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Abstract: Many swarm intelligence optimisation algorithms have been inspired by the collective
behaviour of natural and artificial, decentralised, self-organised systems. Swarm intelligence
optimisation algorithms have unique advantages in solving certain complex problems that cannot
be easily solved by traditional optimisation algorithms. Inspired by the adaptive phenomena of
plants, a novel evolutionary algorithm named the bean optimisation algorithm (BOA) is proposed,
which combines natural evolutionary tactics and limited random searches. It demonstrates stable
behaviour in experiments and is a promising alternative to existing optimisation methods for
engineering applications. A novel distribution model for BOA is built through research and study on
the relevant research results of biostatistics. This model is based on a combination of the negative
binomial and normal distributions, and the resulting algorithm is called NBOA. To validate NBOA,
function optimisation experiments are carried out, which include ten typical benchmark functions.
The results indicate that NBOA performs better than particle swarm optimisation (PSO) and BOA.
We also investigate the characteristics of NBOA and conduct a contrast analysis to verify our
conclusions about the relationship between its parameters and its performance.
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1. Introduction

Swarm intelligence was first proposed by Gerardo Beni and Jing Wang of the University of
California in 1989. It was used in cell robots, and focuses on the behaviour and control of groups
based on bio-intelligence theory and methods [1]. In the early 1990s, swarm intelligence algorithms
were proposed that simulate the cooperative behaviour of groups of social animals. The core concept
of swarm intelligence is that swarms composed of simple individuals can achieve more complex
functions simply by cooperating with each other. Therefore, it is possible to solve complex distributed
problems using swarm intelligence, which works on the premise of there being no centralised control
and no global information or models.

Unlike the classical optimization algorithm using deterministic rules, the swarm intelligence
algorithm lets individuals search in the solution space simultaneously by using the probability
transfer mode and a variety of random factors combined with metaheuristic rules. Research has
produced increasing numbers of swarm intelligence algorithms, such as particle swarm optimisation
(PSO) [2], ant colony optimisation (ACO) [3], the artificial fish-swarm algorithm [4], the free search
algorithm [5], the human evolution model algorithm [6], the group search optimisation algorithm [7],
the bees algorithm [8], bacterial foraging optimisation [9], the shuffled frog leaping algorithm [10],
the fireworks algorithm [11], information feedback models [12], evolutionary multi-objective
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optimization algorithms [13], the krill herd algorithm [14,15], the harmony search algorithm [16],
monarch butterfly optimization [17], the moth search algorithm [18], and cuckoo search [19]. Because
biological structures are sophisticated, they have high degrees of adaptive capacity and strong
collaborative capabilities, both in terms of evolution and behaviour [20]. The swarm intelligence
algorithm is generally coordinated by a group of individuals (social insects, or particles). It has the
ability to communicate (directly or indirectly) and interactively adapt to the environment so that
the individual’s adaptability to the environment becomes better and better, and a good approximate
solution is gradually obtained for the global optimal solution to the problem. Presently, because of
its high scalability and flexibility, researchers have applied swarm intelligence algorithm to many
areas, such as scheduling [21], parameter estimation [22], multi-robot systems [23], and feature
selection [24]. However, many bionic swarm intelligence algorithms need to set strict working
conditions, such as the need to set a large number of individual behavior parameters (speed, inertia
weight, acceleration coefficient, pheromone volatilization factor and intensity, etc.), the need to provide
the initial location [25], and so on. Only by knowing these parameters very well can one attain the
optimal performance of the algorithm. In addition, some bionic swarm intelligence algorithms have
high computational complexity, which requires a high computational cost [26]. Therefore, the swarm
intelligence algorithm is still a hot research area. A large number of researchers are engaged in swarm
intelligence research and actively apply the latest research results of swarm intelligence in application
areas. Not only does the animal population have swarm intelligence, but the plant population in
nature also has swarm intelligence.

In 2006, inspired by the spatial pattern of plants in nature, a swarm intelligence algorithm called
the bean optimisation algorithm (BOA) was proposed. Its main optimization mechanism is the spatial
pattern model of plants and the elite beans selection mechanism, which is different from the existing
bionic swarm intelligence algorithm. For example, in most wild leguminous plants, when the beans
mature, the dry and hard pods burst in the sun, and the seeds are ejected around the plants. Most of
the seeds will be distributed near the plants, and some of them will go far away or away from
the plants for external reasons. Then, the seed will grow and grow in the area where it descends.
Some will grow strong and produce more seeds, indicating that the land is very fertile; some may
soon be eliminated by nature, indicating that the area in which it is located is not suitable for plant
growth. Over time, a large number of plants will be gathered in the fertile plots, and there will be no
plants in the barren land. Based on this idea, the piecewise function model was proposed publicly
in 2008 [27]. Afterward, the spatial pattern model based on normal distribution was proposed [28].
The experiments and analysis of BOA based on normal distribution were also carried out. At the
same time, researchers began to apply BOA on the rank of post-disaster reconstruction project [29,30].
In 2011, the Markov chain model of the BOA algorithm was proposed. Based on this model, it is
proved that BOA will converge to the global optimal solution with probability 1 [31]. In 2012, the idea
of population migration and optimal information cross-sharing was proposed, and it helped the BOA
algorithm to solve discrete optimization problems. The contrast experiment of solving the typical
TSP with PSO was finished; it verified the effectiveness of this discrete BOA, and it expands the
application field of BOA [32,33]. In 2015, the dynamic BOA algorithm was proposed and applied to
solve two kinds of classic dynamic optimization algorithms [34]. In 2017, the chaotic BOA algorithm
was proposed and improved the search efficiency and global optimization ability of BOA [35]. BOA has
demonstrated stable, robust behaviour in experiments and stands out as a promising alternative to
existing optimisation methods for engineering designs or applications.

2. Introduction to Population Distribution Patterns

Population distribution patterns are very important in research on population ecology. They show
the long-term outcomes of a population’s biological adaptation to its environment [36]. The main types
of population distribution patterns include random, regular, and contagious distributions [37].
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2.1. Random Distribution

In this type of population distribution, there are no relationships between individuals or groups.
The probabilities of each individual occurring in a given position are equal.

Previous studies have shown that random distributions are rarely seen in nature, mainly because
organisms are always influenced by their environments. Groups of organisms rarely arise regularly in
a large living space. Random distributions in nature may be found in extremely bad environments or
where the dominant environmental characteristics are distributed randomly.

2.2. Regular Distribution

This type of distribution occurs when a population’s individuals are distributed
equidistantly in space. Studies have shown that regular distributions are very rare in nature.
Regularly-distributed populations mainly occur where there is competition for limited resources
or a self-poisoning phenomenon. Generally, natural regular distributions can be modelled as positive
binomial distributions.

2.3. Contagious Distribution

A contagious distribution is also known as a clumped, aggregated, or hyper distribution. This type of
distribution of biological communities is characterised by individuals being gathered or clustered into
groups of high density. Although the sizes of the sub-populations and the separation distance between
every individual are always different, there is a contagious distribution within each sub-population.
In nature, plant populations generally have contagious distributions. In nature, contagious distribution
patterns mainly occur when [37]:

• The distance between a plant and its seeds (fruits) is limited due to gravity;
• The environment has spatial heterogeneity;
• There are interspecific relationships.

A contagious distribution is usually modelled by a normal distribution [38], negative binomial
distribution, Neyman distribution [36], or Polya-Eggenberger distribution. This paper proposes
a two-stage mixed-distribution model of the BOA that takes advantage of normal and negative
binomial distributions.

2.4. Overview of the Negative Binomial Distribution

The negative binomial distribution is a kind of contagious distribution. Suppose there is a
sequence of independent Bernoulli trials, with each trial having two potential outcomes called “success”
or “failure”. In each trial, the probability of success is p and that of failure is (1 − p). This sequence
is observed until a predefined number r of successes has occurred. Then, the random number of
successes having been observed, f, will have a negative binomial distribution of the form:

f (k, r, p) =

(
k + r− 1

r− 1

)
.pr.(1− p)k, (1)

It is possible to extend the definition of the negative binomial distribution to the case of a positive
real parameter r. Although it is impossible to visualise a non-integer number of failures, the distribution
can be defined formally through its probability mass function.

The main parameters of negative binomial distributions are shown in Table 1.
The negative binomial distributions are relatively common in the distribution of spatial

distribution pattern of plants. It can be used to describe aggregations of individuals in biological
populations (such as clusters or swarms). The spatial distributions of a large proportion of plants are
often negative binomial distributions due to environmental heterogeneity and biological clustering in
nature [36].
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Table 1. Parameters of negative binomial distributions.

Parameters r > 0
0 ≤ p ≤ 1

Support k ∈ {0, 1, 2, . . .}

Mean r. (1−p)
p

Variance r. (1−p)
p2

3. Population Distribution Model Based on a Mixed Distribution

The main idea of the population distribution model based on a mixed distribution is that each
individual offspring distributes around a father “bean” according to the mixed distribution. In the
mixed distribution model, we combine the negative binomial distribution model with the normal
distribution model. The threshold of population reproduction should be set first. Before reaching the
threshold value, the bean population will multiply in line with the normal distribution. Otherwise,
it will multiply in line with the negative binomial distribution. The number of successes of the negative
binomial distribution that the distribution pattern of individuals uses is dependent on the value
of the current father bean’s position. The setting of corresponding probabilities of success changes
dynamically according to the domain of the target problem and its solving progress. If the number
of successes is set as the value of the current father bean’s position, the corresponding probability of
success can be set as 0.5. Similarly, the worse the results of the father bean become, the smaller the
population size of the corresponding offspring.

The flowchart for offspring generation by parent beans is shown as Figure 1 as follows:
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In our experiments, the negative binomial distribution function nbinrnd (R, P) in MATLAB is
used, in which parameter R is the number of successes, and P is the probability of success in a single
trial. Both R and P may be vectors, matrixes, or multidimensional arrays with the same dimension.
Some preliminary experimental results have been published in the ICSI conference proceedings [39].

To generate offspring individual beans according to a negative binominal distribution,
the following process should be followed:

R = abs(FthPop(1,:) × (100/FthPop(1))) (2)

Parameter P can be set as a random real number in [0, 1], theoretically, but it is better to set P
according to the problems to be solved. In the experiments contained in this paper, P is set at 0.5,
because the number of successes is set to the value of the current parent bean’s position. The code of
the population distribution model is described as follows:

for NumPop = 1:sizepop
if (NumPop ~= FthIndex(1) && NumPop ~= FthIndex(2) && NumPop ~= FthIndex(3))

if NumPop <= sizepop*7/10
pop(NumPop,:) = nbinrnd(abs(FthPop(1,:)*(100/FthPop(1))),pnbrnd)/(100/(FthPop(1)));

elseif NumPop > sizepop*7/10 && NumPop <=sizepop*9/10
pop(NumPop,:) = nbinrnd(abs(FthPop(2,:)*(100/FthPop(2))),pnbrnd-0.1)/(100/(FthPop(2)));

else
pop(NumPop,:) = nbinrnd(abs(FthPop(3,:)*(100/FthPop(3))),pnbrnd)/(100/(FthPop(3)));

end;
end;

end;
NumPop is a integer between 1 and sizepop; sizepop is the size of population; FthIndex(n) is the

label of the nth father bean; and pop(NumPop,:) is the position vector of the individual whose label
is NumPop.

4. Experiments and Analysis

4.1. Test Functions

In the experiments, ten benchmark mathematical functions (described in Table 2) are used to test
the effectiveness of a BOA algorithm based on a mixed-distribution model (NBOA). The dimension of
every benchmark mathematical function is set to be 30 (i.e., n = 30).

4.2. Experimental Parameter Settings

Experimental parameter settings is shown in Table 3. In Table 3, NBOA-3 is an NBOA with three
parent beans; NBOA-6 has six parent beans, and BOA-6 is a BOA based on a normal distribution
models with six parent beans.

The parameter settings of NBOA-6 and BOA-6 are shown in Table 4, in which i ∈ {2,3,4,5,6},
j ∈ {3,4,5,6}, k ∈ {4,5,6}, m ∈ {5,6}, and pn is the threshold of population multiplication. The parameter
settings of the PSO algorithm are shown in Table 5. The parameter settings of the NBOA-3 algorithm
are shown in Table 6.

In Table 4, in which the value of generations in NBOA-6 is less than pn, these settings are
valid to BOA-6. The position values of 30% of the offspring beans generated are in line with the
distribution normrnd (FthPop(1,:), 1). The position values of 20% of the offspring beans generated
are in line with the distribution normrnd (FthPop(2,:), 2). The position values of 20% of the offspring
beans generated are in line with the distribution normrnd (FthPop(3,:), 2). The position values
of 10% of the offspring beans generated are in line with the distribution normrnd (FthPop(4,:), 3).
The position values of 10% of the offspring beans generated are in line with the distribution normrnd
(FthPop(5,:), 3). The position values of 10% of the offspring beans generated are in line with the
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distribution normrnd (FthPop(6,:), 3). When the number of generations in NBOA-6 is no less than pn,
the offspring population will be generated according to the negative binomial distribution.

Table 2. Test functions.

Function
Name No. Mathematical Representation (f (X)) Initial Range Best Objective

Function Value

Sphere F1 F1(x) =
n
∑

i=1
xi

2 [−100, 100]n 0

Schwefel 2.22 F2 F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| [−10, 10]n 0

Schwefel 1.2 F3 F3(x) =
n
∑

i=1
(

i
∑

j=1
xj)

2

[−100, 100]n 0

Schwefel 2.21 F4 F4(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100]n 0

Rosenbrock F5 F5(x) =
n−1
∑

i=1
(100(xi+1 − xi

2)
2
+ (xi − 1))

2
[−30, 30]n 0

Quartic F6 F6(x) =
n
∑

i=1
ixi

4 + random[0, 1) [−1.28, 1.28]n 0

Schwefel 2.26 F7 F7(x) = −
n
∑

i=1
(xi sin(

√
|xi|)) [−500, 500]n −12,569.483

Rastrigin F8 F8(x) =
n
∑

i=1
(xi

2 − 10 cos(2πxi) + 10)2 [−5.12, 5.12]n 0

Ackley F9 F9(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
xi

2)− exp( 1
n

n
∑

i=1
cos 2πxi)+ 20+ e [−32, 32]n 0

Griewank F10 F10(x) = 1
4000

n
∑

i=1
(xi)

2 −
n
∏
i=1

cos( xi√
i
) + 1 [−600, 600]n 0

Table 3. Experimental parameter settings.

Experimental Algorithms Population Size Generations

NBOA-3

50 500
NBOA-6
BOA-6

PSO

Table 4. Parameter settings of BOA-6/NBOA6.

Experimental Functions Distance Threshold

F1 Di1 ∈ (0, 12]; Dj2 ∈ (0, 15]; Dk3 ∈ (0, 15]; Dm4 ∈ (0, 15]; D56 ∈ (0, 15];
F2 Di1 ∈ (0, 5]; Dj2 ∈ (0, 5]; Dk3 ∈ (0, 6]; Dm4 ∈ (0,6]; D56 ∈ (0, 6];
F3 Di1 ∈ (0, 10]; Dj2 ∈ (0, 10]; Dk3 ∈ (0, 12]; Dm4 ∈ (0, 12]; D56 ∈ (0, 12];
F4 Di1 ∈ (0, 10]; Dj2 ∈ (0, 10]; Dk3 ∈ (0, 12]; Dm4 ∈ (0, 12]; D56 ∈ (0, 12];
F5 Di1 ∈ (0, 6]; Dj2 ∈ (0, 6]; Dk3 ∈ (0, 9]; Dm4 ∈ (0, 9]; D56 ∈ (0, 9];
F6 Di1 ∈ (0, 4]; Dj2 ∈ (0, 4]; Dk3 ∈ (0, 5]; Dm4 ∈ (0, 5]; D56 ∈ (0, 5];
F7 Di1 ∈ (0, 30]; Dj2 ∈ (0, 30]; Dk3 ∈ (0, 35]; Dm4 ∈ (0, 35]; D56 ∈ (0, 35];
F8 Di1 ∈ (0, 3]; Dj2 ∈ (0, 3]; Dk3 ∈ (0, 5]; Dm4 ∈ (0, 5]; D56 ∈ (0, 5];
F9 Di1 ∈ (0, 12]; Dj2 ∈ (0, 12]; Dk3 ∈ (0, 15]; Dm4 ∈ (0, 15]; D56 ∈ (0, 15];
F10 Di1 ∈ (0, 60]; Dj2 ∈ (0, 60]; Dk3 ∈ (0, 80]; Dm4 ∈ (0, 80]; D56 ∈ (0, 80];
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Table 5. Parameter settings of PSO.

Experimental Functions [Vmax,Vmin]

F1 [−1, 1]
F2 [−1, 1]
F3 [−1, 1]
F4 [−1, 1]
F5 [−0.5, 0.5]
F6 [−1, 1]
F7 [−30, 30]
F8 [−0.5, 0.5]
F9 [−1, 1]
F10 [−15, 15]

Except parameter settings in Table 5; other parameters of PSO are set as follows:

w = 1/(2 × log(2));

c1 = c2 = 2.05;

Table 6. Parameter settings of NBOA3.

Experimental Functions Distance Threshold

F1 D21 ∈ (0, 12]; D31 ∈ (0, 15]; D32 ∈ (0, 15];
F2 D21 ∈ (0, 5]; D31 ∈ (0, 6]; D32 ∈ (0, 6];
F3 D21 ∈ (0, 10]; D31 ∈ (0, 10]; D32 ∈ (0, 12];
F4 D21 ∈ (0, 10]; D31 ∈ (0, 10]; D32 ∈ (0, 12];
F5 D21 ∈ (0, 6]; D31 ∈ (0, 9]; D32 ∈ (0, 9];
F6 D21 ∈ (0, 4]; D31 ∈ (0, 5]; D32 ∈ (0, 5];
F7 D21 ∈ (0, 30]; D31 ∈ (0, 35]; D32 ∈ (0, 35];
F8 D21 ∈ (0, 3]; D31 ∈ (0, 5]; D32 ∈ (0, 5];
F9 D21 ∈ (0, 12]; D31 ∈ (0, 15]; D32 ∈ (0, 15];
F10 D21 ∈ (0, 60]; D31 ∈ (0, 80]; D32 ∈ (0, 80];

In Table 6, the position values of 70% of the offspring beans generated are in line with the
distribution normrnd (FthPop(1,:), 1). The position values of 20% of the offspring beans generated are
in line with the distribution normrnd (FthPop(2,:), 1.2). The position values of 10% of the offspring
beans generated are in line with the distribution normrnd (FthPop(3,:), 1.5).

4.3. Experimental Results

Each function optimization experiment is repeated 50 times. Each algorithm runs 500 generations
in each experiment. For unimodal functions F1–F6, Table 7 lists the optimal results, average results,
and the corresponding standard deviations for all the algorithms. For multimodal functions F7–F10,
Table 8 lists the optimal results, average results, and the corresponding standard deviations for all
the algorithms.

The convergence curves (NBOA-3, NBOA-6, BOA-6, and PSO) of unimodal function optimisation
are as follows:

The convergence curves (NBOA-3, NBOA-6, BOA-6, and PSO) of multimodal function
optimisation are shown as follows.

4.4. Experiment Analysis

We will analyse the experimental results in terms of optimal and average results, as follows.
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Table 7. Experimental results of unimodal function optimization.

Experimental Functions Algorithms Optimal Solutions Average Results SD

F1

BOA-6 1.29 × 10−14 1.21 × 10−4 4.09 × 10−4

NBOA-3 3.42 × 10−67 1.04 × 10−14 7.37 × 10−14

NBOA-6 1.31 × 10−33 3.84 × 10−8 2.18× 10−7

PSO 6.97 × 10−3 3.09 × 10−2 1.88 × 10−2

F2

BOA-6 2.42 × 10−12 3.45 × 10−4 2.01 × 10−3

NBOA-3 5.21 × 10−68 8.44 × 10−17 5.97 × 10−16

NBOA-6 8.28 × 10−21 1.81 × 10−7 9.12 × 10−7

PSO 5.99 × 10−1 1.99 1.04

F3

BOA-6 2.39 × 10−12 2.10 × 10−3 4.01 × 10−3

NBOA-3 3.89 × 10−48 3.49 × 10−5 2.47 × 10−4

NBOA-6 1.13 × 10−17 1.24 × 10−4 6.2 × 10−4

PSO 9.34 × 10−1 3.67 1.74

F4

BOA-6 4.28 × 10−9 2.16 × 10−3 3.55 × 10−3

NBOA-3 2.25 × 10−36 1.88 × 10−17 1.33 × 10−16

NBOA-6 1.64 × 10−12 1.71 × 10−7 4.25 × 10−7

PSO 3.39 × 10−1 8.77 × 10−1 4.81 × 10−1

F5

BOA-6 2.88 × 10 2.89 × 10 8.89 × 10−2

NBOA-3 2.86 × 10 2.89 × 10 1.31 × 10−1

NBOA-6 2.86 × 10 2.92 × 10 6.79 × 10−1

PSO 2.28 × 10 3.92 × 10 2.93 × 10

F6

BOA-6 4.79 × 10−5 9.89 × 10−4 6.63 × 10−4

NBOA-3 1.19 × 10−5 7.15 × 10−4 6.22 × 10−4

NBOA-6 5.62 × 10−5 6.90 × 10−4 6.28 × 10−4

PSO 2.64 × 10−2 6.82 × 10−2 3.38 × 10−2

Table 8. Experimental results of multimodal function optimization.

Experimental Functions Algorithms Optimal Solutions Average Results SD

F7

BOA-6 −9.091 × 103 −7.94 × 103 6.41 × 102

NBOA-3 −8.99 × 103 −7.28 × 103 7.04 × 102

NBOA-6 −1.11 × 104 −7.80 × 103 7.55 × 102

PSO −7.69 × 103 −6.09 × 103 6.39 × 102

F8

BOA-6 1.61 × 10−8 1.62 × 10−3 3.07 × 10−3

NBOA-3 2.11 × 10−7 8.04 × 10−4 1.97 × 10−3

NBOA-6 1.36 × 10−9 5.27 × 10−4 1.41 × 10−3

PSO 9.63 2.79 × 10 8.74

F9

BOA-6 7.71 × 10−6 2.58 × 10−3 4.37 × 10−3

NBOA-3 1.15 × 10−13 5.32 × 10−6 3.76 × 10−5

NBOA-6 2.58 × 10−14 5.60 × 10−9 2.21 × 10−8

PSO 2.02 3.89 8.18 × 10−1

F10

BOA-6 7.01 × 10−8 3.90 × 10−4 8.64 × 10−4

NBOA-3 1.52 × 10−8 1.94 × 10−4 4.57 × 10−4

NBOA-6 1.59 × 10−9 1.18 × 10−4 2.83 × 10−4

PSO 4.31 × 10−5 1.65 × 10−4 8.35 × 10−5

4.4.1. Statistical Results

• Optimal Results

The optimal result is the best result of an algorithm that runs 50 times. In Table 7, SD represents
the standard deviation, which measures the amount of variation around the mean. We can see from the
above results in Tables 7 and 8 that NBOA-3 obtains relative optimal results for six functions (F1, F2,
F3, F4, F5, and F6). NBOA6 obtains relative optimal results for four functions (F7, F8, F9, and F10).
The performance of BOA-6 is, relatively speaking, not very good but compared with the algorithms
PSO and BOA-3, there is evidence of improvement.



Appl. Sci. 2018, 8, 632 9 of 14

• Average Results

Average results are the average of 50 algorithm runs. In the experiments, NBOA-3 obtained the
best average results for five functions: F1, F2, F3, F4, and F5. NBOA-6 obtained the best average results
for four functions: F6, F8, F9, and F10. BOA-6 obtained the best average results for functions F5 and F7.

4.4.2. Analysis of Results

• 1. Unimodal Functions Optimisation Analysis

We can see from the above statistics and convergence curves (Figure 2) that NBOA-3 obtained the
best solution in most of the unimodal function optimisations. Our conclusions are that:

(1) Because the population sizes of the four algorithms are same, the highest number of offspring
dominated by parent beans occurred in algorithm NBOA-3. For example, the No. 1 parent bean
in algorithm NBOA-3 dominated 70% of individual offspring and distributed them according
to its wish. However, the No. 1 parent bean in algorithm NBOA-6 only dominated 30% of the
offspring. Therefore, algorithm NBOA-3 can approximate the optimal solution (or the local
optimal solution) more quickly in theory. This is largely consistent with the experimental results.
Hence, better results appear to be given by algorithm NBOA-3.

(2) Considering unimodal function optimisation, the mutation mechanism of individuals follows
the method:

pop(rndi,:) = (rands(1,nn)) × pop(ceil(rand × nn)), (3)

The random sowing method strongly increases the global optimisation ability in later periods of
evolution. It makes the excellent algorithm even better.

(3) The model based on the binomial distribution can effectively increase the optimisation ability
of the algorithm. A decreasingly steep slope is evident in the comparative figures of algorithm
convergence performance (Figure 2). It is the location of the steep slope that starts using
the binomial distribution model in BOA. It is evident that the model based on the binomial
distribution enhances the performance of NBOA-3 and NBOA-6.

• 2. Multimodal Functions Optimisation Analysis

In most of the multimodal-function optimisations, NBOA-6 obtained the best solutions. From the
algorithm experiment results and the and convergence curves (Figure 3) shown above, we can analyse
the results as follows:

(1) Because the distances (Euclidean distances are used in the experiments) between the parent beans
need to meet the threshold set before the experiments, the more parent beans there are, the more
advantageously parent beans can explore the problem domain space. That is to say, there are
more opportunities to quickly find better problem areas that effectively enhance the algorithm’s
ability to achieve global optimisation.

(2) For multimodal function optimisation, the mechanism of individual bean variation adopts the
following method:

pop(NumPop,:) = (rands(1,nn)) × (popmax − (popmax − popmin) × rand) (4)

This method simulates the phenomenon of accidental seed migration in nature and further
enhances the ability to achieve global optimisation.

(3) As mentioned above, because the model based on the negative binomial distribution is used in
algorithm NBOA-6, its optimisation ability is better than that of algorithm BOA-6.
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5. Conclusions

Inspired by the spatial distribution pattern and the adaptive phenomena of plants in nature,
a novel evolutionary algorithm named BOA was proposed. This paper first introduced the negative
binomial distribution. By processing the distribution’s variables, the distribution can be converted into
a model of a population distribution for solving continuous optimisation problems. In combination
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with the normal distribution, a novel kind of BOA based on a mixed distribution model was
proposed. Ten benchmark mathematical function optimisation experiments were carried out to test its
effectiveness. By comparing and analysing the experimental results obtained from the experiments of
four algorithms (BOA-6, NBOA-3, NBOA-6, and PSO), we can reach a conclusion that the negative
binomial distribution model is effective.

In BOA research, three kinds of population distribution models have been proposed for improving
the effectiveness of BOA algorithms. However, in the area of biostatistical research, this is only a
very small number of the many possible biological spatial distribution patterns that occur in nature.
There are still many distribution models that can be used to construct population distribution models
for BOA, such as the Neyman distribution and Polya-Eggenberger distribution. In addition, there is
currently research into combining these algorithms with other intelligent algorithms. However, it is
not carried out in BOA, such as the crossover operator of Genetic Algorithm and information feedback
models. In the future, we will continue the research of BOA and its applications. We also hope that
other researchers will give more attention to BOA and carry out related research work.
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