this,
the SU modifies its parameters to adapt to the time-slotted operation of the PU on the channel of
interest, and then senses the presence of the PU on that channel in every time slot. When the PU is
sensed as inactive in a particular time slot, the SU can use the licensed channel during that time slot to
transmit data. In this paper, the SU uses its limited-capacity battery, powered by a non-radio frequency
(non-RF) energy harvester, for spectrum sensing, data encryption, and data transmission.

1.1. Motivation

Many studies concerning energy management problems for energy-harvesting nodes have been
conducted, primarily to maximize a system’s throughput [2–6]. For example, Park and Hong [2]
proposed a joint design of a spectrum sensing policy and a detection threshold to maximize total
expected throughput under energy constraints. Pappas et al. [4] examined the two-dimensional
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maximum stable throughput region for a simple cognitive system comprising two source-destination
pairs. Razaque and Elleithy [6] designed an intelligent decision-making (IDM) model for wireless
sensor networks, which allows the sensor node to obtain energy from the Sun, and thus preserves its
battery energy in an outdoor environment. Liang et al. [7] studied the optimal sensing duration to
maximize achievable throughput for a secondary network while sufficiently protecting primary users.
There is research that analyzes optimal transmission power and density of secondary transmitters to
maximize secondary network throughput under the constraints of a given outage-probability [8].
In addition, the work in [9] explored a multiple-input multiple-output (MIMO) technique for
collaborative spectrum sensing for the distributed detection framework in cognitive-radio scenarios;
this paper focuses on the reporting channel in a spectrum-sensing context and exploits the results from
decision fusion to improve probability of detection.

In addition, cognitive radio networks (CRNs), like any modern communications system, should
guarantee the privacy of the data traveling through the network [10]. However, due to its open and
random access nature, wireless communications in CRNs is susceptive to security threats targeting the
physical or media access control layers (e.g., passive eavesdropping or radio frequency (RF) jamming).
For that reason, a remarkable number of contributions focus mainly on security technologies for
CRNs [11]. In particular, Wen et al. [12] presented physical layer approaches to defend against
security threats in CRNs. The authors first introduced a MIMO technique that guarantees a low
probability of interception, and that enhances the confidentiality of the network; then, they proposed
an identified scheme based on channel responses to defend against primary user-emulation attacks.
Ciuonzo et al. [13] studied channel-aware decision fusion rules to classify the presence of a (either
distributed or co-located) multi-antenna jamming device in wireless sensor networks.

Moreover, physical layer security in CRNs has been widely studied to secure wireless
transmissions, especially in the presence of a hidden eavesdropper [14,15]. Besides this, keeping
the data classified from prying eyes by using encryption techniques is one of the most feasible
solutions to maintain security; but, in reality, it is not easy to implement conventional encryption
techniques in CRNs, since the networks have constrained resources (e.g., limited energy or memory).
As a consequence, encryption techniques such as symmetric and asymmetric key algorithms are not
preferred for data protection in CRNs. Nevertheless, in modern CRNs, wireless energy harvesting
technology can ensure the energy autonomy of the network by using a small rechargeable battery
integrated with an energy harvester, thus providing the SUs with redundant energy to improve data
security. Therefore, protecting data using encryption methods still attracts a lot of interest in the
research community [16–18]. To illustrate, Sen [19] identified numerous security threats to cognitive
wireless sensor networks and the defense mechanisms against these vulnerabilities by selecting the
most appropriate cryptography algorithm for each class of attack.

Recent work proposes an energy-efficient data encryption scheme for an SU powered by an energy
harvester to decide its operation mode (e.g., stay silent or transmit encrypted data) in the current time
slot [20]. This scheme aims to find an optimal policy for the data encryption decision to maximize the
long-term security level of the system. More specifically, the scheme uses a well-known symmetric
encryption method called the Advanced Encryption Standard (AES) [21] for the same data block length
with different key sizes (AES-128, AES-192, AES-256). The SU can encrypt data using an algorithm
with longer key lengths to enhance security, and then transmits the encrypted data on an idle licensed
channel. Furthermore, the SU determines the encryption key length based on the impact of spectrum
sensing error, the energy causality constraint, and the effect of the current decision on future time slots.
The problem is first formulated as the framework of a partially observable Markov decision process
(POMDP), and is then solved by using value iteration-based dynamic programming to find the optimal
policy. However, this solution is rarely directly useful in reality. It is akin to an exhaustive search,
looking ahead at all possibilities, computing the probabilities of occurrence and their desirability in
terms of expected rewards (i.e., security levels) [22]. The solution relies on the assumption that we
know in advance the dynamics of the environment (i.e., an arrival of harvested energy), which is rarely
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true in practice. Consequently, this paper is going to investigate the problem from a different point of
view in which the solution does not require prior information about the environment’s dynamics.

1.2. Contributions

Our focus in this paper is to solve the problem of reaching a data encryption decision that
aims to maximize the security of data transmissions in CRNs by using model-free reinforcement
learning [22], namely, an actor–critic algorithm. The main advantage of the actor–critic solution over
the POMDP-based approach is that it does not require complex computations or information about the
arrival of harvested energy. In this work, we model the arrival of harvested energy and the primary
traffic as a Poisson point process and a time-homogeneous discrete Markov process, respectively.
At the beginning of a time slot, the SU does not have the exact information about the energy harvesting
model and the spectrum occupancy status of the PU, except for the average value of harvested energy
and the transition probabilities for the PU state. Thus, the SU needs to carry out spectrum sensing
to identify whether the primary channel is busy or not; then, it either stays idle or transmits data
on the free channel. Accordingly, to increase the chances for the SU to transmit data on the primary
channel and to reduce the probability of collision with the primary user, we propose a new cooperative
spectrum sensing technique using a convolutional neural network (CNN) and historical sensing data.

More than that, the primary purpose of this paper is to find an optimal data encryption decision
policy that fits into the framework of a Markov decision process (MDP). During this process, we employ
an actor–critic sequential learning model so the SU can interact with the environment in a stochastic
way to acquire information on the environment’s dynamics. Based on this method, the SU can learn
the energy harvesting model and the primary traffic variations from the learning practice. Afterwards,
it can either stay idle or select an appropriate key length for data encryption (also known as action in
this paper), and then verify the effect of the decision based on the returned rewards. By repeating this
kind of action over time, the SU can establish the policy to make determinations in the future. However,
it would take time for the actor–critic learning procedure to converge to an optimal policy, especially
with the large size of the state space [23]. To deal with such an issue, we employ the idea of transfer
learning, which exploits the historical relevance of the harvested energy model and the primary user’s
activity in order to speed up the learning process of the conventional actor–critic algorithm [24]. In this
paper, we call this method a transfer learning actor–critic (TLAC) algorithm. Compared with previous
work, the main contributions of this paper are summarized as follows:

• We first introduce a new energy harvesting model, which is represented by a transformed Poisson
distribution proven to give the nearest fit to the empirical measurements of a solar energy
harvesting node for time-slotted operation [25].

• We also introduce a new CNN-based technique for cooperative spectrum sensing to enhance the
performance of spectrum sensing by increasing the probability of detection while guaranteeing a
low probability of false alarm.

• We then formulate the stochastic problem of the data encryption decision policy as the framework
of a constrained MDP, and solve the problem by using the transfer learning actor–critic algorithm.

The rest of this paper is organized as follows. In Section 2, we introduce the system model of
the proposed schemes. A new energy harvesting model based on transformed Poisson distribution is
introduced in Section 3. Section 4 presents the new CNN-based cooperative spectrum sensing (CBCSS)
technique. Section 5 focuses on the transfer learning actor–critic algorithm for data protection in CRNs.
In Section 6, we evaluate the performance of the proposed schemes through numerical simulation
results. Finally, we present a conclusion in Section 7. To make it clear, the most commonly used
notations in this paper are listed in Table 1.
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Table 1. The list of the most used notations.

Symbol Description

s(t) Primary user (PU) signal at time step t
xi(t), wi(t) The received signal and additive white Gaussian noise at the ith secondary user (SU) at

time step t
µ Mean

σ2 Variance
γi Average gain of the sensed channel at the ith SU

Eca Battery capacity of the SU
Es The energy consumption for spectrum sensing process

er, eh, etr The remaining energy, harvested energy, transmit energy of the SU respectively
Nk The key length of the encryption method

SNk The security level corresponding with the key length Nk
Pd, Pf The system probabilities of detection and false alarm

〈S,A,P,R〉 Markov decision process (MDP) Tuple: State space S, Action space A, Transition probability
function P, and Reward function R

ρ The belief that the PU is inactive in a time slot
η Discount factor

V(s) State-value function
π(s) Policy function

αa, αc The actor and the critic step-size parameters
δ Temporal difference (TD) error

2. System Model

The system considered in this paper comprises a pair of licensed primary users, several
secondary transmitters (denoted as SUs), a secondary receiver equipped with a fusion center, and an
eavesdropper (E), as shown in Figure 1. From now on, we will call the secondary receiver as the fusion
center or FC for simplicity.

Figure 1. The model of the system considered in this paper. E: eavesdropper; FC: fusion center.

In this work, the SUs are assumed to always have data to transmit to the fusion center. Thus,
they would try to access the licensed channel of the PUs for data transmission by carrying out
cooperative spectrum sensing.
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The primary user’s states (active [A] and not active [Ā]) are assumed to follow a two-state
Markov discrete-time process, in which the transition probabilities between the states are denoted
Pi,j : i, j ∈ {A, Ā}, as illustrated in Figure 2.

A A¯

P
AA¯

PAA

P
A¯A¯

P
AA¯

Figure 2. Two-state Markov discrete-time model for the primary user’s states. Pi,j : i, j ∈ {A, Ā}:
the transition probabilities between the states.

The performance of the sensing scheme can be evaluated by using the probability of correct
detection Pd and the probability of false alarm Pf . The former represents the probability of detecting
the active state (A) of the PU accurately, whereas the latter indicates the probability that the PU is
identified as active, but it is truly not (Ā), each of which are given by

Pd = Pr(H = A|A) (1)

and
Pf = Pr (H = A|Ā) , (2)

respectively, where H denotes the state of the primary user as determined by spectrum sensing.
Although the PU state transition probabilities are unknown in practical situations, the historical
statistics information of the primary channel can be used to estimate the state transition probabilities
based on the Markov model [26]. Therefore, we assume that the SU has a prior information about the
PU state transition probabilities based on the historical sensing results; and the global information of
the network (e.g., channel state information, probabilities of detection and false alarm) are available
for all nodes in the network.

The system’s operation proceeds as follows. The system is assumed to operate in a time-slotted
manner. At the beginning of each time slot, the SUs perform spectrum sensing separately and send the
sensing outcomes to the fusion center, where the data are fused together using a certain rule to decide
the state of the primary user. The final sensing result is then broadcast to the SUs. If the channel is free,
it is allocated to one of the SUs for data transmission. The SUs take turns using the channel, based on
the arrival order of their transmission requests. Each SU can occupy the channel over many time slots
until it finishes transmitting data. Meanwhile, the eavesdropper is listening to the communication
quietly. Therefore, we are going to investigate learning frameworks for cooperative spectrum sensing
and energy-efficient data protection against the hidden eavesdropper for the communication between
one SU and the fusion center.

We first present a simple but effective cooperative spectrum sensing method based on a CNN to
improve the sensing performance. The CNN is constructed and trained to predict the PU states by
using individual sensing data as inputs, which leads to specific target outputs. Hence, the fusion center
can make global decisions about the PU state based on the outputs of the neural network. Relying on
the final decision, if the channel is free, it is allocated to an SU (denoted as SU1) to transmit data.
Furthermore, the SU is assumed to have a finite-capacity battery regularly recharged by a non-RF
energy harvester. In addition to that, under energy constraint, the SU encrypts data using the AES
algorithm with an appropriate key length to maximize the long-term security level of the system.
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Regarding data protection techniques, there are two primary types of cryptography: symmetric
(or private key) and asymmetric (or public key) algorithms . In general, using private-key cryptography
for data encryption is not a time-consuming process, and thus expends less energy than public-key
cryptography. For example, the experimental results from Kim et al. [27] showed that a public-key
algorithm named the elliptic curve integrated encryption scheme (ECIES) consumes a thousand
times more energy during the encryption process than the popular AES-128 private-key method.
Even though a public-key algorithm can increase the security level by sacrificing a huge amount
of energy, it is not a favorable choice for many wireless systems like CRNs. Subsequently, in the
paper, we focus on using the AES algorithm to secure the communications between SU1 and the FC.
Specifically, the SU can use one of the three key sizes (128, 192, and 256) to encrypt data using the
AES algorithm.

In this paper, the security level is defined by the number of repetitions of the transformation
rounds that convert the input data into encrypted data [21]. Therefore, the security level SNk is
dependent on the key length Nk of the AES algorithm, as follows:

• SNk = 10 if Nk = 128 bits,
• SNk = 12 if Nk = 192 bits,
• SNk = 14 if Nk = 256 bits.

Using the longer key lengths provides the SU with better data security but consumes more
energy [28]. As a result, at the beginning of each time slot, the SU needs to decide its operation mode
based on the sensing result and the remaining energy to maximize the long-term security level while
efficiently using the limited energy. For example, it can stay silent to save energy for future use; or it
can encrypt information by the AES algorithm with a proper key length and transmit the data to the
FC. Therefore, in the paper, we additionally design an actor–critic learning framework for SU1 to find
the optimal operation mode decision policy. More specifically, when the primary user is determined
to be inactive and the remaining energy is sufficient for data transmission, the SU can decide to stay
idle to save energy or to transmit data encrypted by the AES algorithm with a suitable key length
by calculating the total expected reward in future time slots according to the proposed actor–critic
learning algorithm.

3. Energy Harvesting Model

Recent advances in energy harvesting technologies allow small, low-cost devices such as wireless
sensor nodes to operate based solely on wireless harvested energy that is stored in a finite-capacity
battery. Hence, in designing network protocols, it is essential to obtain a reliable energy-harvesting
model to guarantee energy autonomy in the network. In many studies, the arrival of harvested
energy is assumed to be identical and independently distributed [29], to follow a deterministic Markov
model [30], or to follow a normal Poisson point process [20], all of which are discrete-time models.
In [31], the authors considered the problem of decentralized hypothesis testing in energy harvesting
wireless sensor networks, where the arrival energy during a time interval is assumed to be drawn
from a Bernoulli distribution. The extensive experimental results from Lee et al. [25] showed that the
transformed Poisson distribution model produces the nearest fit for most of the empirical datasets.

In this paper, the number of energy packets that an SU can harvest during a particular time slot,
eh, is given as

eh ∈ {eh,1, eh,2, . . . , eh,max}, (3)

where 0 < eh,1 < eh,2 < · · · < eh,max < Eca, and Eca is the maximum battery capacity of the SU.
We assume that eh follows a Poisson point distribution with mean eh,avg. Furthermore, the fit with the
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Poisson distribution can be improved by using a transformation x = eh − eh,min, where eh,min is the
minimum harvested energy. The probability mass function (PMF) of eh is then given by

Pr(eh) = Pr(x = eh − eh,min) =
e−xavg x(eh−eh,min)

avg

(eh − eh,min)!
, (4)

where xavg = eh,avg − eh,min is the sample average of the new variable x. This new distribution is called
the transformed Poisson distribution (TPD). This transformation of the original variable can improve
the fitting to the empirical datasets, as proven in [25]. In practice, although it is not easy to measure
the exact amount of harvested energy in a time-slot interval, we can always estimate the average,
the minimum and the maximum values of the harvested energy. Meanwhile, if the normal Poisson
point process is used, the minimum harvested energy is assumed to be 0 (or zero) by default , which is
rarely true in practical scenarios.

Figure 3 shows the difference in the PMF between the normal Poisson distribution and
the transformed Poisson distribution when the average harvested energy is eh,avg = 8 packets,
with different values of minimum harvested energy: eh,min ∈ {1, 2, 3, 4} packets. As can be seen
from the figure, the SU can harvest with a higher probability those energy values located near the
mean by using the transformed Poisson model. As a consequence, we can also improve the learning
rate of the actor–critic algorithm because the SU can focus on learning the variations of the energy
values that are adjacent to the mean.
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Figure 3. Comparison between the normal Poisson distribution and the transformed Poisson
distribution (TPD) with eh,avg = 8 and different values of eh,min.

4. Convolutional Neural Network-Based Cooperative Spectrum Sensing

In this paper, we exploit the strength of the convolutional neural network, a particular type of
deep neural network, to design a new cooperative spectrum sensing solution for the FC to determine
the state of the PU on the primary channel. The process of cooperative spectrum sensing is illustrated
with the following steps:

1. The FC trains the CNN using historical sensing data represented by the local spectrum decisions
provided by the SUs.

2. At the beginning of each time slot, all the SUs are required to perform local spectrum sensing
by using an energy detection method and reporting their sensing outcomes to the FC via a
control channel.

3. The FC uses the new sensing data as input for the trained CNN to make a global decision about
the PU state on the channel of interest, and then feeds back the final decision to the SUs.
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Accordingly, the problem of neural network-based cooperative spectrum sensing is divided into
two important parts: local spectrum sensing by the SUs and global decision making by the FC using
the trained CNN.

4.1. Local Spectrum Sensing

The considered CRN is assumed to be composed of K SUs. Each of them performs spectrum
sensing independently using an energy detection algorithm, and then sends the outcome to the FC.
Moreover, we assume that the status of the PU remains unchanged during the time slot. The hypothesis
test statistics for local spectrum sensing at SU i can be formulated as follows [32]:{

A : xi(t) = his(t) + wi(t),

Ā : xi(t) = wi(t),
; ∀i ∈ {1, 2, . . . , K}, (5)

where xi(t) is the received signal by the ith SU in time slot t, hi denotes the channel gain of the link
between the PU and the ith SU, s(t) denotes the PU signal, and wi(t) is zero mean and unit variance
additive white Gaussian noise (AWGN). Regarding energy detection, the observed energy at the ith
SU is expressed as follows [33]:

xEi =
Ni

∑
j=1
|xi(j)|2; ∀i ∈ {1, 2, . . . , K}, (6)

where xi(j) is the jth sample of the received PU signal at the ith SU, and Ni is the number of sensing
samples during each sensing period. For simplicity, we assume that the number of sensing samples
collected by each SU is the same for all the SUs. When Ni is sufficiently large (e.g., Ni ≥ 200), xEi can
be approximated by a Gaussian random variable under the two hypotheses (A and Ā) with mean µA,
µĀ and variance σ2

A, σ2
Ā, given as follows [34]:

xEi ∼

N
(
µA = Ni(1 + γi), σ2

A = 2Ni(1 + 2γi)
)

, A,

N
(

µĀ = Ni, σ2
Ā = 2Ni

)
, Ā,

(7)

where γi is the average gain of the sensed channel in terms of signal-to-noise ratio (SNR). In this paper,
we assume that γi follows a Gaussian distribution with mean µi and variance σ2

i as γi ∼ N
(
µi, σ2

i
)
.

For a single-SU spectrum-sensing scheme, the local decision, Di, is given by

Di =

{
1, i f xEi ≥ λi,

0, otherwise,
(8)

where 1 and 0 are single-bit data that represent states A and Ā of the primary user, respectively; and λi
is a predefined decision threshold.

4.2. Convolutional Neural Network-Based Cooperative Spectrum Sensing

In a deep-learning research, the CNN is widely used in computer vision fields, such as image
classification, speech recognition, and handwriting recognition, by making use of spatial characteristics.
In this section, we present the process of creating and training a CNN for PU state prediction.

4.2.1. Network Configuration

The first step in designing a CNN is to define the network layers that specify the structure of the
CNN, as depicted in Figure 4. This network consists of the following layers [35].
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Di CONV2D RELU

FULLY
CONNECTEDSOFTMAXOUTPUTH ∈ {A, }Ā

Individual
sensing data

CNN

Input

Output

INPUT

Figure 4. The structure of the convolutional neural network (CNN) for spectrum sensing in this paper.

• The input layer stores the input sensing data in the form of a gray scale image with size 1× K× 1,
where K is the number of secondary users.

• The convolutional (CONV2D) layer contains K neurons (filters) that connect to the local subregions
of the input image to learn its features by scanning through it. In this work, each region has a size
of 1× 2.

• The rectified linear unit (ReLU) layer uses the ReLU function to introduce nonlinearity to the CNN
by performing a threshold operation on each input element, simply defined as

f (x) =

{
x, x ≥ 0,

0, x < 0.
(9)

• The fully connected layer combines all the local information from the original image (e.g., the results
of feature extraction) determined in the previous layers to classify the status of the PU, which is
active (A) or inactive (Ā). Consequently, the size of the output data is equal to the number of
states of the primary user.

• The softmax and output layers follow right after the fully connected layer for the classification
problem. The softmax layer uses an output unit activation function, also known as a normalized
exponential function, to create a categorical probability distribution for the two input elements
(A and Ā), as follows:

P(Hi) =
exp(q(Hi))

∑
Hj∈{A,A}

exp(q(Hj))
, i = 1, 2, (10)

where P(Hi) is the class prior probability; Hi ∈ {A, Ā} is an element class; and q(Hi) is the output
value from previous layer of the sample given class Hi. Thereafter, the output (or classification)
layer takes the values from the softmax function and assigns each input to one of the two classes.

It should be noted that the original image with size 1× K × 1 is a vector containing the local
decisions from K SUs; thus, a one-dimensional (1D) convolution layer can be used in the CNN to
solve the problem of PU state classification instead of using a two-dimensional (2D) convolution layer.
However, using a 2D CNN is more useful than 1D CNN in image classification. Furthermore, it would
be easier to further develop the current approach to deal with three-dimensional data without making
many changes in the current architecture of the CNN. For this reason, the size of the input image is
generalized as 1× K× 1; thus, if the number of secondary users cooperating in spectrum sensing is
large enough, the image size could be changed to M× N × 1, where M× N = 1× K. Moreover, we
can enhance the sensing accuracy by placing other information (e.g., the channel SNRs, the distances
between the SUs and the PU) in the second and the third layers of the image, and performing some
modifications (e.g., permutation, repetition) to the original data structure to provide the CNN with
more features.
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4.2.2. Network Training and PU Status Prediction

The local sensing decisions from the SUs, Di ∀i ∈ {1, 2, . . . , K}, are used as input for the CNN.
Because a CNN is mostly used for image classification, the local decisions from K secondary users
are rearranged to form a grayscale image with the size of 1× K× 1, where the last figure describes
the number of color channels in the image. A stochastic gradient descent (SGD) optimizer with an
adaptive learning rate is used in training the network. With this algorithm, the initial learning rate of
0.01 is later reduced based on a pre-defined schedule. For instance, it can be multiplied by a factor of
0.1 after every 10 epochs. The training set is a collection of local decisions from K SUs under different
environmental conditions (i.e., a wide range in the sensed channel gain).

The FC uses the historical sensing data to train the CNN for the classification problem in advance.
Thereafter, the FC determines the presence of the primary user on the licensed channel in every time
slot by using the new individual sensing outcomes received at the beginning of each time slot as input
for the trained network.

5. Transfer Learning Actor–Critic Framework for Data Protection in Cognitive Radio Networks

In this section, we present an optimal operation mode-decision policy based on an actor–critic
learning framework so the SU can maximize the system’s security level and energy utilization.
Subsequently, the SU can encrypt data using the AES algorithm with a suitable key length before
transmitting the secured information to the FC; or it could stay inactive in a time slot to save energy.
In particular, if the SU does not have enough energy to transmit data, or if the sensing result indicates
the PU is in state A, the SU will stay silent during the remainder of the time slot. Otherwise, it can
decide to transmit the data encrypted by the AES algorithm with one of the three key lengths,
Nk ∈ {128, 192, 256}, considering the effect of the decision on the long-term security level of the system.

5.1. Markov Decision Process

The problem of the operation mode decision in this paper is first formulated as a framework of
a Markov decision process that is defined as a tuple 〈S,A,P,R〉, where S is the state space, A is the
action space, P : S×A 7→ S is a transition probability function, and R is the reward space. The state
of the SU at the tth time slot is defined as s(t) = (er(t), ρ(t)), where er(t) is the remaining energy
of the SU, and ρ(t) is the probability (also called belief ) that the PU is inactive in that time slot.
The action state space is defined as A = {ID, TRNk}. At the tth time slot, the SU can choose to stay idle
(action a(t) = ID) or it can choose to transmit data encrypted by the AES algorithm with key length
Nk ∈ {128, 192, 256} (action a(t) = TRNk). This action provides an immediate reward, and causes the
SU to transit into a new state, s′, with the following transition probability:

P(s′|s(t), a(t)) =

{
1, i f s′ = s(t + 1),

0, otherwise.
(11)

We denote as R(s(t), a(t)) the reward (i.e., security level) achieved at the tth time slot when the
SU is in state s(t) and taking action a(t) ∈ A, which is defined as

R(s(t), a(t)) ∈ {0, SNk}, (12)

where

• R = 0 if the SU stays idle, or the transmission is not successful.
• R = 10 if the transmission is successful, and the data are encrypted by AES-128.
• R = 12 if the transmission is successful, and the data are encrypted by AES-192.
• R = 14 if the transmission is successful, and the data are encrypted by AES-256.
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The value function is defined as the total discounted reward from the tth time slot, when the SU’s
state is s(t) = s, which is given as follows [22]:

V(s) =
∞

∑
k=t

ηkR(s(k), a(k))|(s(t) = s), (13)

where η is the discount factor. The objective of this paper is to find an optimal action for the SU in the
tth time slot to maximize the value function as

a(t) = arg max
a(k)∈A

{
∞

∑
k=t

ηkR(s(k), a(k))|(s(t) = s)

}
. (14)

The solution to the problem of the operation mode decision can be found by solving this equation.

5.2. Transfer Learning Actor–Critic Algorithm

Previous work proposed a POMDP-based approach to solving the problem in Equation (14) on
the assumption that the SU already has information about the harvested energy model. In this paper,
we introduce a new solution to the problem based on the actor–critic learning framework, which does
not require the SU to already know the dynamics of energy harvesting. Instead, the SU determines
those dynamics by directly interacting with the environment. A regular actor–critic model comprises
three main elements: an actor (related to a learning policy), a critic (related to a learning value function),
and the environment, as shown in Figure 5.

Figure 5. A regular actor–critic model. TD: temporal difference.

At time step t, the actor selects action a(t) based on the current state, s(t), and the policy, π(s(t)),
which is defined by using a Gibbs softmax function as follows [22]:

π(s, a) = P(a(t) = a|s(t) = s) =
eθ(s,a)

∑
a′∈A

eθ(s,a′)
, (15)

where θ(s, a) is the tendency to select action a when the SU is in state s. The final objective of this
paper is now to find an optimal mode decision policy for the SU at the tth time slot, and the problem
in Equation (14) can be rewritten as

π∗(s) = argmax
a∈A

{
R(s, a) + η ∑

s′∈S
P(s′|s, a)V∗(s′)

}
, (16)

where P(s′|s, a) is the transition probability from state s to state s′ after taking action a.
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After that, the SU transits into a new state, s(t + 1), and receives an instant reward R(s(t), a(t)).
The critic evaluates the new state and computes a temporal difference (TD) error as

δ(t) = R(s(t), a(t)) + ηV(s(t + 1))−V(s(t)). (17)

The critic uses the TD error to improve the estimate of the value function as well as the policy.
The value function is updated as

V(s(t))← V(s(t)) + αc · δ(t), (18)

where αc is a positive parameter of the critic. The action resulting in a positive TD error is favorable,
since the state value is better than expected. Hence, the probability of selecting action a(t) = a in state
s(t) = s in the future should increase, and vice versa. Following that, the tendency to select this action
is updated as

θ(s(t), a(t))← θ(s(t), a(t)) + αa · δ(t), (19)

where αa is a positive parameter of the actor.
Furthermore, we exploit the idea of transfer learning to increase the convergence speed to the

optimal solution by making use of historical learning data, as depicted in Figure 6.

Figure 6. The transfer learning actor–critic model.

The obtained information is transferred to the new actor–critic algorithm for real-time training in
which the initialized value function is the same as the transferred function while the overall policy,
θo(s(t), a(t)), for choosing an action at time step t is given as

θo(s(t), a(t)) = ε(t)θl(s(t), a(t)) + (1− ε(t))θn(s(t), a(t)), (20)

where θl(s(t), a(t)) is the transferred policy; θn(s(t), a(t)) is the new policy, which will be updated in
every time slot by using Equation (19); and ε(t) is the transfer rate, which will be reduced after each
time step to gradually remove the effect of the transferred policy on the new one.

The training process of the actor–critic learning framework for the SU to decide its operation
mode is illustrated as follows. At the beginning of the tth time slot, the SU chooses an action according
to policy π considering the sensing result and the remaining energy in its battery. The SU can decide
to stay idle, a(t) = ID, to save energy, or it can transmit the encrypted data, a(t) = TRNk, to the FC.
The immediate reward, R(s(t), a(t)), and the next state, s(t + 1), are updated at the end of the time
slot based on the following cases.
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5.2.1. Case 1

The sensing result shows that the PU is in state A on the primary channel, so the SU has to stay
idle. Thus, no reward is achieved: R(s(t), ID) = 0. The belief that the PU is inactive in the current
time slot is updated using Bayes’ rule [36] as follows:

ρ∗(t) =
ρ(t)Pf

ρ(t)Pf + (1− ρ(t))Pd
. (21)

The belief for the next time slot is given as

ρ(t + 1) = ρ∗(t)PĀĀ + (1− ρ∗(t)) PAĀ, (22)

and the remaining energy that the SU can use for the next time slot is

er(t + 1) = min(er(t) + eh(t)− Es, Eca), (23)

where Es is the total energy consumption for spectrum sensing, including the energy consumption
from local spectrum sensing and that from sending the sensing outcomes to the fusion center.

5.2.2. Case 2

The sensing result indicates that the PU is absent from the primary channel. There are two
possible occurrences:

(1) The SU decides to stay idle to save energy for the next time slot.
(2) The SU transmits encrypted information to the fusion center.

In the first occurrence, there is no reward: R(s(t), ID) = 0. The probability that the PU is truly
inactive in the current time slot is updated using Bayes’ rule as follows:

ρ∗(t) =
ρ(t)(1− Pf )

ρ(t)(1− Pf ) + (1− ρ(t))(1− Pd)
. (24)

The belief and the remaining energy for the next time slot are calculated by using Equations (22)
and (23), respectively.

Regarding the second occurrence, the SU uses etr(t) packets of energy to transmit the encrypted
data to the FC. The remaining energy of the SU for the next time slot is calculated as follows:

er(t + 1) = min(er(t) + eh(t)− etr(t)− Es − ENk, Eca), (25)

where ENk is the energy consumption for the encryption process, which is dependent on the key
length Nk of the encryption algorithm. If the SU does not receive an acknowledgement (ACK) from
the FC, which means the transmission was unsuccessful, there is no reward: R(s(t), TRNk|ACK) = 0.
The probability that the channel will be free of the PU signal in the next time slot is given as

ρ(t + 1) = PAĀ. (26)

On the other hand, if the SU receives ACK from the FC, indicating that transmission was successful,
the reward is

• R(s(t), TRNk|ACK) = 10 if Nk = 128,
• R(s(t), TRNk|ACK) = 12 if Nk = 192,
• R(s(t), TRNk|ACK) = 14 if Nk = 256.
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The belief that the PU will be absent from the channel in the next time slot is given by

ρ(t + 1) = PĀĀ. (27)

Thereafter, the value function and the new policy are updated based on the received reward and
the new state. This process repeats until it converges into the optimal solution that maximizes the
long-term reward of the system, which means that value function V(s) and policy π(s) will finally
converge to V∗(s) and π∗(s) as k→ ∞ [37].

6. Results and Discussion

In this section, we present simulation results to demonstrate the efficiency of the proposed
CBCSS and TLAC algorithms for energy-efficient data protection in CRNs. We first present simulation
results to evaluate the performance of the proposed CBCSS technique compared with other fusion
techniques, such as a half-voting rule [38], an energy detection (ED) method performed by a secondary
user, and the Chair–Varshney rule [39]. We then investigate the potential of the TLAC solution for
establishing an operation mode decision policy by comparing it with the POMDP-based solution from
earlier work [20], the myopic scheme, and the fixed encryption methods, which will be described in
detail later.

6.1. Convolutional Neural Network-Based Cooperative Spectrum Sensing

The proposed CBCSS for the two-state classification problem was implemented using the Neural
Network Toolbox in Matlab (R2017a, The MathWorks Inc., Natick, MA, USA, 2017). Unless presented
otherwise, the simulation parameters were as listed in Table 2. The average SNR of the sensed channel,
γi, that was used for training the CNN ranged from −16 dB to −6 dB. Furthermore, the number of
training samples for each SNR was 2000.

Table 2. Simulation parameters for the convolutional neural network (CNN) -based cooperative
spectrum sensing (CBCSS) scheme.

Symbol Description Value

K The number of secondary users 10
Ni The number of sensing samples collected by each secondary user 300
γi Average signal-to-noise ratio (SNR) of the sensed channel that was used for

training the CNN (dB)
−16 to −6

PAĀ, PĀA Probability of the primary user’s state transition from A to Ā, and vice versa 0.2

In this work, we consider three different performance metrics: probability of detection Pd,
probability of false alarm Pf , and sensing error Pe. The total number of time slots for testing the
performance of the proposed CBCSS was 10,000. Furthermore, the process was performed 10 times to
get average values for Pd, Pf , and Pe. The first two parameters are calculated by using Equations (1)
and (2), whereas sensing error is defined as the sum of the probability of false alarm (Pf ) and the
probability of missed detection (1− Pd), as follows:

Pe = Pf + (1− Pd). (28)

In Figures 7 and 8, we compare the performance of the proposed CBCSS with those of the
conventional half-voting fusion rule for cooperative spectrum sensing, the local sensing result based
on the energy detection method from one of the K = 10 secondary users, and the Chair–Varshney
fusion rule.
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Figure 7. Probabilities of detection and false alarm according to average SNRs for different
sensing schemes. ED: energy detection.
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Figure 8. Sensing error according to average SNRs for different sensing schemes.

Regarding the half-voting rule, the fusion center makes a global decision based on the local
sensing data. Specifically, the FC decides that the PU is active (A) if at least half of K SUs report
the decision Di = 1. With respect to the energy detection method, the local decision from SU1 was
obtained for comparison. Under the Chair–Varshney rule, the detection statistics are expressed as
the weighted sum of the local decisions; and the weights are functions of detection probability and
false alarm [40]. The Chair–Varshney rule is the optimal decision fusion rule but requires a prior
knowledge of the PU’s activities and the local sensing performance of the secondary users. From the
figures, we can confirm that the proposed CBCSS outperforms other conventional methods, except for
the Chair–Varshney optimal fusion rule, in terms of detection probability and sensing error. We can
also see that with an increment in the average SNR, the probability of detection increases while the
probability of false alarm and the sensing error decrease. This is because the effect of AWGN on the
local decisions, and thus the training accuracy, decreases as SNR increases. Accordingly, larger sensed
channel SNRs at the SUs provide better detection performance and fewer false alarms. Although the
probability of false alarm with the proposed scheme is a little higher than with the half-voting and
the Chair–Varshney rules, the total sensing error of the proposed CBCSS almost reaches to that of the
Chair–Varshney optimal fusion rule and is lower than those of conventional methods.

In Figures 9 and 10, we examine the effect of the number of secondary users, K, on the performance
of the proposed CBCSS. To verify this, we evaluated the output results from three distinct CNNs
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that were trained with K ∈ {5, 10, 20}, while keeping the number of sensing samples unchanged at
Ni = 300. For each value of K, the performance metrics were calculated again for comparison purposes.
As can be seen from the figures, the increases in the number of SUs that cooperate in spectrum
sensing can significantly improve the performance of the CBCSS. This is caused by the increase in
spatial diversity when using more SUs, which can help the CNN to extract more information from the
sensing data. Moreover, in Figure 10, there is almost no sensing error at SNR = −10 dB with K = 20
sensing nodes.
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Figure 9. Probabilities of detection and false alarm with the proposed CBCSS according to average
SNRs when the number of SUs, K, changes.
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Figure 10. Sensing error with the proposed CBCSS according to average SNRs when the number of
SUs, K, changes.

Finally, we measured the performance of the CBCSS by varying the number of sensing samples,
Ni, as shown in Figures 11 and 12, for K = 10 secondary users. The training process is the same as with
the changing K, but now the number of sensing samples is varied instead of K: Ni ∈ {200, 300, 400}.
We assert that the effectiveness of the new cooperative spectrum sensing system can be improved
by increasing the number of sensing samples that are collected by the SUs for individual spectrum
sensing using the energy detection method. Again, the larger value of γi provides better detection
accuracy as well as a lower sensing error.
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Figure 11. Probabilities of detection and false alarm according to average SNRs when the number of
sensing samples for each SU changes.
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Figure 12. Sensing error according to average SNRs when the number of sensing samples for each SU,
N, changes.

Since in the paper we focus on developing a new CNN-based cooperative spectrum sensing
technique, for the sake of simplicity, we use a simple energy detection method for local spectrum
sensing. However, the sensing efficiency can be further enhanced by improving the local spectrum
sensing. That is, if the local sensing outcomes provide more accurate sensing data, the CNN can learn
the features of the data with higher accuracy, which will produce more precise classification results.
From the simulation results, we can observe that larger values of the channel SNR can ensure the better
local sensing results, which leads to better overall sensing performance of the system.

6.2. Transfer Learning Actor–Critic Solution for Energy-Efficient Data Protection Scheme

This section verifies the performance of the proposed actor–critic framework in comparison to the
myopic solution and the POMDP-based solution from earlier work. With regard to the myopic scheme,
if the PU is found absent from the channel, the SU will sacrifice its energy to maximize data security [41].
Previous work proposed an optimal decision policy for a CRN to maximize the security level based on
a POMDP framework, which requires complex numerical computations as well as prior information
about the arrival of harvested energy [20]. The complexity of the problem depends on the required
amount of the computation space (e.g., the sizes of the input states, actions, transition probabilities,
and observations). In a POMDP, an agent controls the process by choosing the action at each time
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step based on the observation history to maximize the expected long-term reward. The optimal
policy for the agent to choose an action can be found by solving the Bellman’s equation using value
iteration-based dynamic programming. Each iteration requires O(|A||S|2) operations to compute all
the probabilities of transitioning from one state, s ∈ S, to another state, s′ ∈ S, after taking an action,
a ∈ A. The actor–critic method, on the other hand, does not require the agent to compute all the
occurrence probabilities to find the solution in advance. In addition to that, the agent learns the optimal
policy from actual experienced transitions by directly interacting with the stochastic environment.

The basic simulation parameters for this exercise are shown in Table 3. For analytic convenience,
we fixed the SNR value of the sensed channel at −10 dB, and thus the probabilities of detection and
false alarm are approximated as Pd ≈ 0.9 and Pf ≈ 0.1, respectively (based on the results of the
proposed CBCSS method). We assume that the SU transmits a packet of 16-byte data in every time
slot, which is equivalent to the minimum encryption block length in the AES cryptography; and the
transmission channel gain is unchanged during a time slot. It is worth noting that one packet of energy
is equivalent to 25 µJ, and each simulation was run over a thousand of time slots for several iterations
to obtain average values.

Table 3. Simulation parameters for transfer learning actor–critic (TLAC) [20].

Symbol Description Value

γi Average SNR of the sensed channel (dB) −10
PAĀ, PĀA Transition probabilities between states (A and Ā) of the primary user 0.2

Eca Battery capacity (packets) 160
Es Energy consumption for the whole spectrum sensing process (packets) 1

ENk Energy consumption for data encryption using the Advanced Encryption
Standard (AES) algorithm with key length Nk ∈ {128, 192, 256} (packets)

{4, 6, 8}

eh,avg Average harvested energy (packets) {2, 4, 6, 8, 10}
etr Average energy consumption for data transmission (packets) 40
η Discount factor 0.9
αc Critic learning rate 0.2
αa Actor learning rate 0.1

ε(0) Initial transfer rate 0.5

We first examined the convergence speed of the TLAC algorithm during the training process by
calculating the average reward received after every 1000 time slots. The average harvested energy was
fixed at eh,avg = 4 packets. As can be seen from Figure 13, there is a significant rise in the convergence
rate of the algorithm during the first 10,000 time slots of the training process; after that, the reward
keeps increasing, but at a slower speed. Finally, the algorithm converges to an optimal policy for the
SU to determine operation mode after 20,000 time slots when the reward is about 0.91.
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Figure 13. Actor–critic training convergence rate, eh,avg = 4.
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In Figure 14, we show the efficiency of the proposed scheme compared with the POMDP-based
and myopic schemes under the effect of harvested energy. As can be seen from the figure, a larger
harvested energy yields a higher reward, indicating that data are protected better. The reason is that,
if the SU can harvest more energy, it has a greater chance to operate in transmission mode, and can
transmit more data to the FC. Furthermore, the result of the proposed TLAC algorithm is better than
the myopic one and a little lower than the POMDP method. To explain this, in the myopic scheme,
the SU makes a decision on its working mode without considering the effect of this action on the future
reward. In particular, if the primary channel is found free via spectrum sensing, the SU uses too much
energy for data encryption to enhance data protection, which causes the SU to stay in idle mode over
many time slots due to limited remaining energy. Regarding the POMDP-based solution, the SU is
assumed to already have information about the harvested energy model, which is hardly ever true
in practice. As a result, by using value iteration-based programming, we can compute all possible
happening states and the corresponding occurrence probabilities to find the optimal policy beforehand.
Consequently, the SU can predict the next state of the primary user and the upcoming harvested energy
before effectively distributing the energy over future time slots. Meanwhile, employing the TLAC
algorithm requires the SU to frequently interact with the environment to determine the dynamics of
the arrival of harvested energy, which can result in a locally optimal policy [22]. In particular, the SU
makes decisions based on a predefined policy (i.e., local or immediate consideration), which is updated
at the end of every time slot, to improve future behavior without needing to have any information
about the environment’s dynamics.
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Figure 14. Average reward according to harvested energy for different data protection schemes.
POMDP: partially observable Markov decision process.

Figure 15 illustrates the channel utilization by the SU for its data communications, computed
as the ratio of the total number of successful data transmissions to the total time slots in which the
primary user is sensed as inactive. From the figure, we can see that the primary channel is utilized more
effectively when harvested energy eh,avg increases. In addition, the proposed TLAC algorithm utilizes
the free channel better than the myopic scheme about 2% of the total successful transmissions. We can
also see that the POMDP technique provides an optimal solution to the problem of the operation mode
decision. However, the TLAC solution without requiring too much effort in mathematical computation
or prior information about the environment’s dynamics can provide the SU with a locally optimal
policy that almost reaches the result of the POMDP scheme, especially when the amount of harvested
energy is large. This is because the SU can encrypt data with a longer key size (e.g., Nk = 256) by
utilizing extra energy in the battery when the average harvested energy increases. Therefore, the policy
would be updated to favor the action that gives a better reward in the future.
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Figure 15. Channel utilization according to the harvested energy for different data protection schemes.

Figure 16 depicts the total number of data packets transmitted from the SU to the fusion center
based on harvested energy under three different data protection schemes. As can be seen from the
figure, the SU can transmit more packets of data when using the TLAC algorithm, compared to the
myopic scheme. The reason is that the proposed learning scheme can allocate the harvested energy
more efficiently than the myopic one. Consequently, the SU can operate in transmission mode in
more time slots, and thus, can transmit more encrypted data packets to the FC. Meanwhile, using the
myopic scheme can cause the SU to be inactive due to lack of energy for future use. For that reason,
the proposed TLAC framework can guarantee the security level, and can effectively utilize the limited
energy resource.
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Figure 16. The number of successfully transmitted data packets according to the harvested energy for
different data protection schemes.

More specifically, in Figure 17, we present the detailed number of successfully transmitted data
packets that are encrypted using the AES algorithm with different key lengths. We can see from
the figure that the total number of data packets delivered under the TLAC algorithm is 10% higher
than when using the myopic scheme. In particular, more packets are encrypted with longer key sizes
(i.e., AES-192 or AES-256) with a rise in the arrival of harvested energy.
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Figure 17. Comparison between the proposed TLAC and the myopic schemes, based on
harvested energy.

Finally, we examine the performance of the proposed TLAC by comparing it with that of AES
algorithms with fixed key length. In the fixed key length schemes, the SU uses only one key size to
encrypt data at each time step even when it has enough energy. In Figure 18, the rewards under the
proposed TLAC and other schemes grow persistently with the increment in the harvested energy.
While the proposed solution provides the highest average reward, the fixed encryption method with
the shortest cipher key (AES-128) shows the lowest security level. The reason is that the proposed
method can efficiently allocate the energy to every time slot by estimating expected reward in the
future time slots. Meanwhile, the AES-128 algorithm always uses the lowest amount of energy for
data encryption, and thus, does not utilize the redundant energy in the SU’s battery to enhance the
security level as the arrival speed of the harvested energy increases.
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Figure 18. Reward comparison between the proposed TLAC and the fixed key-length schemes
according to the harvested energy.

On the other hand, the AES-256 uses maximum energy to encrypt data whenever the energy is
sufficient to increase data security. However, this action reduces the chance for the SU to operate in
transmission mode, which leads to low successful transmissions, as shown in Figure 19. From the
figure, we can see that the proposed TLAC provides the SU with the highest channel utilization
since the SU can transmit more data packets in comparison to other methods. This is because the
fixed encryption techniques do not utilize the energy effectively for future use. Among those fixed



Appl. Sci. 2018, 8, 722 22 of 24

encryption methods, the AES-128 with lower energy consumption allows the SU to transmit more data
packets than the AES-192 and the AES-256, but provides the SU with the lowest reward. Consequently,
we can verify that the proposed TLAC algorithm can ensure effective data communications between
the SU and the fusion center in terms of security level and channel utilization.
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Figure 19. The number of successfully transmitted data packets according to the harvested energy,
compared with the fixed key-length encryption methods.

7. Conclusions

In this paper, we propose learning-based techniques for cooperative spectrum sensing and
energy-efficient data protection in CRNs, by which the SUs can effectively utilize the primary channel
under the constraint of limited harvested energy. We first design a new CNN-based cooperative
spectrum sensing method. In this approach, the CNN is trained by using historical sensing data
collected from secondary users under various environmental conditions. At the beginning of each
time slot, the SUs individually perform spectrum sensing using an energy detection method, and then
send the local decisions to a fusion center to make a global decision about the state of the primary
user. The proposed CBCSS can increase the detection probability and remarkably reduce the sensing
error, which can also contribute to effective communications between the SUs and the fusion center.
Regarding the proposed TLAC scheme, the SU determines its operation mode based on the remaining
energy and the sensing result considering the effect of this decision on future time slots. By calculating
the expected accumulated reward from the current time slot, the SU can decide to stay in idle mode
to save energy for future use, or operate in transmission mode and transmit cypher data that are
protected by using the AES algorithm with an appropriate key length. We then present simulation
results to evaluate the performance of the proposed solutions, which show that the proposed schemes
can guarantee energy-efficient data communications in cognitive radio networks.

However, there are still some areas of the proposed learning frameworks that can be of interest for
future research. First, it is possible to improve the performance of the current CNN-based cooperative
spectrum sensing technique by modifying the structure of the input data. In addition, the local sensing
results from K secondary users, other information such as the sensed channel SNRs, sensing duration
and even the distances between the SUs and the PU can be used as the input data for the CNN to
predict the state of the primary user. Those information sources could provide the CNN with more
useful features for reducing the negative effect of the noise on the local sensing outcomes. Secondly,
with respect to the TLAC framework, it is essential to choose good learning-rate parameters that can
balance the convergence speed and the computational resource. Furthermore, the current actor–critic
framework would be further extended to apply to the problems with large or continuous domains
instead of discrete-time state space and action space.
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