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Featured Application: The proposed ensemble classification algorithm can be applied in
areas such as network analysis or target identification, especially in the field of sensor
network monitoring.

Abstract: With the current increasing volume and dimensionality of data, traditional data
classification algorithms are unable to satisfy the demands of practical classification applications
of data streams. To deal with noise and concept drift in data streams, we propose an ensemble
classification algorithm based on attribute reduction and a sliding window in this paper. Using mutual
information, an approximate attribute reduction algorithm based on rough sets is used to reduce data
dimensionality and increase the diversity of reduced results in the algorithm. A double-threshold
concept drift detection method and a three-stage sliding window control strategy are introduced
to improve the performance of the algorithm when dealing with both noise and concept drift.
The classification precision is further improved by updating the base classifiers and their nonlinear
weights. Experiments on synthetic datasets and actual datasets demonstrate the performance of the
algorithm in terms of classification precision, memory use, and time efficiency.
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1. Introduction

With the emerging era of Big Data, data stream classification technology has become a main
topic in data mining research. Data streams are massive, extremely long, and noisy, which make
traditional data mining algorithms unable to satisfy the demands of practical applications such as
network analysis or target identification. In addition, concept drift, caused by the hidden concept
changing in data streams, poses great challenges to classifying data streams.

Recent studies mainly employ two types of methods to realize the classification of data streams,
which are single classifier learning and ensemble classifier learning [1,2]. An ensemble classifier
usually performs better than a single classifier [2,3]. The streaming ensemble algorithm was first
introduced in Reference [4] to deal with concept drift in data stream classification by updating the
base classifiers. The accuracy weighted ensemble (AWE) algorithm was further proposed [3] to weight
base classifiers according to the classification error rate. The accuracy update ensemble algorithm [5] is
based on nonlinear weights of the base classifiers and achieves higher precision and lower memory
use than AWE. In Reference [2], one linear function and one nonlinear function are used to weight
base classifiers when input data are added under different conditions.

In order to detect concept drift and improve the classification precision further, variable sliding
windows are used in Reference [6] to capture the occurrence of concept drift including dealing with
sudden concept drift using smaller windows and speeding up data processing of stable streams
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using larger windows. Concept drift is perceived by detecting the change in classification precision.
However, false concept drift, which is caused by noise, can cause unnecessary updating of the base
classifiers and can waste resources. In References [7–9], the concept drift detection method based
on double thresholds can effectively decrease the influence of noise. In Reference [8], the method
of comparing the data classification error rate of adjacent windows can detect sudden concept drift.
In Reference [9], the method of comparing the minimum values of the classification error rate for each
window further improves the detection efficiency of gradual concept drift.

In addition, using attribute reduction or other dimension reduction methods to improve execution
speed has become a key topic in the research of data stream processing. In Reference [2], the number of
base classifiers is set to maximum and increased or decreased under different conditions, which saves
memory demand. In Reference [10], the classification error rate of each attribute is compared to select
important attributes. In Reference [11], the attribute reduction algorithm based on rough sets reduces
the computation complexity sufficiently by relaxing the measurement criteria of attribute importance
and ensures the distinctiveness of the reduced data using a specific strategy. However, this algorithm
uses an attribute importance measure based on the positive region, which is defined as the union of
lower approximations. Compared with an attribute reduction algorithm based on information entropy,
it deals with system uncertainty poorly [12]. Meanwhile, the difference between base classifiers is the
key factor that affects the overall performance of an ensemble system [11] and perturbing the sample
attribute space by attribute reduction has become the main approach to increase this difference [13,14].

In this paper, we propose an ensemble classification algorithm of data streams based on attribute
reduction and a sliding window. In the algorithm, we use double thresholds to detect concept drift
and update the sliding window size. We use the data attributes after reduction and nonlinear weights
of base classifiers to improve the data classification precision of noisy data streams. Our work in
this paper consists of three main parts. Using mutual information, we propose a rough set-based
approximate attribute reduction algorithm to decrease the computation complexity of the ensemble
classification algorithm and increase the difference between base classifiers. By introducing the sliding
window idea of congestion control in the transport layer of a computer network, we propose a size
control strategy of sliding windows. A double-threshold concept drift detection method is proposed
based on the size control strategy. Based on attribute reduction and the sliding window, we propose
an ensemble classification algorithm of noisy data streams to improve the classification precision with
low complexity.

The remainder of this paper is organized as follows. Section 2 describes the problem that we aim
to solve by our proposed algorithm in the paper. Section 3 describes the rough set-based approximate
attribute reduction algorithm. Section 4 describes the detection method of concept drift. Section 5
describes the ensemble classification algorithm of data streams in detail. Section 6 verifies and analyzes
the algorithm performance and Section 7 presents a summary of the study.

2. Problem Definition

For time stamp t, a data stream consists of a continuous sequence of instances:
{x1, x2, · · · , xt−1, xt, xt+1, · · · }. Each instance xt = (st

1, st
2, · · · , st

m, yt) is a feature vector of
(m + 1)-dimensional attributes, which consists of st = (st

1, st
2, · · · , st

m) and a class label y. The data
stream also can be seen as a sequence of sets D = {· · · , dt−1, dt, dt+1, · · · } where each element dt is a
set of instances in a sliding window at time t.

In a data stream, the data distributions and definitions of target classes change over time.
These changes are categorized into gradual or sudden concept drift depending on the appearance of
novel classes in a stream and the rate of changing definitions of classes [15].

The aim of this paper is to present a high-performance ensemble classification algorithm of
noisy data streams to improve the classification precision and sensitivity to concept drift with low
computation complexity. At each time stamp t, the classification algorithm outputs a class prediction y
for each incoming instance.
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3. Reduction of Data Streams

To reduce memory use and the processing time of the ensemble classification algorithm,
we propose an approximate attribute reduction algorithm in this paper. The approximate
attribute reduction algorithm uses mutual information gain as the attribute importance metric and
two parameters known as the correction coefficient and approximation as the reduction thresholds.
We implement a forward heuristic search to determine the core attributes of a decision table and reduce
the attributes in an approximate manner in the proposed attribute reduction algorithm. The algorithm
improves the performance when dealing with uncertainty using rough sets and mutual information.
Relaxation of the attribute reduction measure is used to reduce the computation complexity and
increase the difference between base classifiers in the algorithm.

The data in a sliding window can be seen as a decision system T = (U, A, f ) where
U = {x1, x2, · · · , xn} is a set of samples, C = {s1, s2, · · · , sm} is a set of condition attributes,
and Y =

{
y1, y2, · · · , yq

}
is a set of decision attributes and where A = C ∪ Y and C ∩ Y = ∅.

Moreover, f =
{

x
∣∣x ∈ R, x = gij

}
, i = 1, 2, · · · , n, j = 1, 2, · · · , m, where gij is the jth condition

attribute value for the ith sample. B is a subset of condition attributes. If B ⊂ C, for any attribute
s ∈ C− B, the importance SGFβ(s, B, Y) based on mutual information is outlined in Reference [12].

SGFβ(s, B, Y) = Hβ(B→ Y)− Hβ(B∪ {s} → Y) (1)

where Hβ(B→ Y) is the variable-precision rough entropy and β is the approximation precision factor

where β ∈ (0.5, 1]. Moreover, if
Hβ(B→Y)
Hβ(B′→Y) ≥ ε, ε ∈ [0.9, 1], Hβ(B→ Y) and Hβ(B′ → Y) are treated as

equal where ε is the correction coefficient [12]. If mutual information I(B; Y) ≥ δ× I(C; Y), δ ∈ (0, 1],
B is called an approximate reduction of C relative to Y and δ is the approximation [11]. The pseudocode
of the proposed approximate attribute reduction algorithm is given in Algorithm 1.

Algorithm 1: Approximate Attribute Reduction

Input: Decision system T = (U, A, f ), correction coefficient ε ∈ [0.9, 1], approximation precision factor
β ∈ (0.5, 1], approximation δ ∈ [0.9, 1]
Output: Approximate reduction B of C

1: Discrete input data and calculate I(C; Y);
2: i = 1, G = C, CoreY(C) = ∅;
3: Calculate Z = Hβ(C→ Y) ;
4: ∀g ∈ G, calculate Z′ = Hβ(C− {g} → Y) ;
5: If Z/Z′ ≥ ε, CoreY(C) = CoreY(C) ∪ {g};
6: G = G− {g};
7: i = i + 1, if i > m, go to line 8, otherwise, go to line 4;
8: B = CoreY(C);
9: ∀s∗i ∈ C− B, 1 ≤ i ≤ |C− B|, calculate SGFβ(s∗i , B, Y);

10: If SGFβ(s∗r , B, Y) =
|C−B|
max
i=1

SGFβ(s∗i , B, Y), B = B∪ {s∗r };

11: If I(B; Y) ≥ δ× I(C; Y), go to line 12, otherwise, go to line 9;
12: Output approximate reduction B.

In Algorithm 1, the core attributes of C are searched in line 4–7 and the reduced attributes are
calculated in line 9–11. The attribute importance is calculated in line 10. Parameters ε in line 5 and δ in
line 11 relax the measurement criteria of attribute reduction to increase the diversity of the reduction
results and reduce the computation complexity while ensuring the data’s classification ability.

4. Concept Drift Detection

In the paper, by introducing the definition of double thresholds in Reference [9], we propose a
variable sliding window detection method of concept drift. In this method, the minimum values of
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the classification error probability pmin and standard deviation δmin of base classifiers for data in a
sliding window are set as the double thresholds to shorten the response time to gradual concept drift.
At the same time, a size control strategy of the sliding window is proposed to improve the sensitivity
to sudden concept drift.

In Reference [9], three possible states of drift detection for the classification system are below.

(1) No-drift: while pt + δt < pmin + ηδmin.
(2) In-drift: while pt + δt > pmin + αδmin.
(3) Warning: while pmin + ηδmin < pt + δt < pmin + αδmin and η < α.

Here, for instances in dt, the error rate of a base classifier is the probability of misclassifying pt

with the standard deviation given by δt. Parameters η and α are two constants.
Inspired by the ideas in References [6,8], we propose a size control strategy for the sliding window

by introducing the sliding window idea of congestion control in the transport layer of computer
networks. In computer networks, this sliding window method adaptively changes the amount of data
flowing into the network by detecting the congestion threshold. It is a proven method and widely used
in computer networks to effectively control network congestion and reduce data storage space [16].
Its three stages of slow start, congestion avoidance, and fast recovery coincide with the three possible
states of concept drift detection. Both methods are applied to detecting data streams and identifying
identical purposes and aims. In this paper, we change the sliding window size based on the data
classification error probability and standard deviation. Using method migration, we aim to inherit the
method’s advantages in detection performance and resource use. wb is the basic size of the sliding
window, wt is the current window size, and wt+1 is the next window size. Furthermore, L is the
ensemble size and l is the current number of base classifiers. The size control strategy for the sliding
window is below.

(1) If l ≤ L and dt, t ∈ {1, 2, · · · , L}, then w1 = wb and wt+1 = wb.
(2) If l = L and dt, t ∈ {L + 1, L + 2, · · · }, then

(i) while pt + δt < pmin + ηδmin, trigger the slow start stage and set wt+1 = 2wt;
(ii) while pmin + ηδmin < pt + δt < pmin + αδmin, trigger the drift monitoring stage and set

wt+1 = wt + wb;
(iii) while pt + δt > pmin + αδmin, trigger the fast recovery stage and set wt+1 = wb.

In Step 2-i, the window size is increased quickly to improve the detection efficiency of stable
streams in the slow start stage. In Step 2-ii, by slowly increasing the window size, we carefully probe
whether a concept drift occurs or not in the drift monitoring stage. The influence of noise can be
further decreased by updating the weight of the base classifiers. In Step 2-iii, by rapidly reducing
the window size, we update the ensemble classifier using the minimal number of instances and
improve the sensitivity of the detection method to sudden concept drift in the fast recovery stage.
If the maximum size of the sliding window wmax is restricted to the buffer limit, the next window size
should be min{wt+1, wmax}.

5. Ensemble Classification Algorithm of Data Streams

In this paper, we use the proposed approximate attribute reduction algorithm to reduce the
computation complexity of the ensemble classification algorithm. The variable sliding window method
is used to improve the sensitivity of the ensemble classification algorithm to become a sudden concept
drift and the concept drift detection method based on double thresholds is used to improve the
sensitivity of the ensemble classification algorithm with regard to noise and gradual conceptual drift.
The pseudocode of the ensemble classification algorithm is given in Algorithm 2.
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Algorithm 2: Ensemble Classification of Data Streams

Input: Data stream D, current data chunk dt, correction coefficient ε ∈ [0.9, 1], approximation precision factor
β ∈ (0.5, 1], approximation δ ∈ [0.9, 1], ensemble size L, current number of base classifiers l, basic window
size wb
Output: Classification results for instances in dt

1: w1 = wb;
2: If l < L and dt, t ∈ {1, 2, · · · , L− 1}, wt+1 = wb. Obtain the training sets to generate the base classifiers
using Algorithm 1. Update the weights of the base classifiers using their classification error rate. Use the
voting method to integrate the classification results of the base classifiers.;
3: If l = L and dt = dL, perform the same operations as shown in line 2 and save the values of pmin and δmin.
4: If l = L and dt, t ∈ {L + 1, L + 2, · · · }, then:
5: While pt + δt < pmin + ηδmin, wt+1 = 2wt. Update the values of pmin and δmin and use the voting method
to integrate the classification results of the base classifiers.
6: While pmin + ηδmin < pt + δt < pmin + αδmin, wt+1 = wt + wb. Update the weights of the base classifiers
and the values of pmin and δmin. Use the voting method to integrate the classification results of the base
classifiers.
7: While pt + δt > pmin + αδmin, wt+1 = wb. Using Algorithm 1, obtain new training sets to generate new base
classifiers. Use the new base classifier to replace the old base classifier of the maximum error rate where the
maximum replacement number is L. Update the weights of the base classifiers and the values of pmin and δmin.
Use the voting method to integrate the classification results of the base classifiers.
8: Output the final results.

In Algorithm 2, L base classifiers are generated in line 2–3 and the window size is wb. In line 5–7,
the concept drift is detected. The base classifiers and the window size change when the detection result
changes. The weights ωtj of the jth base classifier are calculated by estimating the error rate in data
chunk dt, which is shown in Equation (2) [5,10].

MSEr = ∑
y

p(y)(1− p(y))2

MSEtj =
1
|dt | ∑
{x,y}∈dt

(1− f j
y(x))

2

ωtj =
1

MSEr+MSEtj+ξ

(1)

where MSEr is the mean square error of a randomly predicting classifier and is used as a reference
point for the current class distribution with p(y) being the probability of selecting class y. Function
f j
y(x) denotes the probability given by the jth classifier that x is an instance of class y. Additionally,

a very small positive value ξ is added to the equation to avoid division by zero problems.
In Algorithm 2, lines 2, 3, and 7 ensure the difference between base classifiers through reduced data

generating base classifiers. The weight updating of base classifiers in line 6 ensures the classification
precision of the ensemble classifier while filtering the influence of noise. Moreover, line 7 improves
the sensitivity of the ensemble classification algorithm toward concept drift by updating the reduced
attributes, base classifiers, and weights of base classifiers.

6. Experiments

Bagging is a representative algorithm that disturbs the sample instance space by randomly
sampling specimens. It has a structure that can be processed in parallel, which effectively improves
execution efficiency [17]. Based on the random disturbance of bagging in the sample instance space,
we use Algorithm 1 to perturb the sample attribute space to realize the multi-modal perturbation of
training samples, which can increase the diversity of the reduced results and the difference between
base classifiers. In this paper, the naive Bayes classifier is used. The experiments were conducted
on a 3.6 GHz Intel Core CPU with 8 GB RAM. All of the tested algorithms were implemented in
MATLAB R2012b.
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For the experiments, we selected two synthetic datasets and two real datasets. The two synthetic
datasets known as Hyperplane and WaveForm can be available from their data stream generators on
MOA [18]. The two real datasets, Covertype and Wine, can be downloaded from the UCI Machine
Learning Repository [19]. Hyperplane, WaveForm, and Covertype include concept drift. A hyperplane

in d-dimensional space is the set of points x that satisfy
d
∑

i=1
aixi = a0 where xi is the ith coordinate

of x. Instances for which
d
∑

i=1
aixi ≥ a0 are labeled positive. Otherwise, they are labeled negative.

This process is mainly used to generate streams with gradual concept drift by changing the orientation
and position of the hyperplane in a smooth manner and by changing the relative size of the weights.
Hyperplane generates a stream with 21 attributes. We used Hyperplane to generate a data stream
of 100,000 instances with 5% noise and gradual concept drift. WaveForm generates a stream with
three decision classes where the instances are described by 40 attributes including 19 that are irrelevant.
We used Waveform to generate a data stream of 100,000 instances with 5% of noise and sudden concept
drift. Covertype contains the forest cover type for 30 m × 30 m cells obtained from the US Forest
Service Region 2 Resource Information System data. It contains 581,012 instances with 53 cartographic
variables that describe one of seven possible forest cover types. Wine contains 178 instances with
13 condition attributes and three decision classes.

6.1. Performance Evaluation of the Approximate Attribute Reduction Algorithm

To test the proposed approximate attribute reduction algorithm, we selected the Wine dataset.
In Reference [11], the diversity of the reduction results obtained by an attribute reduction algorithm
was evaluated. Compared with the algorithm in Reference [11], the proposed attribute reduction
algorithm further relaxes the measurement criteria by introducing a correction coefficient. Therefore,
the diversity obtained by the proposed algorithm is not evaluated in this paper.

The experiments in this section consist of two main parts, which involve the impacts of the
correction coefficient ε and approximation δ on the proposed attribute reduction algorithm and a
performance evaluation of the proposed attribute reduction algorithm. In the first experiment, different
values of ε and δ were used and the number of reduced attributes as well as the classification precision
of a bagging ensemble classifier were determined. Since ε and δ have a similar value range and the
same function of relaxing the attribute importance criteria, the experiment set ε = δ and tested them at
the same time. In this experiment, the ensemble size was eight. Since β ∈ (0.5, 1], the initial parameter
values were set to β = 0.9. The test results are shown in Table 1.

Table 1. Test results of the proposed attribute reduction algorithm with different ε and δ (β = 0.9) on
the Wine dataset.

ε = δ Classification Precision (%) Runtime (ms) Number of Reduced Attributes

0.7 95.39 266.91 4
0.8 97.20 267.79 5
0.9 98.45 268.39 6
1 98.45 268.40 6

From Table 1, it can be seen that as ε and δ increase, the number of attributes selected by the
attribute reduction algorithm increases and the classification precision continues to improve, but the
runtime also increases. This result corresponds to the definitions of ε and δ. When ε = δ ≥ 0.9,
the number of reduced attributes and classification precision remain unchanged and the runtime is
stable with slight fluctuations, which indicate that, in the Wine dataset, the selected data attributes are
stable under the definition of mutual information. Moreover, Table 1 shows that when classification
precision is satisfied, the number of selected data attributes can be reduced by decreasing the values of
ε and δ, which reveals a method to balance the runtime and classification precision of the algorithm.
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Since the increase in values of the classification precision is more obvious than that of the runtime,
we set ε = δ = 0.95 in the subsequent experiments.

When β = 0.9 and ε = δ = 0.95, the test results of the approximate attribute reduction algorithm
based on the positive region in Reference [11] (test algorithm 1), the attribute reduction algorithm
based on a variable precision rough set in Reference [12] (test algorithm 2), and the algorithm proposed
in this paper (test algorithm 3) are shown in Table 2.

Table 2. Test results of different test algorithms (β = 0.9, ε = δ = 0.95) on the Wine dataset.

Algorithm Classification Precision (%) Runtime (ms)

1 98.23 269.87
2 98.37 268.54
3 98.45 268.39

The data in Table 2 show that test algorithm 3 performs well with respect to both classification
precision and runtime. The experiment results indicate that test algorithm 3 selects important attributes
and reduces the effect of noise on the classification results and the computation complexity of the
classification system. In particular, the classification precision is higher than of the precision in test
algorithm 1, which indicates the performance of the attribute importance measurement method while
the runtime is lower than that of test algorithm 2. This indicates the performance of the approximate
attribute reduction method.

6.2. Performance Evaluation of the Ensemble Classification Algorithm

To test the performance of the ensemble classification algorithm, the parameters of the experiments
were set as follows: β = 0.9, ε = δ = 0.95, L = 8, wb = 200 [10], η = 2 [9], α = 3 [9]
and ξ = 1 × 10−9 [10]. We compared the test results of five algorithms in the experiments
including the ensemble classification algorithm based on weighting and updating of base classifiers
in Reference [2] (test algorithm 4), the AUE algorithm based on nonlinear weighting and updating
of base classifiers in Reference [5] (test algorithm 5), the ensemble classification algorithm based on a
sliding window, double thresholds, and base classifier updating in Reference [8] (test algorithm
6), the ensemble classification algorithm based on attribute reduction and weight updating in
Reference [10], the classification error rate used to detect concept drift (test algorithm 7), and the
ensemble classification algorithm proposed in this paper (test algorithm 8).

6.2.1. Classification Precision Evaluation

To determine the algorithms’ performance with respect to gradual concept drift, sudden concept
drift, and real data, we verified the classification precision of each of the five algorithms on
three datasets. The classification results of the five algorithms on the HyperPlane dataset are shown in
Figure 1.

In Figure 1, three gradual concept drifts occurred at 25,000 instances, 50,000 instances and
75,000 instances (shown as vertical lines). As shown in Figure 1, the classification precision and
sensitivity to gradual concept drift of test algorithm 8 are higher than those of the other four test
algorithms. Test algorithms 4, 5, and 7 are less sensitive to concept drift than test algorithm 6 because
of their fixed data window. However, since test algorithm 6 does not promptly update the weights of
the base classifiers according to the classification error rate, its classification precision is lower than that
of the other four test algorithms. Experimental results verify the effectiveness of the weight updating
method of base classifiers and the variable sliding window method based on double thresholds.
It also indicates that the proposed attribute reduction algorithm effectively selects important attributes
and reduces the effect of noise on the classification results. Since the classification precision of test
algorithm 6 is the lowest one, subsequent experiments were performed using test algorithms 4, 5, 7,
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and 8. The classification results of these four test algorithms on the WaveForm dataset are shown in
Figure 2.

Figure 1. Classification precision of the five algorithms on the HyperPlane dataset.

Figure 2. Classification precision of the four algorithms on the WaveForm dataset.

In Figure 2, two sudden concept drifts occurred at 30,000 instances and 65,000 instances (shown as
vertical lines). As shown in Figure 2, the classification precision and sensitivity to sudden concept drift
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of test algorithm 4 are lower than those of test algorithm 5. Test algorithm 8 has a quicker response time
to sudden concept drift than the other two test algorithms because it adopts the attribute reduction
method and the variable sliding window method based on double thresholds. The higher classification
precision also indicates the effectiveness of test algorithm 8. Since the classification precision of test
algorithm 4 is the lowest one, subsequent experiments were performed using test algorithms 5, 7,
and 8. The average classification precisions of the three test algorithms on the Covertype dataset are
shown in Table 3 and these experimental results also demonstrate the effectiveness of test algorithm 8.

Table 3. Average classification precisions of the three algorithms on the CoverType dataset (%).

Dataset 8 5 7

CoverType 91.33 87.14 88.86

6.2.2. Memory Use Evaluation

The average memory use of test algorithms 5, 7, and 8 on the three datasets is shown in Table 4.

Table 4. Average memory use (MB) of the three test algorithms on three datasets.

Dataset
SN of Test Algorithm

8 5 7

HyperPlane 2.09 4.02 2.97
WaveForm 3.54 5.71 4.26
CoverType 4.21 6.13 5.14

As Table 4 shows, in terms of average memory use, test algorithm 8 performs better than the
other two test algorithms. In test algorithm 5, the memory use is increased because each new data
chunk is used to update the base classifiers. Test algorithm 7 reduces the attributes by comparing the
classification error rate of each attribute, which makes its average memory use greater than that of
test algorithm 8. The advantage of test algorithm 8 with respect to average memory use shows the
effectiveness of the attribute reduction algorithm and the variable sliding window control strategy.
For the WaveForm dataset, the attribute reduction results of test algorithm 8 are shown in Table 5.

Table 5. The number of reduced attributes on the WaveForm dataset.

Instance
Number of Reduced Attributes (The Unit of Sample Interval Is 200)

1 2 3 4 5 6 7 8

1–1600 22 24 21 23 21 22 21 22
30,000–31,600 24 22 23 22 21 21 22 22
65,000–66,600 23 23 22 22 21 21 21 22

In Table 5, the data points indicate the number of reduced attributes of every base classifier.
Every wb = 200 data points generate a base classifier and there are L = 8 base classifiers in all.
Attribute reduction was performed for every base classifier to maximize the difference between them.
The data values in the first row indicate the initial number of reduced attributes of every base classifier
when data have just arrived and the data in the other two rows indicate the updating of reduced
attributes when the new base classifiers are regenerated because of concept drift. As shown in Table 5,
the number of reduced attributes may be slightly larger than the relevant 21 attributes, but the error
is less than 3 attributes. The core data attributes are saved and the amount of data is reduced in test
algorithm 8.
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6.2.3. Time Efficiency Evaluation

The runtimes of test algorithms 5, 7, and 8 on the three datasets are shown in Table 6.

Table 6. Runtimes (s) of the three test algorithms on three datasets.

Dataset
SN of Test Algorithm

8 5 7

HyperPlane 23.21 51.22 39.56
WaveForm 46.34 173.65 106.74
CoverType 83.16 334.79 276.38

The data in Table 6 shows that the runtime of test algorithm 8 is much less than that of the
other two test algorithms. The runtime of test algorithm 5 is highest because of its updating strategy
among the base classifiers and lack of attribute reduction. Although test algorithm 7 uses the attribute
reduction method by comparing the classification error rate of each attribute, its runtime is still less
than that of test algorithm 5, which fully demonstrates the effectiveness of the attribute reduction
method in improving the time efficiency of large data processing.

7. Conclusions

To deal with the problem of noise and concept drift in data streams, the base classifier weight
updating method and the double-threshold concept drift detection method were introduced in this
paper to improve the classification precision of noisy data streams. By controlling the sliding window
size in three stages (slow start, drift monitoring, and fast recovery), the detection efficiency of both
gradual and sudden concept drift is improved. The approximate attribute reduction algorithm further
reduces the resource use and the influence of noise and redundant data in the ensemble classification
algorithm. The experimental results on synthetic and real data verify three aspects of the effectiveness
among the ensemble classification algorithm including classification precision, memory use, and large
gains in runtime. Our ongoing work is to decrease the result error of the attribute reduction algorithm
and improve the ensemble classification performance by evaluating the performance of each of the
base classifiers further.
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