
applied  
sciences

Article

Experimental Study on Dynamic Effects of a
Long-span Railway Continuous Beam Bridge

Hongye Gou 1,2, Wen Zhou 1, Yi Bao 3, Xiaobin Li 1,* and Qianhui Pu 1

1 Department of Bridge Engineering, School of Civil Engineering, Southwest Jiaotong University, Chengdu
610031, China; gouhongye@swjtu.cn (H.G.); InnocenceZZ@hotmail.com (W.Z.); qhpu@vip.163.com (Q.P.)

2 Key Laboratory of High-Speed Railway Engineering, Ministry of Education, Chengdu 610031, China
3 Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and

Technology, Rolla, MO 65401, USA; ybc86@mst.edu
* Correspondence: lixiaobin19990196@163.com; Tel.: +86-159-8238-9062

Received: 7 March 2018; Accepted: 14 April 2018; Published: 26 April 2018
����������
�������

Abstract: Studies on impact effects of trains on the railway bridge are important for ensuring
the reliability of bridge and the safety of train operation. This paper presents an experimental
study on the dynamic effects of moving trains on a long-span railway continuous beam bridge.
The dynamic responses of the bridge under the moving trains were measured through in-situ testing
and finite element analysis. The influences of the moving trains and track irregularity are considered.
The investigated influencing factors include the weight and speed of the train and the irregularity of
the track on the bridge. The results indicate that the train’s speed does not have obvious influence on
the impact factor, while train’s weight and track irregularity have notable effects on the impact factor.
But from the overall development law, with the increase of train speed, the impact factor increases.
The impact factors obtained in this study are larger than the values provided by the China bridge
design codes, which indicates that the bridge code underestimates the impact effect of the train on
the bridge. The design value of the impact factor should be properly improved in the bridge design.
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1. Introduction

When a train passes a bridge at a certain speed, there are interactions between the train and
the bridge. The dynamic behaviors of the train and bridge are coupled because of their contacts.
The coupling effect of the vehicle-bridge system may magnify the dynamic responses of the individual
train and bridge [1]. An impact factor (IM), defined as the ratio of the dynamic increment to the
corresponding static response, has been used to describe the dynamic effect of moving trains [2].
The dynamic effect of trains on the bridge is not only related to the dynamic characteristics of the
bridge, but also dependent on the trains, such as their vibration characteristics and speed, as well as
the track’s condition [3]. The IM is an indicator of the combination effect of these factors.

In the existing studies, numerical methods were widely used to investigate the dynamic
performance of the structures [4,5] and verify the accuracy of the experimental data [6]. Most researches
using numerical simulations have been conducted to study the vehicle-bridge interaction and estimate
the IM. For example, Gao et al. [7] studied the dynamic performance of the multi-span girder bridge
by establishing a program for vehicle-bridge coupled vibration analysis. The dynamic load allowance
(DLA = IM) of the bridge with different span numbers was compared, and the DLA of the three-span
bridge was found to be the biggest. Gu et al. [8] calculated the IMs for five railway bridges using a direct
integration method and investigated the correlation between vehicle speed, axle load, and impact factor.
Gou et al. [9] established a coupled vehicle–bridge vibration model to analyze the dynamic behavior
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of the bridge and they found that the dynamic response of the bridge increases with the train speed.
Majka and Hartnett [10] studied the influence of the train speed, train-to-bridge frequency, mass and
span ratios, as well as bridge damping on the dynamic amplification factor (DAF = IM + 1) of railway
bridges using the finite element method. Yin and Wei [11] investigated the dynamic effects between the
vehicle and bridge-subgrade transition zone using a three dimensional model. They found that track
irregularity can amplify the dynamic responses significantly. Lee et al. [12] studied the fatigue IM of
steel plate girder railway bridges by a dynamic analysis, and they found that the existing Korean codes
overestimated the fatigue IM. Hamidi and Danshjoo [13] conducted numerical analysis to determine
the IM for four steel railway bridges with 10, 15, 20 and 25 m span lengths. The results showed that
in most cases the calculated IM values are higher than that recommended by the relevant codes.

However, due to the complexity of the vehicle-bridge systems, some assumptions were introduced
for simplification in either the finite element analyses or the analytical studies. For this reason, in-situ
testing, whenever available, is the most reliable approach to investigate the real response of the
vehicle-bridge system and estimate the IM. For example, Gou et al. [14–16] carried out field tests
to study the dynamic effects of moving trains on various kinds of railway arch bridge, including
the long-span continuous rigid frame arch bridge, asymmetrical arch bridge and hybrid framed
arch bridge. The IM was found to be insensitive to the speed of the train, but the IM curve produced
an obvious peak at some specific speed due to resonance. Ding and Wang [17] evaluated the dynamic
load factor (DLF = IM + 1) in different members of a high-speed railway truss arch bridges using the
field monitoring data and numerical simulation data. The effects of lane position, carriage number, and
train speed on DLF were also analyzed in their study. Kaloop et al. [18] reported the bridge performance
under train speeds of 290, 360, 400 and 406 km/h by a nondestructive monitoring system. Gou et al. [19]
analyzed the dynamic response of the world’s longest steel box tied-arch bridge under moving trains
by field measurement. They found that the poor road surface roughness can greatly increase the
IM, and the train braking can also produce a larger IM. Flener and Karoumi [20] studied the actual
dynamic response of a long-span corrugated steel culvert railway bridge by measuring the strain
and displacement under moving trains. In their study, the dynamic displacement were found to be
as much as 20% larger than the corresponding static response, and the dynamic amplification factor
(DAF) obtained from the moments reached a high value of 1.45. Khan et al. [21] conducted field tests
of a prestressed concrete simply supported beam bridge subjected to two electric-multiple-unit rail
cars to determine the IMs, and the IMs were found to be insensitive to train speed and smaller than
investigated code provisions. So far, much experimental research has been conducted to study the
dynamic impact of railway arch bridges or simply supported bridges. However, fewer experimental
studies have focused on the dynamic impact effect of moving trains on railway continuous beam
bridges, especially for large-span railway continuous beam bridges with a main span of more
than 100 m.

In this study, the static and dynamic load tests of the Yexihe Bridge, which is the longest
continuous-girder, high-speed railway bridge in China, were carried out to investigate the dynamic
responses of the bridge under design moving loads. In the field test, one or two freight trains passed
through the bridge at constant speeds. The impact factors for the deflections and strains of the bridge
were measured in different loading scenarios and compared. A finite element model was established
to analyze the influence of the train’s speed and type, and track irregularity.

2. Description of the Bridge

The Yexihe Bridge is a three-span prestressed concrete continuous bridge with a layout of
70 + 108 + 70 m, as shown in Figure 1a. The heights of the three piers are 93.5 m, 93.5 m, and 54 m,
respectively. In the longitudinal direction of the bridge, the girder has non-uniform cross sections,
as illustrated in Figure 1b. The height of the girder is 8 m on top of the Piers 1 and 2, and 4.5 m
at the mid-span of the central span. The bridge deck measures 10.7 m in width and is composed
of an 8.4 m ballast groove and two 1.15 m walkway on each side. The bottom flange of the box



Appl. Sci. 2018, 8, 669 3 of 17

girder measures 5.7 m in width. The bridge has two parallel train lines. The design speed is 160 km/h
for passenger trains and 90 km/h for freight trains.
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Figure 1. The Yexihe Bridge (unit: cm): (a) elevation view; (b) cross sections of A-A to C-C.

3. Experiment Setup

3.1. Loading Configurations

The parameters of the train loads are determined from the prototype of trains on the
Yichang-Wanzhou railway line. The test train was composed of 2 locomotives and 14 carriages.
The type of locomotives included the HXD3 and HXD3C. The type of carriages included the C62AT,
C62BK, C64T, C64K, and C70. The weight of HXD3/HXD3C is 138 t, and the deadweight/carrying
capacity of C62, C64, and C70 are, 22.3 t/64 t, 22.7 t/64 t, and 23.8 t/70 t, respectively. The total weight
and length of a freight train is 1544.6 t and 234.1 m. The schematic diagrams of the axle load of the
trains are shown in Figure 2.

According to the symmetry of the bridge, the left half span of the structure was selected to install
the measuring instrument. The static test was carried out to determine the load efficiency factors which
is a ratio of measured load effect to calculated load effect under design loads and can be used to evaluate
the elastic working performance and load carrying capacity of the bridge. Two loading methods were
used in the static tests, which are the single-line partial loading and double-line symmetrical loading.
The longitudinal train position was determined to yield the maximum moment at the test sections.
Three loading cases were investigated: (1) maximum positive moment at Section A-A; (2) maximum
negative moment at Section B-B, and (3) maximum positive moment at Section C-C. The loading
position of each case is shown in Figure 3.
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Figure 3. Loading cases of static tests (unit: cm).

Two types of dynamic tests were conducted, which are the pulsation test and driving test.
The objectives of the pulsation tests were to investigate the natural frequencies, mode shapes, and
damping ratio of the bridge. The objectives of the driving tests were to investigate the dynamic
responses of the train-bridge system. Either one train or two trains moving in the opposite directions
passed through the bridge at constant speeds of 5, 20, 40, 60, and 80 km/h, respectively. The dynamic
strain, displacement and acceleration of selected sections were measured under Case 1 (Single line)
and Case 2 (Double line), respectively. The dynamic loading cases are shown in Figure 4.
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3.2. Instrumentation

Three critical sections of the bridge were selected, which were the Sections A-A, B-B, and C-C,
as shown in Figure 1a. In each section, nine electrical resistance strain gauges were deployed at the
lower edge of top plate and the upper edge of bottom plate, respectively; four strain gauges were
deployed at the web plate of each test section. In total, 39 strain gauges were deployed on the girder.

In addition to the strain gauges, four linear variable differential transformers (LVDTs) were
installed at both sides of the Sections A-A and C-C, as shown in Figure 1. Two triaxial accelerometers
were installed at Sections B-B and C-C, as shown in Figure 1a. The sensors data were collected using
a UCAM-70A (Kyoto Yuqi Corporation, Osaka, Japan) data recording system. The dynamic data
were collected using a DEWE-BOOK (Dewetron Co. Ltd., Graz, Austria) data acquisition system,
IotechDaqBook/216 (National Instruments Corporation, Austin, TX, USA) data acquisition system,
and DDS-64 (Cheung Kong Union, Beijing, China) data acquisition system. The data acquisition
frequency was 100 Hz.

4. Field Test Results

4.1. Static Test Results

For each loading case, the specific weight and marshalling of the train were calculated according
to the most unfavorable loading case [22]:

0.8 ≤ η =
Sst

Sδ
≤ 1.0 (1)

where η denotes the load efficiency factor; Sst is the calculated value of internal force or deformation
under test load; S is the calculated value under design load; δ is the design dynamic impact factor [23].

Figure 5a,b respectively show the results of the maximum moments of the Sections A-A, B-B,
and C-C under the most unfavorable loading case and the load efficiency factor. The test result of
the moment was calculated by the measured stress and the cross sectional moment of inertia, and the
calculated result of the moment was obtained by the finite element method. Figure 5a shows that the
absolute values of the calculated moment are larger than the test results. The mean load efficiency
factors in Figure 5b are smaller than 0.8, which indicates that the stiffness of the bridge is smaller than
that of the original design. Figure 5b shows that the stiffness reduction of the girder section of the side
span is the most significant, while the girder section located in the central span and near the pier has a
stiffness comparable with that of the design.

The load efficiency factors of Sections A-A and C-C calculated from deflections under different
loading cases are compared in Figure 6. The load efficiency factors of Section A-A are larger than that
of Section C-C in all the three loading cases, which shows that the elastic working performance of
Section A-A is better than that of Section C-C. The same section under different loading cases has
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different load efficiency factors, indicating that the loading position affects the dynamic responses.
The largest load efficiency factor appears in the most unfavorable loading case of each section, which
shows that the loading effect of loading vehicle on the section near the loading position is greater. The
load efficiency factors of the Sections A-A and C-C are less than 0.8. The reason can be that the bridge
structure has a permanent deflection under the long-term load, which reduces the elastic deformation
capacity of the bridge. Thus the measured deflection is less than the calculated deflection, resulting in
the low load efficiency factor.
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Figure 5. (a) Maximum moment of each section under the most unfavorable loading case;
(b) Experimental results of the load efficiency factor.
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Figure 6. Load efficiency factors of Sections A-A and C-C in different loading cases.

4.2. Dynamic Test Results

Digital filtering, average processing and discrete Fourier transform of time domain signals were
carried out to get the amplitude spectrum (or power spectrum) and phase spectrum of each pick-up
point. Then, the multiple natural frequencies can be obtained in each direction of the structure.
As shown in Figure 7, the experimental results of the transverse and vertical frequency peaks are
0.769 Hz and 1.567 Hz, respectively. The calculated first transverse and vertical frequencies are 0.735 Hz
and 1.489 Hz, respectively. The maximum discrepancy between the calculated and experimental
results of the fundamental frequencies is less than 5%, suggesting that the finite element model provide
reasonable prediction of the frequencies.
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Figure 7. Frequency spectrum of the bridge structure: (a) transverse vibration; (b) vertical vibration.

The first five mode shapes are shown in Figure 8. The first order vibration mode is the longitudinal
bending vibration of the fixed pier, and the first natural frequency is 0.433 Hz, which indicates that the
bending stiffness of the main pier is low. The second and third order modes are the transverse bending
vibration of the main girder, while the vertical bending vibration lag appears in the fourth order mode,
which indicates that the transverse stiffness of the bridge is weaker than the vertical stiffness. Based on
the vibration attenuation curve measured by driving test, the damping ratio of the bridge structure
can be calculated according to the following formula:

Dr =
1

2mπ
ln

Ai
Ai+ m

(2)

where Dr denotes the damping ratio; m denotes the number of cycles; Ai denotes the amplitude of
the ith waveform of the vibration attenuation curve. The damping ratios for the first transverse and
vertical modes are 0.0015 and 0.0036, respectively.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 16 

Figure 7. Frequency spectrum of the bridge structure: (a) transverse vibration; (b) vertical vibration. 

The first five mode shapes are shown in Figure 8. The first order vibration mode is the 

longitudinal bending vibration of the fixed pier, and the first natural frequency is 0.433 Hz, which 

indicates that the bending stiffness of the main pier is low. The second and third order modes are the 

transverse bending vibration of the main girder, while the vertical bending vibration lag appears in 

the fourth order mode, which indicates that the transverse stiffness of the bridge is weaker than the 

vertical stiffness. Based on the vibration attenuation curve measured by driving test, the damping 

ratio of the bridge structure can be calculated according to the following formula: 

𝐷𝑟 =
1

2𝑚𝜋
𝑙𝑛

𝐴𝑖

𝐴𝑖+𝑚
 (2) 

where Dr denotes the damping ratio; m denotes the number of cycles; Ai denotes the amplitude of the 

ith waveform of the vibration attenuation curve. The damping ratios for the first transverse and 

vertical modes are 0.0015 and 0.0036, respectively. 

  

50 100 150 200 250

-100

-80

-60

-40

-20

X

ModeShape1

Z

(a) 

0 50 100 150 200 250-5
0
5

X

ModeShape2

Y

(b) 

0 50 100 150 200 250-5
0
5

X

ModeShape3
Y

(c)  

   (d)
0 50 100 150 200 250

-100

-80

-60

-40

-20

X

ModeShape4

Z

(e)

0 50 100 150 200 250

-100

-80

-60

-40

-20

0

X

ModeShape5

Z

 

Figure 8. Natural frequencies and corresponding vibration modes: (a) Longitudinal bending of fixed 

pier (f = 0.433Hz); (b) 1st transverse bending (f = 0.769Hz); (c) 2nd transverse bending (f = 1.026Hz); 

(d) Longitudinal bending of pier 2# (f = 1.191Hz); (e) 1st vertical bending (f =1.567Hz). 

5. Analysis of Impact Factors 

5.1. Definition of Impact Factor 

The impact factor (IM) is calculated based on dynamic and static responses (strain or deflection) 

of the bridge structure, which is defined as following: 

IM =
𝑅𝑑𝑦𝑛 − 𝑅𝑠𝑡

𝑅𝑠𝑡
 (3) 

where Rdyn is the maximum dynamic response; Rst is the maximum static response. 

The dynamic responses of different bridge sections were used for studying the IMs, including 

the deflection control section of the side span (A-A), the middle pivot Section (B-B), and the mid-

section in the central span (C-C). A total of 8 strain measuring points on the cross sections B-B and C-

C, marked from P1 to P8 in Figure 1b, were selected as the reference points for the IMs. These four 

Figure 8. Natural frequencies and corresponding vibration modes: (a) Longitudinal bending of fixed
pier (f = 0.433 Hz); (b) 1st transverse bending (f = 0.769 Hz); (c) 2nd transverse bending (f = 1.026 Hz);
(d) Longitudinal bending of pier 2# (f = 1.191 Hz); (e) 1st vertical bending (f =1.567 Hz).
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5. Analysis of Impact Factors

5.1. Definition of Impact Factor

The impact factor (IM) is calculated based on dynamic and static responses (strain or deflection)
of the bridge structure, which is defined as following:

IM =
Rdyn − Rst

Rst
(3)

where Rdyn is the maximum dynamic response; Rst is the maximum static response.
The dynamic responses of different bridge sections were used for studying the IMs, including the

deflection control section of the side span (A-A), the middle pivot Section (B-B), and the mid-section in
the central span (C-C). A total of 8 strain measuring points on the cross sections B-B and C-C, marked
from P1 to P8 in Figure 1b, were selected as the reference points for the IMs. These four pairs of points
(P1 and P2, P3 and P4, P5 and P6, P7 and P8) are symmetrically arranged to the longitudinal axis of
the bridge. To calculate the IM, the maximum dynamic response was obtained by taking the maximum
value of the measured dynamic response; the static response was obtained by carrying out a static test
where trains move across the bridge at a crawl speed. As shown in Figure 9, the Rdyn is the maximum
dynamic deflection response when two freight train run on the bridge at a speed of 80 km/h, and the
Rst is the maximum value of deflection response when two freight trains run on the bridge at a speed
below 5 km/h.
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Figure 9. Comparison of time history curves of the static and dynamic deflection when two freight
trains run on the bridge.

5.2. Impact Factor Calcalated from Experrimental Deta

The IMs calculated from deflections are given in Figure 10. The IMs of the Section A-A are greater
than that of Section C-C. The reason is that the static and dynamic deflections of the deflection control
section of the side span is smaller than those of the mid-section in the central span. Because the
IM is the ratio of a dynamic increment to the static response and it can also be large when the
increment is not large but the denominator (the static response) is small. By comparing the results of
Figures 10b and 11a, it can be concluded that the IM calculated from deflections is smaller than the IM
calculated from strains. This finding is consistent with the conclusions of some existing studies [24,25].
However, some researchers presented different opinions that the IM calculated from deflections is
greater than that calculated from strains [26,27]. Therefore, it is not reasonable to assign the same IM
for different load effects.
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Figure 10. Impact factors calculated from deflections: (a) Section A-A; (b) Section C-C.
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Figure 11. Impact factors calculated from strains of test points: (a) P1/P2; (b) P5/P6; (c) P3/P7; (d)
P4/P8.

As shown in Figures 10 and 11, the IMs obtained from the Case 1 (Single line) are larger than those
from the Case 2 (Double line). Many studies have reported the same findings [28,29]. Furthermore,
some studies [30] pointed out that the IMs of the bridge part subjected to smaller vehicle loads are
usually greater than those of the bridge part subjected to larger vehicle loads. The same conclusion that
the IMs of the loading side are smaller than those of the other side with one lane loaded, can be obtained
by comparing the IMs of the two pairs of points symmetrically arranged about the longitudinal axis
of the bridge in Figure 11a,b. As shown in Figure 11c,d, the IMs of Section C-C are greater than that
of Section B-B, which suggests that the impact effect of moving trains on the section in central span
is greater than the impact effect of moving trains on the section near support point. The dynamic
test results at different speeds show that the IM is not sensitive to the train speed. Unexpectedly,
the maximum IM is obtained at the speed of 20 km/h, which is even greater than the IM obtained at
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the speed of 80 km/h. One possibility is that the loading frequency approaches the natural frequency
of the bridge and the quasi-resonance of the train-bridge system occurs when the train passes the
bridge at a speed of 20 km/h.

The time history curves of the left strain test point at the lower edge of the mid-section in the
central span (P1) with one train running on the bridge at different speeds are given in Figure 12.
A train running at 20 km/h causes the greatest dynamic strain of point P1 among all test speeds, which
suggests that the quasi-resonance is likely to occur at a speed of 20 km/h compared with other speeds.
When one lane is loaded, the mean and maximum IMs of Section B-B are 0.13 and 0.17, respectively,
and the mean and maximum IMs of Section C-C are 0.15 and 0.19, respectively. When two lanes are
loaded, the mean and maximum IMs of Section B-B are 0.10 and 0.15, respectively, and the mean
and maximum IMs of Section C-C are 0.11 and 0.14, respectively. The ultimate IM obtained from the
dynamic tests is 0.19, which appears at the lower edge of the mid-section in the central span with a
train speed of 20 km/h.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 16 
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5.3. Comparison with the Bridge Design Code in China

According to the fundamental code for design on railway bridge and culvert in China [23], the
design impact factor of the continuous beam bridge can be calculated by the Equation (4):

IM = (1− h)
(

24
30 + L

)
(4)

where h is the filling thickness, L is the bridge span. The IM obtained by the above formula is 0.087.
The comparison between the maximum IM from experimental data and the IM from bridge code is
shown in Table 1. It can be seen that the IMs obtained from the experimental data are greater than that
obtained from the specification, which shows the bridge code underestimates the dynamic effect of
the train. The reason may be that bridge specifications only consider the influence of bridge span on
the impact factor, and in fact, the impact factor is also affected by factors such as the train speed and
the track condition.

Table 1. Comparison between the IM from experimental data and the IM from bridge code.

Location
IM from Experimental Data

IM from Bridge Code
Deflection IM Strain IM

Section A-A 0.110 — 0.087
Section B-B — 0.17 0.087
Section C-C 0.070 0.19 0.087
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6. Finite Element Model

6.1. Brideg Model

Finite element analysis is performed to help understand the experimental results, and study the
impact effect of trains running at high speeds on the bridge, as will as the impact effect of different types
of vehicles on the bridge. The FE model for the dynamic impact analysis of the high-speed train-bridge
system was formed and embedded in the popular finite element software ANSYS (ANSYS Inc.,
Pittsburgh, PA, USA) [31]. A finite element model of the Yexihe Bridge is established by the software
MIDAS (POSCO E&C, Pohang-si, Korea), as shown in Figure 13. The main girder, pier and pile
foundation are simulated by beam element. According to the actual geological conditions, the length of
the pile foundation takes the actual length. For all piers, the lateral and vertical relative displacement
between the pier top and main beam is restrained. Pier 1 is a fixed bearing, and the longitudinal
relative displacements between Pair 1 and main beam is restrained. The main girder is meshed by
268 (finest mesh) elements can give us optimal combination of accuracy and efficiency. The piers and
the pile caps are divided into 47 (coarsest mesh) elements, and the pile foundation is divided into
48 elements. The materials of the main girder, the pier and the pile foundation are the C55, C25, and
C30 concrete, respectively. The elastic modulus of the C55, C25, and C30 concrete are 36, 30, and 32 GPa,
respectively. The Poisson ratio and unit weight of the concrete are 0.2 and 25 kN/m3, respectively.

The vibration equation of the bridge can be expressed as:

[Mb]
{ ..

Xb

}
+ [Cb]

{ .
Xb

}
+ [Kb]{Xb} = {Fb} (5)

where [Mb], [Cb] and [Kb] are the mass, damping, and stiffness matrices of the bridge, respectively;{ ..
Xb

}
,
{ .

Xb

}
and {Xb} are the nodal acceleration, velocity, and displacement vectors of the bridge,

respectively; {Fb} is the external force vector acting on a bridge. Rayleigh damping was adopted in
the finite element model.
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6.2. Vehicle Model

In order to compare the impact effect of different train types on bridges, the finite element analysis
of freight train-bridge system and passenger train-bridge system was carried out. The parameters of
freight trains are the same as the parameters of the test train. Passenger trains consist of 2 locomotive
(SS8) and 19 carriages (25B semi-cushioned coach). The weight of SS8 is 88 t and the weight of each
carriage is 44.7 t. Each carriage has a capacity of 128 people, and the average weight per person is
assumed to be 80 kg, which is defined from China’s Ministry of Railways in 2001. The total weight
and length of a passenger train is 1220 t and 517 m. The axle spacing of the carriage is 25.5 m. In the
analysis, it is assumed that the carbody, bogie and wheelset are symmetrical rigid bodies, and all of
them are micro vibration, regardless of the nonlinear characteristics of suspension components (spring
and damping). The body and each bogie are simplified to have 5 DOFs (Degree of Freedoms), which
are the yawing, vertical settlement, rolling, shaking and nodding. For each wheel-set, yawing, vertical
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settlement, rolling, and shaking motions are considered. In total, each 4-axis vehicle has 31 DOFs as
shown in Figure 14.

Based on the theory of multi-body dynamic system, the dynamic equation of the vehicle can be
expressed as:

[Mv]
{ ..

Xv

}
+ [Cv]

{ .
Xv

}
+ [Kv]{Xv} = {Fv} (6)

where [Mv], [Cv] and [Kv] are the mass, damping, and stiffness matrices of the vehicle, respectively;{ ..
Xv

}
,
{ .

Xv

}
and {Xv} are the acceleration, velocity, and displacement vectors of the vehicle,

respectively; {Fv} denotes the exciting force vector.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 16 
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Figure 14. The 31-DOF model of a carriage.

6.3. Track Irregularity

The vibration of the bridge will cause the vibration of the track on the bridge. In order to simplify
the calculation, the elastic vibration of the track relative to the bridge is ignored. The track and
bridge are considered as a whole and the dynamic characteristics of the track are not considered.
The following four cases are considered to calculate the track irregularity: (1) the vertical elevation
deviation of the central line; (2) the transverse position deviation of the center line; (3) the gauge
deviation between the left and right rail; (4) the vertical elevation deviation of the left and right rail.
Referring to the sixth grade track irregularity power-spectral-density of US railways, the samples
of level track irregularity and direction track irregularity are simulated by the trigonometric series
approach, as shown in Figure 15.
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Figure 15. Simulation sample of track irregularity: (a) transverse; (b) vertical.
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6.4. Train-Bridge Interation

The vehicle subsystem and the bridge subsystem are coupled through the wheel rail contact
relationship. Hertz’s nonlinear theory [32] is employed for wheel-rail contact in the model. The normal
contact force between wheel and rail is determined by the Hertz nonlinear elastic contact theory
and the tangential contact force between wheel and rail is determined by the Kalker linear creep
theory [33]. According to the consistency between the force (displacement) of the wheel rail contact
point and the force (displacement) of the bridge node, and considering the track irregularity, the
coupling relationship between the vehicle and the bridge can be obtained as follows:[

Mb −Mb 0
0 Mv

][ ..
Xb..
Xv

]
+

[
Cb − Cb −Cv

−Ĉb Cv

][ .
Xb.
Xv

]
+

[
Kb −Kb −Kv

−K̂b Kv

][
Xb
Xv

]
=

[
Fb
Fv

]
(7)

where Mb, Cb, Kb, Ĉb, and K̂b are related to the vibration state of the bridge and vehicles. The force
vector is F. Subscripts b and v denote the bridge and vehicle.

6.5. Model Validation

As an example of verifying the model, Figure 16 gives the comparison of numerical and measured
deflection histories at the mid-span of the central span subjected to one freight train traveling on the
bridge at 80 km/h. The trends and values of the two curves are very consistent, which shows that
the model is better for simulating the field test conditions. The reason for the error of the experimental
results and the numerical results may be that the residual deformation caused by the long-term work
of the actual bridge weakens its elastic working performance. Moreover, the two curves are all smooth,
which indicates that the impact effect of moving train on bridge deflections is small.
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Figure 16. Comparison of numerical and measured deflection histories at the mid-span of the central
span with one freight train passing through the bridge at 80 km/h.

7. Analysis of Dynamic Effects of Train–Bridge System

The variation law of bridge vertical vibration with train speeds and the resonance speed of
the train-bridge system can be obtained by vibration analysis of the bridge under moving load.
The calculated speed range is 5–150 km/h for the freight train and 10–200 km/h for the passenger train.

Figure 17 shows the IMs calculated from deflections (without considering the track irregularity)
with one freight train (or passenger train) traveling on the bridge. There are several peaks in the
IM curves, and the peaks of the side span and central span appear at different positions, which
shows that the resonance may occur at multiple speeds when the train is traveling on the bridge
and the resonance of each span of the continuous beam bridge occur at different loading condition.
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The impact factor curves of the two side spans are consistent, while the impact factor curves of the
side span and the central span are different. This phenomenon shows that the long-span continuous
bridge cannot maintain the continuity of its deformation, especially under instantaneous impact load.
Each span of the continuous bridge acts as a simply supported beam. The subtle difference between
the IMs of two side spans indicates that the impact effects of the train entering the bridge from
different directions on the bridge are different. Moreover, the maximum IMs of the side span are
slightly higher than those of the central span. Thus, for three-span continuous bridge, the impact
effects of moving trains on the central span are less than the impact effects of moving trains on the
side spans. Furthermore, the IMs of the bridge under the moving passenger train is larger than those
under the moving freight train. The reason is that, although the total weight of the freight train
is less than that of the passenger train, the axle load of the freight train is greater than that of the
passenger train. Meanwhile, the freight train has a shorter axle spacing, so that the maximum weight
of the passenger train loaded on the bridge is less than the maximum weight of the freight train loaded
on the bridge. Therefore, the freight train causes greater load effects and the passenger train causes
greater impact effects, which is consistent with the experimental results. Another interesting finding is
that although the IM does not increase obviously with the increase of the train speed, the peak values
of the IM at high speeds are significantly greater than those at low speeds. Figure 17 shows a weak
correlation between the IM and the train speed. But, there exists a linear increasing trend from the
overall development trend of the IM with the increase of train speed [17,28]. When a freight train
crosses the bridge at a speed of 145 km/h, the bridge has a maximum IM of 0.05. When a passenger
train crosses the bridge at a speed of 185 km/h, the bridge has a maximum IM of 0.12. The maximum
value appear in the mid-span of the right span.
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Figure 17. Impact factors calculated from deflections (track irregularity is not considered) under:
(a) one freight train; (b) one passenger train.

Figure 18 shows the IMs calculated from deflections with considering the track irregularity.
It can be seen that the track irregularity has significant influence on the calculated value of the IMs
by comparing Figures 16 and 18. The calculated values of the IMs with consideration of the track
irregularity are larger than that without consideration of the track irregularity, especially when the train
is running at high speeds. Moreover, after considering the track irregularity, the location of the peak of
the IM curve has changed, which indicates that the track irregularity will influence the occurrence of
train-bridge resonance. As Wang and Jiang [3] reported, the resonance of the vehicle-bridge system is
determined by the vehicle speed, the road roughness, and the bridge frequency. Therefore, multiple
factors should be taken into account when analyzing the impact effect of moving trains on the bridge.
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Figure 18. Impact factors calculated from deflections (track irregularity is considered) under: (a) one
freight train; (b) one passenger train.

8. Conclusions

In this study, an evaluation of dynamic effects for a long span high-speed railway continuous beam
bridge was carried out using the deflection and strain data from field tests and finite element analysis.
The following conclusions are drawn:

• The IMs from one train running on one track is greater than that from two trains running on
two tracks. The average value of IMs of the central span is 0.15 under one running train condition
and 0.11 under two running trains condition. A peak IM (0.19) occurred when one train travelled
on the bridge at 20 km/h, which suggests that a resonance occurred. The IM is insensitive to
the train speed. But from the overall development law, with the increase of train speed, the
IM increases. The weight of vehicles has a significant influence on the IMs. The IM decreases
with the increase of the weight of vehicles. Meanwhile, the IMs were found to depend strongly
on the track irregularity, the track irregularity will greatly increase the IMs. Resonance may
occur at multiple speeds, and will be affected by the track surface conditions. The IM calculated
from deflections is smaller than the IM calculated from strains. So it is not reasonable to assign
the same IM for different load effects. The IM calculated from strains reflects the local dynamic
performance of the structure, and the IM calculated from deflections reflects the overall dynamic
performance of the structure.

• The IMs obtained by experimental and numerical analysis are greater than the design value
specified in the bridge code, which indicates that the bridge code underestimates the impact effect
of the train on the bridge. Therefore, the authors recommend the design value of the IM should be
properly improved in the bridge design. Because the long-term operation of the bridge will lead
to the deterioration of the track surface conditions, and the train-bridge interaction will be more
intense, which may seriously aggravate the impact of train on bridges. Thus maintaining good
track surface conditions is very important for ensuring the safe operation of bridges. Moreover,
when a component of bridge structures needs to be independently designed, the strain IM should
be adopted.
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