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Abstract: Recurrent neural networks (RNNs) remain challenging, and there is still a lack of long-term
memory or learning ability in sequential data classification and prediction. In this paper, we propose a
flexible recurrent model, BIdirectional COnvolutional RaNdom RNNs (BICORN-RNNs), incorporating
a series of sub-models: random projection, convolutional operation, and bidirectional transmission.
These subcategories advance classification accuracy, which was limited by the gradient vanishing and the
exploding problem. Experiments on public time series datasets demonstrate that our proposed method
substantially outperforms a variety of existing models. Furthermore, the coordination of the accuracy
and efficiency concerning a variety of factors, including SNR, length, data missing, and overlapping, is
also discussed.

Keywords: recurrent neural network; time series classification; random mapping; convolutional
operation; bidirectional transmission

1. Introduction

As an important problem of data mining, time series classification (TSC) has been maturely used
in many fields, such as natural language processing, biomedical diagnosis, and financial analysis [1–4].
However, continuous research of TSC has never stagnated because of its complications: long-standing
large data scale, high dimension, and continuous updating of data stream. Many researchers have
proposed various methods and achieved state-of-the-art results, promoting classification issues to
suit deeper task requirements. As seen from numerous studies, TSC techniques mainly include
these categories: distance-based methods, feature-based methods, and artificial neural network
(ANN)-based methods [5].

For distance-based methods, using particular metrics to measure the similarity between two series
is effective in comprehensive applications. The most representative metric is the nearest neighbor
(1-NN or k-NN) [6–8] algorithm, which is based on Euclidean distance [9] and dynamic time warping
(DTW) [10]. However, Euclidean distance is sensitive to noise jamming and phase drift, and cannot deal
with data of unequal-length directly. Additionally, DTW has the disadvantage of large computation
costs in dynamic programming. Throughout various previous works, distance measurements based on
similarity have regrettably shown a poor level of interpretation, and pose difficulties vis a vis bringing
about a high degree of reliability.

Traditional feature-based classification methods can also be applied to time series data with less
computational complexity. Both simple statistical features, such as mean and variance, and complex
features, such as shapelets [11] and random forest [12], are mutually compatible to describe data
characteristics in different scenarios [13,14]. However, the classification accuracy of this method
depends heavily on the quality of the hand-crafted features. In contrast to other data types, for the time
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series data it is difficult to construct proper features in human intuition to capture the all characteristics.
So, the classification performance of feature-based methods is generally inferior to distance-based ones.

Thus, we considered the use of ANN-based methods to learn an appropriate set of features
automatically through neural transmission, when the feature is difficult to be described and extracted
manually. Different from “Prior knowledge is the only decisive factor” in the above methods, in general,
ANNs models are less specific and more adaptive. ANNs take the principle “Infer knowledge from
the data” to the extreme [15]. Prosperous improved networks have been proposed, e.g. time delay
neural networks (TDNNs) [16] and recurrent neural networks (RNNs) [17], providing more promising
options to break the restrictions of dealing only with static data patterns.

RNN is inspired by the recurrent connection of neurons, and exploits iterative function loops to
store and transmit historical information dynamically. Actually, the original process is very brittle
because it has little feasible access to further information over a long period of time. In recent years,
some intricate techniques have led to impressive results, such as gradient clipping [18], modifying
activation function [19], long short-term memory (LSTM) [20,21], and identity initialization [22].
However, few research efforts have attempted flexible RNNs designs in the area of time series. It is
also a critical flaw that the original RNNs cannot decide what consequential information needs to
be remembered continuously, and what inconsequential information needs to be ignored gradually,
in practical time series data [23].

Our purpose is to propose further improvement on the RNNs classifier, in order to expand the
learning ability of essential information in long-term dependencies by projecting the predictions of
previous outputs randomly, without complex training techniques. The flexible combination of the
random projection, convolutional operation, and bidirectional transmission, “BICORN”, which is the
core of our reform, provides a promising solution to the key issue: “remember or ignore”. In addition,
we make an effort to compare our model to several classical classifiers, and we discuss the effects of
several factors impacting the capability of learning temporal dependencies.

The remainder of the paper is organized as follows: Section 2 introduces the TSC tasks based
on RNNs, and describes gradient problems when training networks. In Section 3, we propose
BICORN-RNNs models composed of three parts, whilst we analyze the combination of these
alternatives. We present experimental results of the proposed classifiers with the public datasets,
and simulate the effects of several factors in Section 4. We conclude with a discussion in Section 5.

2. Problem Description

In this section, we describe the training and testing processes of TSC based on RNNs. We then
analyze the long-term learning defect about gradient problem.

2.1. RNNs Structure

A discrete-time dynamical RNN system can project the entire previous inputs to each output.
In principle, a standard Elman’s RNN [17] consists of input layer X, output layer Y, and hidden layer H.
In order to describe RNNs compactly, here we focus on their simple network architecture with only
one hidden layer.

The input vector X = [x(1), x(2), . . . , x(T)] is given as a discrete sequence with length of T,
wherex(t) ∈ R I×1 (1 ≤ t ≤ T),and Y = [y(1), y(2), . . . ,y(t)] is output vector, which is calculated via
hidden states H = [h(1), h(2), . . . , h(t)], as shown in Figure 1. We use the subscript i to represent the i-th



Appl. Sci. 2018, 8, 630 3 of 21

component of a vector at the t-th time-step, and t is related to temporal dynamical characteristics of
RNNs. Thus, RNNs can be described as:

aj(t) =
I

∑
i=1

WHI
ji xi(t)+

H
∑

i=1
WHH

ji hi(t− 1) + BH
j

hj(t) = f (aj(t))

bj(t) =
H
∑

i=1
WOH

ji hi(t) + BO
j

yj(t) = g(bj(t))

(1)

where f and g are the nonlinear element-wise activation function and output function, which are
more powerful than linear combination functions in determining nonlinear classification boundaries.
These parameters WHI, WHH, WOH denote the input weight matrix, the recurrent weight matrix, and the
output weight matrix respectively. BH, BO are bias weight matrices. I and O denote the number of input
and output units of RNNs, which are decided by the format of input sequences and the number of target
classes. The number of hidden neurons H in the only hidden layer is set manually when achieving
network initialization, and the number of hidden neurons is fixed during training if there is no growing
or pruning strategy [24]. The growing or pruning strategy is a typical method of neural networks design
and optimization, which can improve the generalization ability of ANNs. However, researchers also find
it difficult to determine an effective growing and pruning criterion, and this method may bring about
huge computational needs. Some setting-number heuristics are described in [25]:

O ≤ H ≤ I
H ≈ 2

3 (O + I)
H ≤ 2I

(2)

Here, each character only represents the number of neurons, not the matrix itself.
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Figure 1. Unfolding a recurrent neural network structure proposed by Elman (Elman-RNNs) in time
by creating a copy of the model at each time-step; arrows indicate the flow of information inside
the network.

2.2. Classification by RNNs

Given a set of training examples [(x(1), ŷ(1)), (x(2), ŷ(2)), ..., (x(T), ŷ(T))](n), where x(t) ∈ R I×1

(1 ≤ t ≤ T) is the input vector at the t-th time-step, ŷ(t) ∈ R K×1 (1 ≤ t ≤ T) is the expected output
vector, and the superscript n (1 ≤ n ≤ N) is the order of training sets. The error between the real
output value y(t) and the expected output value ŷ(t) can be described by error function L(θ),

L(θ) =
N

∑
n=1

T

∑
t=1

Dt(y(t)
(n) − ŷ(t)(n)) (3)



Appl. Sci. 2018, 8, 630 4 of 21

where Dt(·) is a distance measure, such as Euclidean distance [9] and Cross-Entropy [26].
The parameters θ (mainly in WHH, WOH) can be estimated by minimizing the error between y(t)
and ŷ(t). When using logistic sigmoid function in the output layer, the value of output unit yk can be
interpreted as the probability that input sequence X belongs to the corresponding the k-th class, that is:

p(Ck|X ) = yk (4)

For classification problem with K > 2 classes, it requires K output neurons to indicate the
classification result. Each value of output neurons is limited to (0,1), to interpret the corresponding
class probabilities, and the sum of which equals 1, by normalizing the output activations with the
Softmax function [27],

p(Ck |X ) = yk =
eak

∑K
i=1 eai

(5)

To reduce the parameters of subsequent network training, the logistic regression vector is
represented to binary label vector by a threshold. A 1-of-K coding scheme represents the target
class as a binary vector d(t) = [d1, d2, ..., dK] = [0, ..., 1k, 0]1×K, with all elements equal to zero except
the k-th, which equals one, corresponding to the correct class Ck. So, the conditional probability
between judgement d(t) and input x(t) is shown as:

p(d(t)|x(t) ) =
K

∏
i=1

yi(t)
di(t) = yk(t) (6)

When using Cross-Entropy error function for classification tasks, L(θ) can be rewritten as,

L(θ, t) = −
K

∑
k=1

dk ln yk(t) (7)

As mentioned above, using binary vector d(t), Equation (7) can be simplified as,

L(θ, t) = − ln yk(t) (8)

2.3. Gradient Problem

The training target minimizes the error function by adjusting the parameters of weight matrices.
Derivative-based methods are widely used in this move. Although the second derivative methods,
such as Hessian optimization [28] and Levenberg-Marquardt algorithm [29], can get optimum
estimation accurately, the first derivative methods are more efficient in practice because of the balance
between calculation complication and iteration effect.

During RNNs training process, a stochastic gradient descent (SGD) algorithm is used with the
theory of back-propagation through time (BPTT) [30], because of its recurrent temporal connections.
The well-known BPTT algorithm is used to the calculate weight derivative for RNNs, with simple
conception and efficient computation. It is simple to obtain the BPTT via unfolding RNNs in time,
as shown in Figure 2.
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Figure 2. Deriving the gradients according to the back-propagation through time (BPTT) method.
We denote by ε(t) the error obtained from the output at the t-th time-step.

The gradients are rewritten as a sum-of-products form in the timeline, in the light of [18],

∂ε
∂θ =

T
∑

t=1

∂εt
∂θ

∂εt
∂θ =

t
∑

k=1

(
∂εt
∂ht
· ∂ht

∂hk
· ∂hk

∂θ

) (9)

where ∂εt
∂θ is the sum of temporal components, and indicates the effect of transmitting from the t-th

time-step back to the k-th (k ≤ tis only suitable for forward-RNNs).
One can see that the gradient will vanish, i.e., if the constant ‖ ∂hk+1

∂hk
‖ < 1, the norm of ∂hk

∂ht

will go rapidly to 0 exponentially. Conversely, the gradient will explode to infinity, if ‖ ∂hk+1
∂hk
‖ > 1.

Note that it is unnecessary and impossible to keep ‖ ∂hk+1
∂hk
‖ = 1 at all time-steps, because the input

series and the internal dynamics determine the activations of neurons in networks [31]. Faced with
the correlated relationship in a long time-step span, the standard RNNs structure is awkward with
regards to the gradient problem. There are some important branches of RNNs that appear to solve the
long-term problem, such as LSTM [5,20,21] and Gated Recurrent Unit (GRU) [32] structures. However,
these redesigned complex structures require specific training algorithms. Comparatively, we intend
to attain a more concise structure with more general training methods, in order to achieve superb
performance in various specific applications. For example, ECG signal classification using our proposed
RNNs may have a promising performance in screening and preliminary diagnosis. Our reconstructed
RNNs can analyze an infrared radiation intensity sequence of an object, in order to monitor changes
in temperature. In addition, the method proposed in this paper can also be developed for image
sequences or video classification, because of its excellent ability to learn correlations in information in
the time domain.

3. Proposed BICORN-RNN

In this section, we formally propose an ingenious BIdirectional COnvolutional RaNdom RNN
(BICORN-RNN) structure to solve the long-standing gradient problems in TSC processing.

A distinctive feature of BICORN-RNNs is an alternative combination of one or more improved
measures. This sophisticated architecture has a probable contribution to discriminating different
time series classes. From the different aspects and perspectives of input space, feature extraction,
and transmission mode, different improvement methods are adopted correspondingly, and coordinate
with each other. (1) The principal part of this novel model, RaNdom RNNs (RN-RNNs), is to project
the classification prediction of previous time-steps into the current input, namely to modify the input
space in order to easily catch important information; (2) There is a hierarchical part, COnvolutional
RNNs (CO-RNNs), which extracts indescribable local features to enhance the ability of discrimination
in different hierarchies, especially fine structures; (3) A symmetric part, BIdirectional transmission
(BI-RNNs), provides access to the contexts on both sides of the series, so that it tends to gain a better
performance because of its compensation for gradient problems.
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3.1. Random Mapping Input Space

We assume that the network is built up properly, so as to obtain suitable dynamics dependencies.
At each time-step, the network stores the previous outputs as an additional predictive sequence.
We combine these predictions with the current input and feed it into the network, as illustrated
in Figure 3.

This predictive information can provide more representative features and help extract more
correlations within the input series. Note that the merger is in virtue of a saturating nonlinear function
σ(·), such as logistic sigmoid function, squashing the two parts of the inputs into (0,1) nonlinearly,
to avoid degeneration into a linear combination. So, at the t-th time-step, there is,

x′(t) = σ

(
x(t) +

t−1

∑
i=1

βiPiy(i)

)
(10)

where x’(t) is the new input. It consists of two parts: one part is the original input value at
the t-th time-step, that is x(t); the other part is the prediction information y(i) (i = 1, . . . , t-1) at
each time before. And we use a random matrix Pi to project y(i) onto a high-dimensional space

, and then
t−1
∑

i=1
βiPiy(i) is weighted cumulative of Piy(i). βi denotes the weight parameter which

determines the proportion of the predicted output. We make
t−1
∑

i=1
βi = 1 to prevent immoderate

predictions from vitiating or over-diluting x(t). Notably, a significant operation is random mapping, i.e.,
the previous predictions would be randomly projected onto a high-dimensional space by a random
matrix Pi ∈ R T×K, i ∈ [1, t− 1], whose elements are normally distributed in (0,1). It modifies the input
data examples separately, and does not casually change the characteristics of the data itself. In addition,
such non-linearity projections, akin to the kernel functions of support vector machines, have desirable
properties in terms of nonlinear classification and regression problems.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 21 

RNNs (CO-RNNs), which extracts indescribable local features to enhance the ability of discrimination 

in different hierarchies, especially fine structures. (3) A symmetric part, BIdirectional transmission 

(BI-RNNs), provides access to the contexts on both sides of the series, so that it tends to gain a better 

performance because of its compensation for gradient problems. 

3.1. Random Mapping Input Space 

We assume that the network is built up properly, so as to obtain suitable dynamics dependencies. 

At each time-step, the network stores the previous outputs as an additional predictive sequence. We 

combine these predictions with the current input and feed it into the network, as illustrated in Figure 3. 

This predictive information can provide more representative features and help extract more 

correlations within the input series. Note that the merger is in virtue of a saturating nonlinear 

function  ( ) , such as logistic sigmoid function, squashing the two parts of the inputs into (0,1) 

nonlinearly, to avoid degeneration into a linear combination. So, at the t-th time-step, there is, 

  




 
   

 


1

1

( ) ( ) ( )
t

i i
i

x t x t y iΡ

 
(10) 

where x’(t) is the new input. It consists of two parts: one part is the original input value at the t-th 

time-step, that is x(t); the other part is the prediction information y(i) (i = 1,…, t-1) at each time before. 

And we use a random matrix i
Ρ  to project y(i) onto a high-dimensional space , and then 






1

1

P ( )
t

i i
i

y i  

is weighted cumulative of P ( )
i
y i . 

i  denotes the weight parameter which determines the 

proportion of the predicted output. We make 





1

1

1
t

i
i

 to prevent immoderate predictions from 

vitiating or over-diluting x(t). Notably, a significant operation is random mapping, i.e., the previous 

predictions would be randomly projected onto a high-dimensional space by a random matrix 
   T K

i
Ρ ,  [1, 1]i t , whose elements are normally distributed in (0,1). It modifies the input data 

examples separately, and does not casually change the characteristics of the data itself. In addition, 

such non-linearity projections, akin to the kernel functions of support vector machines, have desirable 

properties in terms of nonlinear classification and regression problems. 

Input 
layer

Hidden 
layer

Output 
layer

y(t-1) y(t) y(t+1)

h(t-1) h(t) h(t+1)

x(t-1) x(t) x(t+1)
t-1

iy
t

iy
t-2

iy
 

Figure 3. Illustration of an unfolded (RaNdom Recurrent Neural Networks) RN-RNN in time, where 

the input receives the random projection of output predictions of all the previous time-steps. 

Intuitively, random mapping can extend data from different labels to different directions, 

making the modified data more distinguishable. As the quasi-orthogonality property of a high-

dimensional space proved in [33], when the dimension of the feature space T is relatively large, the 

column vectors of i
Ρ  are much likely to be approximately orthogonal. It is a mathematical certainty 

that each column vector corresponds to the bias of per-class applied to the original sample x(t), if the 

Figure 3. Illustration of an unfolded (RaNdom Recurrent Neural Networks) RN-RNN in time, where the
input receives the random projection of output predictions of all the previous time-steps.

Intuitively, random mapping can extend data from different labels to different directions, making
the modified data more distinguishable. As the quasi-orthogonality property of a high-dimensional
space proved in [33], when the dimension of the feature space T is relatively large, the column vectors
of Pi are much likely to be approximately orthogonal. It is a mathematical certainty that each column
vector corresponds to the bias of per-class applied to the original sample x(t), if the real output y(t) is
equal to the expected output ŷ(t). So, the random projection of previous predictions pushes the input
examples apart from one another, with high probability [34].

The following proposition provides further evidence that, with accurate predictions of the
target class in advance, it is possible to move the data manifolds apart by adding an offset to
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per-class examples, so as to guarantee an improvement in classification accuracy by using the
RN-RNNs classifier.

Let ξ be a set of data examples (x(t), dk) at the t-th time-step, where x(t) ∈ R D×1 is the input
example and dk ∈ {1, · · · , K} is the target class label of x(t). Let θ be the corresponding parameters
of RN-RNNs classifier with the loss function L(ξ, θ). Then, there exists wdk

∈ R D×1 such that the
translated set ξ ′ defined as

(
x(t) + wdk

, dk
)

results in a better optimum L(ξ ′, θ) ≤ L(ξ, θ).
Assume that f and g are the element-wise and monotonically increasing activation function and

output function of the RN-RNNs classifier. Let WHI
dk

be the dk − th row vector of WHI in Equation (1).
Defining wdk

such that WHI
dk
·wdk

= 1, then we have,

dk
′
h(t) = f

(
WHI

dk

(
x(t) + wdk

)
+ α
)

= f
(

WHI
dk
·x(t) + WHI

dk
·wdk

+ α
)

= f
(

WHI
dk
·x(t) + 1 + α

)
≥ f

(
WHI

dk
·x(t) + α

)
= hdk

(t)

(11)

y′dk
(t) = g

(
h′dk

(t)
)
≥ g

(
hdk

(t)
)
= ydk

(t) (12)

where hdk
(t),ydk

(t) refer to the dk − th element of the vector h(t), y(t) respectively. α is the fixed term in
Equation (1), regarded as a constant. In the TSC task, the loss function is often chosen as Cross-Entropy
in Equation (8), and then,

− ln y′dk
(t) ≤ − ln ydk

(t) (13)

which leads to L(ξ ′, θ) ≤ L(ξ, θ).
It is important to note that learning the projection matrix may have a pure-perfect result in

training sets, but not, regretfully, in testing sets, because of the overly confident strategy. On the
premise of predictions y(t-m), m = 1, . . . , t− 1 in previous time-steps, learning-updating the elements
of Pi may suffer from over-fitting in all possibilities, which provided bad data or even a negative
contribution in classification performance in the testing process. A conventional approach to avoid
this is adding a regularization term in the loss function to constrain dynamic tuning. However,
this would lead to additional parameters at each time-step, i.e., it will increase the computational
complexity exponentially. Here, we might set the parameter matrix Pi randomly without training,
surprisingly, which is an agile and effective approach to solve both the overfitting and increasing
computational complexity.

It is worth explaining that we aim to train an excellent generalization RNNs with the support
of previous prediction information, rather than focusing on decorating data in a supervised way.
Furthermore, this modification will not raise the dimension of the input space, and avoid the curse
of dimensionality.

In fact, there is a large amount of computation in the training phase of RN-RNNs. The purpose of
indexing from 1 to t − 1 is to force the retention of the information at earlier time-steps, highlighting
its learning ability and reducing its dependency on long sequences. For more application scenarios,
the sequence information at a very early time-step is often useless or redundant. Considering the
limitation of computation and the demand of specific applications, we can modify Equation (10) to
Equation (14) or Equation (15), as shown in following formulae:

x′(t) = σ

(
x(t) +

t−1

∑
i=t−N−1

βiPiy(i)

)
(14)

x′(t) = σ

(
x(t) +

t−1

∑
i=1,1+M,1+2M,...

βiPiy(i)

)
(15)
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Equation (10) indicates that the predictive information from the 1-th to (t-1)-th time-steps needs
to be maintained and transmitted, to evoke the classification decision at the t-th time-step. However,
the modified formulae have more pertinence in indexes with different meanings:

Equation (14) indicates that only the prediction values from the (t-N-1)-th to (t-1)-th time-steps,
(N+1)-points sequence, are retained, because the value other than N-steps is too distant, its importance
is greatly reduced, and it will not be involved in the classification decision at the t-th time-step.
Equation (15) indicates that the prediction values from the 1-th to (t-1)-th time-steps are sampled
at equal intervals M. Only these sample values are involved in the classification decision at the t-th
time-step, which is more suitable for slowly changing and large time span sequences. The illustrations
of the modified input values using different prediction information are shown in Figure 4.
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Figure 4. Illustration of the modified input values using different prediction information described
in Equations (10), (14) and (15): (a) Index from the 1-th to (t-1)-th time-steps, corresponding to
Equation (10); (b) Index from the (t-N-1)-th to (t-1)-th time-steps, corresponding to Equation (14);
(c) Index from the 1-th to (t-1)-th time-steps, and sampling at equal intervals M, corresponding to
Equation (15).

These methods drastically reduce the amount of calculation, and they are also promising to
maintain satisfying performance. The modification methods adopted in Equations (14) and (15) have
more pertinence to the predictive output value. As shown in Figure 4b, Equation (14) focuses more on
the key predictive values near the current moment, and ignores redundant old information. As shown
in Figure 4c, Equation (15) samples all of the predictive output sequences ensure that the initial
information can be transmitted effectively. Therefore, these two strategies for delivering predictive
information have different advantages in specific application scenarios. Therefore, on the basis of
appropriate input value x’(t), the network can gain a perfect temporal-dependencies learning capacity,
and reduce the amount of computation. We compare the index times of these methods in Table 1.

Table 1. The index times of three methods with different criteria.

Methods 1~(t-1) time-steps (t-N-1)~(t-1) time-steps 1~(t-1) time-steps (sampled at M)

Times of indexes i2/2 N·i i2/(2M)

This unsupervised random mapping is different from feature extraction, and the former can
be regarded as the “separation” operation in the data preprocessing stage. Furthermore, unlike the
overlapping technique, this improved method implies “prediction” information instead of a simple
linear weighting combination of input points. The performance of the overlapping depends on an
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overlapping ratio, which is determined artificially. In contrast, the random mapping focuses on the
predicted data to reduce the dependence on the quality of the input data virtually. In all, the aim of the
random mapping is to solve the gradient vanishing and exploding problems in a concise way.

3.2. Convolutional Rearrange

Convolution can be regarded as a weighted superposition operation of one function upon another.
The most typical application is convolution neural networks (CNNs) in deep learning, which has been
successfully used in object recognition, audio classification, and image processing, because of key
properties: spatially shared weights and spatial pooling [35].

RNNs pay more attention to the transmission of information between neurons at each time-step
while ignoring the interconnection tendency of several points themselves, such as smoothness,
volatility, periodicity, etc. Convolution is an ideal operation for extracting the indescribable local
features of images, speech, and time series [36]. Therefore, it is not difficult to consider that an
appropriate combination of convolution and RNNs, CO-RNNs, can enhance the ability to recollect
and transmit the indispensable local features in online learning systems [37]. Actually, this “graft”
can innovatively remove background noise and augment discrimination of data representations for
classification tasks.

Specifically, we add a convolutional layer, a pooling layer, and a full-connected layer behind the
input layer of RNNs, as shown in Figure 5. We do not recommend the convolutional operation behind
the hidden layer, as it would disrupt the dynamic delivery of RNNs.
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Figure 5. Illustration of COnvolutional Recurrent Neural Networks (CN-RNNs) architecture and the
procedures of convolution and pooling operations.

Concretely, similar to the common CNNs structure, the input example x(t) at the t-th time-step is
convolved with learnable kernels Kc

j (j = 1, ..., nC) and put through a hyperbolic tangent function fc to
form the output feature maps Cj (j = 1, ..., nC) of the convolutional layer. We use the average-pooling
function aver(·) to obtain the pooling feature maps Poj (j = 1, ..., nC). Then, Poj are projected onto
the full-connected layer input maps Poj

′ (j = 1, ..., nF), by the linked weight W f ∈ RnC×nF . Poj
′ make

convolutions with the full-connected kernel K f
j (j = 1, ..., nF), and are then activated by hyperbolic
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tangent function fc. Thus, the concatenation of each stateFj (j = 1, ..., nF) is finished, getting the new
input series Ft for CO-RNNs. The complete process is described as:

Cj = fc

(
x(t)⊗Kc

j + Bc
j

)
Poj = down

(
Cj ⊗ aver(2× 1)

)
Fj = fc

(
Poj
′ ⊗K f

j + B f
j

)
= fc

(( nC
∑

i=1
W f

ji·Poi

)
⊗K f

j + B f
j

)
Ft = [F1, F2, ..., FnF ]

(16)

where “⊗” denotes the convolutional operator, Bj is the bias, down(·) represents a sub-sampling
function. The fixed parameters are set by K-folder cross validation. The number of kernels nC

and nF are set to 10 and 30 manually, and the size of aver(·) plane is 2× 1. Note that the random
mapping described above is available and can coexist with convolutional rearranging operations in
this subsection.

3.3. Bidirectional Transmission

The RNN is often considered to be a causal real-time system. Nevertheless, we can exploit
anti-causal information of data to improve performance in non-immediate response issues, such as
sentence translation and music style classification, which is the origin of bidirectional transmission
of RNNs.

Bidirectional RNNs offer an elegant solution to make full use of both past and future data
information in temporal order [38]. BI-RNNs transmit each point of a training sequence to both
backward and forward two symmetry directions through by incorporating an extra hidden layer,
called backward hidden layer, to distinguish from the original forward hidden layer.

Importantly, these two hidden layers are separated in space, so that they will not extend the
parameter exponentially, but rather, will require twice the computation instead. We extend symbols by
adding the arrows

←• ,
→• ,
↔• to the original representation, including variables and parameters, to refer

to different transfer directions. So, the formulas of BIRNNs can be revised as,

←
aj(t) =

I
∑

i=1

←
WHI

ji xi(t) +
H
∑

i=1

←
WHH

ji hi(
←
t − 1) +

←
BH

j

→
aj(t) =

I
∑

i=1

→
WHI

ji xi(t) +
H
∑

i=1

→
WHH

ji hi(
→
t − 1) +

→
BH

j
←

hj(t) = f (
←

aj(t)),
→

hj(t) = f (
→

aj(t))
←

bj(t) =
H
∑

i=1

←
WOH

ji

←
hi(t) +

←
BO

j ,
→

bi(t) =
H
∑

i=1

→
WOH

ji

→
hi(t) +

→
BO

j
←

yj(t) = g(
←

bj(t)),
→

yj(t) = g(
→

bj(t))
↔

yj(t) = α1

←
yj(t) + α2

→
yj(t)

(17)

We adjust weights α1 and α2 under the limitation of α1 + α2 = 1, to determine the importance
of past and future information. Even without extra complex computations to train the networks,
it is the same as SGD training algorithms of standard RNNs in Section 2. BI-RNNs can compensate
for gradients vanishing and exploding problems by virtue of their own symmetry, as illustrated in
Figure 6. Actually, BI-RNNs have outperformed standard RNNs in various previous applications,
such as protein secondary structure prediction [39], speech processing [40], dynamic ECG analysis [41],
as well as our TSC task.
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Figure 6. An unfolded BIdirectional Recurrent Neural Networks (BI-RNNs) in time, in which no
information flows between opposite direction layers, to ensure the acyclicity of unfolded units.

3.4. BICORN-RNNs Structure

These modifications of basic RNNs architecture highlight the underlying characteristics of the
data and the inherent structure of the model, which is crucial for improving classification performance.
As shown in Figure 7a,b, we build an ever-improving RNNs structure, consisting of random mapping
input space, convolutional rearranging, and bidirectional transmitting, namely BICORN-RNNs.
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Figure 7. Overall architecture of BIdirectional COnvolutional RaNdom Recurrent Neural Networks
(BICORN-RNNs): (a) The complete process of BICORN-RNNs; (b) The main architecture of our neural
network and the detail of the sub-models.
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BICORN-RNN is not just a stack of a few improved methods; it redesigns network transmission
processes from different angles and different levels to acquire a favorable structure. It should
be emphasized that, although this full structure can obtain optimal performance under different
conditions, we have access to the combination of one or more measures to construct a satisfactory
structure, reflecting the flexibility of our method.

4. Experiments

In this section, we carry out experiments to compare the performance of multiple methods,
and explore the influence of some factors on accuracy, in order to put up better choices of
sub-model combinations.

4.1. Experiments on Benchmark Datasets

4.1.1. Experiments Description

We compare the performances of the introduced classifiers in Section 1 with 10 real-world datasets,
selected from the UCR Time Series Classification Archive [42] randomly, which contains different
application domains datasets, and is widely used as a benchmark for classification comparisons.
To contrast with multiple types of classifiers, we have made an effort to consider some classical and
effective methods, including (1) distance-based methods:1-NN with Euclidean distance (1NN-ED) [9]
and 1-NN with DTW (1NN-DTW) [10], (2) feature-based methods: shapelets [11] and random
forests based on features (Features-RF) [12], (3) ANN-based methods: feedforward neural networks
(FNNs) [43], RNNs [17], LSTMs [20] and our BICORN-RNNs. It should be noted that the experimental
results of type (1) and (2) were collected by [44,45], for an authoritative comparison. As for type (3),
we use the default training and testing set splits provided by UCR for fairness concerning.

Without loss of generality, all neural network classifiers are set as a single layer hidden layer
structure, and the number of neurons in hidden layer is 24. All weights in matrices are initialized in

the interval [−
√

6
r+c ,+

√
6

r+c ] drawn from the uniform distribution, where r and c are the number of
rows and columns in the structure [46].

Generally, larger training sets can have a better generalization performance. However, considering
the fact that it may suffer from the imbalanced percentages of training and testing examples in practical
application, we improve the generalization performance with the limited datasets size through an
early stopping method in the validation set, which avoids overfitting in the testing set. In this paper,
both the validation error and training error are evaluated at regular intervals with a typical decrease.
If the validation error appears to start increasing, the training will terminate at once.

4.1.2. Results and Discussion

We perform independent Monte-Carlo simulations under the preset parameters. We take the
mean value of classification error rates as the final result to reduce accidental error. The classification
error of each set is accurate to three decimal places, as shown in Table 2. It also shows the votes of
the best results (Best), the first three results (Better-3) and the mean ranking (Mean-ranking) of each
method for measurement.

In addition to the intuitionistic judgment of the effectiveness of our method, we also illustrate the
significant differences between our method and some other classical methods by the critical difference
diagram (CDD), proposed in [47]. Figure 8 shows the CDD of eight methods above.

According to Figure 8, BICORN-RNNs obtain the highest accuracy, located in the furthest right of
the figure; it is quite remarkable that this novel structure can effectuate such excellent classification
performances in several datasets. We notice that the classification accuracies of FNNs and RNNs are
the lowest, and they fail to gain assessments of “Best” or “Better-3”, whereas LSTMs, an improved
branch of RNNs, demonstrate satisfactory performance. BICORN-RNNs gain a comprehensive victory
in “Best”, “Better-3”, and “Mean-ranking”.
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It is predictable that the rudimentary neural networks still fail to classify time series when faced
with different characteristics. Fortunately, the fusion structure we proposed in this paper may have
advantages in learning both data, and features, of the time series.

Table 2. Classification error and performance ranking. The values in parentheses indicate the
performance ranks of the different methods in three categories, and the optimal result of each dataset is
represented as a bold number.

Dataset
Distance-Based Feature-Based ANN-Based

1NN-ED 1NN-DTW Shapelets Features-RF FNNs RNNs LSTM BICORN-RNNs

50Words 0.369(3) 0.310(1) 0.489(6) 0.333(2) 0.677(8) 0.641(7) 0.425(5) 0.408(4)
ChlorineCon 0.352(7) 0.350(6) 0.417(8) 0.272(5) 0.209(3) 0.174(2) 0.213(4) 0.165(1)

ECG 0.232(8) 0.203(7) 0.004(1) 0.158(5) 0.160(6) 0.146(4) 0.120(3) 0.097(2)
Fish 0.217(6) 0.177(3) 0.197(4) 0.157(2) 0.302(8) 0.253(7) 0.208(5) 0.154(1)

MoteStrain 0.121(4) 0.165(5) 0.217(8) 0.103(2) 0.194(7) 0.188(6) 0.101(1) 0.114(3)
OliveOil 0.133(3) 0.167(5) 0.213(7) 0.093(1) 0.302(8) 0.150(4) 0.211(6) 0.102(2)

Lightning7 0.425(6) 0.274(1) 0.403(4) 0.295(2) 0.552(8) 0.545(7) 0.386(3) 0.412(5)
SwedishLeaf 0.213(5) 0.208(4) 0.269(8) 0.088(2) 0.259(7) 0.248(6) 0.103(3) 0.087(1)

Symbols 0.100(7) 0.050(3) 0.068(4) 0.138(8) 0.091(6) 0.083(5) 0.042(2) 0.023(1)
SyntheticControl 0.120(6) 0.007(1) 0.081(4) 0.017(2) 0.139(7) 0.097(5) 0.156(8) 0.024(3)

Best 0 3 1 1 0 0 1 4
Better-3 2 5 1 7 1 1 5 8

Mean-ranking 5.5 3.6 5.4 3.1 6.8 5.3 4.0 2.3

1NN-ED: 1-nearest neighbor with Euclidean distance; 1NN-DTW: 1-nearest neighbor with dynamic time warping;
RF: random forests based on features; ANN: artificial neural network; FNNs: feedforward neural networks;
RNNs: recurrent neural networks; LSTM: long-short time memory.
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Figure 8. Critical difference diagram over mean ranks of 8 methods belonging to 3 categories. Each label
corresponds to the mean ranking of each classifier; the smaller the value, the better performance of
the method. The length of bold lines indicates the critical difference with a confidence level of 0.05,
which means that a group of classifiers with a bold line shows no significant difference. The critical
difference is 1.25. Our classifier was the most optimal in all eight methods.

4.2. Experiments about Influencing Factors

4.2.1. Experiments Description

We have an appropriate data selection to facilitate cartographic analysis, for which the number of
the classes cT should be 5 ≤ cT ≤ 10, and the length of data time-steps lT should be 400 ≤ lT ≤ 600.
The assumption is to bring the fundamental setup of the experiments into this subsection, and ensure
fairness among methods.

According to the criterion above, we use the dataset “OSU Leaf” to demonstrate the effectiveness
of our approach. This shape-converted time series dataset is generated by radial scanning of the shape
profile to convert the image into a one-dimension series. The dataset contains six classes, corresponding
to six kinds of leaves with different shapes. Among them, the similarity between the first, second,
third, and forth classes is high, and the similarity between the fifth, sixth classes is high [48].

The experiments follow the principle of controlling variables. We adjust several circumstances:
the signal to noise ratio (SNR), truncated length, data missing, and overlapping. We train different
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RNNs-based classifiers with the same noise level; some of the basic experimental parameters settings
are shown in Table 3.

Table 3. A summary of the experimental basic setup.

Experiments SNR
(dB)

Length
(Time-Steps)

Missing Ratio
(%)

Overlapping Ratio
(%)

4.2.2 Range: 0~30
Step: 2 20 0 0

4.2.3 20 Range: 5~100
Step: 5 0 0

4.2.4 20 20 Range: 0~50
Step: 2 0

4.2.5 20 20 0 Range: 0~100
Step: 5

SNR: signal-to-noise ratio, is defined as the ratio of signal power to the noise power.

4.2.2. Results regarding SNR and Discussion

Noise disturbance is a problem often encountered in data analysis and processing. Therefore,
this subsection aims to analyze the impact of noise (Gaussian noise) on the performance of the
classifiers, and to verify the robustness of the proposed classifier at different SNR levels. We train
different RNNs-based classifiers with the same noise level (20 dB), and test them with different noise
levels (0 dB to 30 dB, stepped by 2 dB).

The classification results on the dataset “OSU Leaf” are shown in Figure 9. As shown in Figure 9,
the classification accuracies of all methods are improved significantly with the increase in SNR, indicating
that SNR is a key factor for TSC tasks. Additionally, BICORN-RNN maintains an obvious advantage
when the SNR is greater than 5 dB, and it obtains more than 90% classification accuracy when the SNR
is greater than 20 dB. As for 0 dB, the accuracies of all methods are around 20%. It is more inclined to
classify data into 6 classes randomly because the signal is almost drowned out by noise.

Figure 9. Comparison of several improved classifiers, including the full structure BICORN-RNN, to
standard RNN with different SNR.

Relatively, convolutional operation has a slight superiority over random mapping and
bidirectional transmission, assuming a low SNR; this evidence shows that convolution is an effective
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method for filtering noise. Whereas random mapping might bring out more instability, i.e., it may
exacerbate or counterbalance noise disturbances.

4.2.3. Results on Segmented Length and Discussion

The variation of data length is a common phenomenon in time series analysis. This subsection
aims to analyze the effect of data length on classification performance. We truncate time series into
segments with different lengths (5 time-steps to 100 time-steps, stepped by 5 time-steps).

The classification results on the dataset “OSU Leaf” are shown in Figure 10. As seen in Figure 10,
the sensitivity of these optimization methods to data length is definitely different. The accuracies of
RN-RNN and BI-RNN do not fluctuate significantly with the increase in data length, which indicates
that random mapping and bidirectional transmission can enhance long-term dependence to a greater
or lesser degree.

Figure 10. Comparison of several improved classifiers, including the full structure BICORN-RNN,
with standard RNN with different lengths of sequences.

Moreover, random mapping has more outstanding performance by remembering the previous
predicted values compulsorily. Correspondingly, the convolutional operation lacks the direct
temporal-dependency learning capability, especially in long time-steps, so the accuracy of CO-RNN
declines more significantly.

However, as speculated from the results of RN-RNN and BICORN-RNN, the convolutional
operation and bidirectional transmission help to improve the effect of random mapping indirectly,
and only BICORN-RNN achieves a satisfactory classification accuracy of over 80%, regardless of the
length of sequence. It also suggests that in some long time-step classification problems, we can try to
remove the convolutional operation to simplify the networks, and still obtain adequate results.

4.2.4. Results regarding Data Missing and Discussion

Data missing refers to the loss of certain data (be set to 0) or the occurrence of large or small
abnormal values. Data missing is usually in the absence of prior information; it is difficult to
reproduce the data, so this problem is usually more lethal than Gaussian noise. There are some
preprocesses methods to try to solve it, such as deleting defective cases and interpolating. For the
former method, it is possible to lose valuable information and reduce samples; the latter introduces



Appl. Sci. 2018, 8, 630 16 of 21

noise artificially. Other methods, such as robust regression, and high-dimensional mapping, are limited
to complex calculations.

This subsection aims to demonstrate the robustness of our method without complicated
preprocessing algorithm facing the data missing. We simulate different data missing ratio (0% to 50%,
stepped by 5%), by setting an unusually large and small value at certain time-steps randomly.

The classification results on the dataset “OSU Leaf” are shown in Figure 11. As seen from Figure 11,
facing the 50% data missing ratio, the accuracies of all classifiers have been significantly reduced by
more than 20%. If the missing data ratio is less than 20%, the accuracy of BICORN-RNN can remain
at over 80% with less fluctuation, which is the most robust one. It is reassuring that BICORN-RNN
keeps a minimum accuracy line of 60% even if missing half of the data values, which may benefit
from convolutional operation. By contrast, bidirectional transmission cannot be carried out smoothly
whether forwards or backwards, due to the ineffective hidden values of the neurons during the
processing; thus the accuracy of BI-RNN is attenuated as rapidly as that of the RNN, which is close to
a random classification.

Figure 11. Comparison of several improved classifiers, including the full structure BICORN-RNN, to
standard RNN with different missing data ratios.

Although the integrity and validity of data is an important factor in maintaining high accuracy,
the method we proposed can be efficacious provided that less than the half data is missing.

4.2.5. Result regarding Overlapping and Discussion

In Section 3, we deem that random mapping reduces the dependence on time-steps by forcing
the memory of the previous prediction outputs, but it also weakens the information transmission
ability of the hidden layer. This is why the classification accuracy of RN-RNN is more unstable
than that of RNN when suffering from SNR variation, length change, or data missing, as shown in
Figures 9–11. However, we still believe that random mapping is an excellent solution to alleviate the
problem of gradient vanishing and exploding, especially when reconsidering the potential information
in hidden layer.

We use a simple and effective trick to improve the information transmission capability of RN-RNN
in the hidden layer that is overlapping. It refers to the overlap between two adjacent input sequences,
and aims to put more emphasis on the input data, which can be transmitted in the hidden layer further.
Overlapping can improve the integrity of information with no prior information.
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To analyze the information transmission capability in the hidden layer more clearly, we employ
contrast experiments with vary accuracies in overlapping ratio, as shown in Figure 12. It is noteworthy
that overlapping will inevitably increase the cost of computation. Both time and accuracy should be
considered comprehensively, as timeliness is another important measure in our work.

Figure 12. Comparison of several improved classifiers, including the full structure BICORN-RNN,
to standard RNN with different overlapping ratio.

A certain overlapping ratio of RNN and RN-RNN can improve the accuracy significantly, up to
about 20% (the maximal accuracy of RN-RNN can be 90% with 25% overlapping ratio), while there is
no prominent effect of overlapping in the other three methods: up to about 10% (the maximal accuracy
of BICORN-RNN can be 95% with 65% overlapping ratio). However, it should not be overlooked that
the extra calculation is obviously due to a high overlapping ratio. It also suggests that it would be
beneficial to choose an RN-RNN with a precise overlapping ratio to ensure that a 90% accuracy is
reached, while maintaining an acceptable real-time performance. The reason for the better accuracy of
the RN-RNN is that overlapping compensates for the loss of information in hidden layer caused by
random mapping.

4.3. Result about Synthetical Dataset and Discussion

In Section 4 above, we generated 83 sets of experimental datasets “OSU Leaf” in total, including
SNR (16 sets), segmented length (20 sets), data missing (26 sets), and overlapping (21 sets). Finally,
RNN and BICORN-RNN methods are used to classify these time series in order to illustrate the
effectiveness of our improved method.

The classification results of six classes are represented by the confusion matrices [49], as shown in
Figure 13. The color block on the diagonal of matrix in Figure 13b is more concentrated than that in
Figure 13a, indicating that the classification accuracy of BICORN-RNN in each class is higher than
that of the RNN. Actually, the classification accuracy of BICORN-RNN is up to 86.72%, outperforming
standard RNN, whose accuracy is 48.35%.
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Figure 13. On the right side of each figure, the color depth corresponds to accuracy; the deeper the color,
the higher the accuracy. The confusion matrices show the correspondence between the predicted and
the actual classes. Only the results on diagonal lines are correct. The values in the confusion matrices
indicate the classification accuracy of each class. (a) Classification result of RNN; (b) Classification
result of BICORN-RNN.

5. Conclusions

We have presented BIdirectional COnvolutional RaNdom RNNs (BICORN-RNNs), tailored for
time series classification, based on the recurrent structure. It leverages the strength of RNNs in time
to learn and classify sequences online. In addition, BICORN-RNNs have exceptional capabilities of
information transmission based on gradient descent. Random mapping can remember the preceding
information, and the local features of the time series can be extracted elaborately by a convolutional
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operation. As for bidirectional transmission, it provides convenient access to both future and past
data, simultaneously. Above all, BICORN-RNNs incorporate the functions of these three independent
measures; these measures can be integrated with each other flexibly and complementarily. We have
demonstrated that BICORN-RNNs achieve fantastic performance via comprehensive experiments on
public time series datasets, considering a variety of factors: SNR, length, data missing, and overlapping.
It also suggests that these available sub-models can be chosen and combined to meet the needs of
special tasks. Our work has a potential application in time series data analysis, such as natural
language processing, biomedical diagnosis, audio classification and financial analysis. We envision
that BICORN-RNNs will be extended in multiple sources, such as speech, text, and image sequences
in scene classification domain.
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