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Featured Application: In this special issue, we only investigated the compare of two type DBD
reactors (CC-DBD and TM-DBD). However, further studies are required about the mathematic
relation between electrode structure parameters (electrode length, discharge gap and so on) and
electron energy. It is important for industrial application of DBD to understand the effect of
O2 content for NOx removal because O2 usually exist in industrial waste gas. The research for
electron energy of DBD by using VSim is an effective way, while relevant studies are rare. DBD
technologies are paid considerable attention by many scientists and I think the research results
in the paper would provide helpful information for the future investigation in the relevant
research filed.

Abstract: Electrode structure and electron energy effects on NO abatement were studied in two
different structure DBD reactors. Final product analysis of NO abatement in coaxial cylinder
dielectric barrier discharge (CC-DBD) and tubular multilayer dielectric barrier discharge (TM-DBD)
reactors indicated that the electrode structure of TM-DBD was better under low O2 concentration
conditions, but the result was opposite because the new NOx was produced in TM-DBD when O2

concentration was increasing. In addition, results of particle-in-cell with Monte Carlo collisions
(PIC-MCC) simulation manifested that the largest and the average electron energy were 12.09 eV and
3.35 eV in TM-DBD reactor, respectively, while they were 5.25 eV and 2.96 eV in CC-DBD reactor,
respectively. CC-DBD electrode structures are preferable for better NO abatement and no new NOx

under oxygen-containing condition.

Keywords: PIC-MCC simulation; NO abatement; electrode structure; dielectric barrier discharge
(DBD); electron energy

1. Introduction

NOx, one of the primary air pollutants, can cause various effects such as photochemical smog,
secondary aerosols, and tropospheric ozone [1–5], although NOx plays a positive role in biology [6].
Therefore, abatement of NOx is a subject of great concern around the world. Nonthermal plasma (NTP)
can destroy NOx in the gas stream with relatively low energy consumption, ease of operation, and
compact system. Dielectric barrier discharge (DBD), one of the most promising NTP generation
technologies at an atmospheric pressure with highly efficient and eco-friendly advantages, has
even paid attention by ‘plasma medicine’ [7] and particularly distinguished performance in the
decomposition of NOx via conventional methods [8–10].
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Given that NO is the main component of NOx in exhaust gas, the removal of NO is the core
problem involved in the denitration field [11–13]. Recently, substantial research work using DBD
reactors were developed for NO abatement [14–19]. Moreover, in most studies, high electron energy
was considered the key factor in controlling plasma processes for NO removal [20,21]. Therefore, many
researchers have paid attention to the investigation of improving the electron energy of DBD reactors to
achieve higher destruction and removal efficiency (DRE) of NO [22,23]. However, high electron energy
can lead to the production of new NOx by the oxidation of N generated from N2 dissociation in the DBD
reactor. Therefore, preventing new NOx production and improving the better by-product selectivity
gradually becomes a great concern on the NO abatement by DBD technique [24,25]. Many researchers
investigated the role of electron energy in NO abatement and studied several influencing factors
such as input power, electrode gaps and dielectric relative permittivity [26–40]. Nevertheless, limited
attention has been given to the relation between electron energy and electrode structure although the
latter is considered as one of the most important factors in controlling electron energy [41,42].

Numerical simulation, an effective tool in developing the NTP theories and determining the
operating parameters, has been developed in recent years [43,44]. Numerical study of the DBD
operation is conventionally focused on plasma modeling approaches, namely, fluid and kinetic plasma
description. Particle-in-cell with Monte Carlo collisions (PIC-MCC), a new plasma modeling approach,
has been verified to predict different types of discharge and to describe the breakdown stage of
discharge or plasma decay stage [45]. These modeling results can provide important information
about the qualitative description of the electron energy and the force generation by DBD plasma [46].
These results have illustrated the distribution of electron energy and active particles in the atmospheric
air. However, electron energy and its distribution in DBD reactors with different electrode structures
for NO abatement were not discussed.

This study aims to investigate the effect of electron energy and electrode structure on the
abatement of NOx and preferable by-product selectivity in two different DBD reactors. Reaction
products and chemical reaction mechanism of NO abatement were performed by Fourier transform
infrared (FTIR) to provide further analysis information on NO destruction and new NOx production.
Then, electron energy, electron energy distribution and partial discharge of two different plasma
reactors were investigated in a NO-N2-O2 system using PIC-MCC simulation method. The electrical
signals in DBD reactors were also analyzed to explore the discharge effect of electrode structures.
Based on experimental and numerical research, the mechanism involved and preferable means of
controlling the new NOx production in DBD reactor are also suggested. The results can provide useful
information on DBD application for NO abatement.

2. Experiment and Methods

2.1. Experiment

The schematic of the experimental system shown in Figure 1 was composed of a gas distribution
system, a reaction system and an analysis system. Figure 2 shows the two electrode structures of
plasma reactors that were designated as coaxial cylinder dielectric barrier discharge (CC-DBD) and
tubular multilayer dielectric barrier discharge (TM-DBD). The CC-DBD reactor consisted of an inner
high-voltage electrode (stainless steel sheet), two quartz tubes (outer tube with 20 mm diameter
and 200 mm length, inner tube with 12 mm diameter and 200 mm length), and an outer electrode
(aluminum foil). The quartz tubes were coaxial cylinder in shape with 4 mm gap.

The TM-DBD reactor consisted of three quartz tubes arranged in a row with 6.0 mm diameter
inner electrode and 31 mm length. The stainless-steel electrodes were inserted into the quartz tubes.
NO was prepared in cylinder containing very few N2O (1.98 × 10−3 ppm). The NO concentration
was 345 ppm and gas flow rate was fixed at 6 L/min. Mass flow controller (MFC) (SEC-4400, Horbia,
Kyoto, Japan) was used to adjust the flow of NO, O2, N2, and reactant gases.
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Figure 1. Flow diagram of experiment.

Figure 2. Simplified geometric modeling of TM-DBD and CC-DBD reactor.

The final products of NO degradation were measured by FTIR spectroscopy (Nicolet Nexus 470,
Thermo Fisher, Waltham, MA, USA) and the resolution of the FTIR is 1 cm−1. The plasma reactor
was driven by AC power supply (homemade power). The voltage was maintained at 5 kV (driven
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frequency of 20 kHz) and input power was 128 W measured by power meter (PF9800, Everfine,
Hangzhou, China).

Destruction and removal efficiency (DRE) of NO and NOx was calculated from the equations

DRE of NO(%) =
[NO]in − [NO]out

[NO]in
× 100% (1)

DRE of NOX(%) =
[NOx]in − [NOx]out

[NOx]in
× 100% (2)

2.2. Numerical Simulation

The simulation is performed by PIC-MCC method using the software VSim8.0 (Boulder, CO,
America, 2016) by Tech-X Corporation. The two types of DBD reactors with different electrode
structures are shown in Figure 2. The geometric structure and discharge modeling as well as geometry
parameters used in the simulation are also shown in Figure 2.

VSim is an efficient parallel PIC model, but few DBD simulations using VSim have been reported.
Therefore, the key setting of parameters is presented. In the simulation, the electromagnetic field was
calculated by 2D modeling based on Maxwell’s equations, and particle collision was handled by Monte
Carlo collisions. Only the collisions and movement process of electron have been taken into account in
model to simplify simulation. This simulation is 2D CFDTD (conformal finite-difference time-domain)
PIC code, which can run parallel with CPU cores. Those parameters used in PIC-MCC model are
shown in Table 1. We mainly used the electron movement data to examine the electron energy and the
effect on NO abatement by the numerical simulation in the TM-DBD and CC-DBD reactors. Other
data were VISM built-in data. The entire model was based on 2D Cartesian coordinates.

Table 1. Model parameters of DBD in VSim and Geometry parameters of CC-DBD and TM-DBD
in VSim.

Model Parameters of DBD in VSim

Grid numbers X ∗ Y ∗ Z = 100 ∗ 100 ∗ 200

Numbers of gyrating circles 50
Numbers of microparticle 50,000

Geometry Parameters of CC-DBD and TM-DBD in VSim

TM-DBD
RT/mm rT/mm DT/mm

3 1.5 4

CC-DBD
RC/mm rC/mm DC/mm RoC/mm

3 1.5 4 1

3. Results

3.1. Effect of O2 Concentration on DRE of NO and NOx

Figure 3 showed the DRE of NO and NOx under different O2 concentration in the TM-DBD and
CC-DBD reactors. O2 not only competitively shares the input power, but contributes to the oxidation
of NO. Therefore, the DRE of NOx decreases from 75% to 35% in CC-DBD reactor and from 87% to 20%
in the TM-DBD reactor with an increase of O2 from 0 to 15.9%. However, DRE of NO first decreases
and then sharply increases to 99% in CC-DBD reactor, while the DRE of NO first decreases and then
keeps little change at about 69% in the TM-DBD reactor. In addition, the results also indicated that
the DRE of NO and NOx in the TM-DBD reactor was better than in the CC-DBD reactor when O2

concentration was low, and the opposite result was seen under higher O2 concentration. Thus, it can
be seen that the electrode structure has important impact on the DRE of NO and NOx.
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Figure 3. Destruction and removal efficiency (DRE) of NO and NOx in TM-DBD and CC-DBD reactors
under different O2 concentration.

3.2. Final Product Analysis by FTIR

In order to get further information about NO abatement, the final products in the two reactors
were identified by FTIR.

Figure 4 showed the FTIR spectra of the final products for NO abatement in TM-DBD and
CC-DBD reactors when N2 was taken as the buffer gas. The results showed a decrease behavior for
NO abatement in two reactors except for the peak intensity.

Figure 4. FTIR spectra of the final products for NO abatement (NO concentration was 345 ppm, and
buffer gas was N2).



Appl. Sci. 2018, 8, 618 6 of 12

Compared with the untreated gas, the intensity of NO absorption decreased after discharge in all
reactors. The peak of N2O increased in CC-DBD, but it decreased in TM-DBD. Based on the facts, the
final products of NO abatement included N2O in CC-DBD. In addition, the peak intensity of NO and
N2O in TM-DBD correspondingly became weaker than them in CC-DBD. The results indicated that the
electrode structure of TM-DBD was better for abatement of NO and NOx under low O2 concentration.

Figure 5 showed the FTIR spectra for NO abatement with 345 ppm NO under the buffer gas of 8%
O2 and 92% N2 in the TM-DBD and CC-DBD reactors. Compared with the untreated gas shown in
Figure 4, the peak intensity of NO2 and N2O with the peaks at 2200 cm-1 and 1600 cm-1 all increased
obviously in the two reactors. The results indicated that the final products in the TM-DBD and CC-DBD
reactor included few N2O (about 9.9 × 10−3 ppm) and NO2, respectively. According to Figure 5, there
was still quite a peak intensity of NO in TM-DBD reactor while NO was almost not identified in the
CC-DBD reactor; moreover, the intensity of NO2 and N2O absorption in TM-DBD was higher than
that in CC-DBD. The difference between TM-DBD and CC-DBD was ascribed to the conclusion that
the DRE of NO as well as NOx was better in CC-DBD reactor under high O2 concentration.

Figure 5. FTIR spectra of final products for NO abatement in TM-DBD and CC-DBD reactor (NO
concentration was 345 ppm; buffer gas was 8% O2 and 92% N2).

To explore the difference of above experiment results, the mixture of 92% N2 and 8% O2 without
NO was induced into the TM-DBD and CC-DBD reactors. Figure 6 showed the FTIR spectra of the final
products produced in the TM-DBD and CC-DBD reactors, respectively. It can be seen that NO, NO2

and N2O were identified with the peaks at around 1900, 1600 and 2200 cm-1 in TM-DBD reactor, while
the final product was only O3 with the peak at around 1000 cm-1 in the CC-DBD reactor. The different
results indicated that N2 was dissociated by electron impact dissociation reactions in TM-DBD reactor,
namely, e+N2→e+2N and N would recombine with O and O2 to produce new NOx in the TM-DBD
reactor, which also verified the results of the final products shown in Figure 5. O2 dissociation could
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occur in TM-DBD but O3 was not detectable, because it is selectively consumed by NO. However, in
the CC-DBD reactor, only the identification of O3 production was determined and no evidence of N2

dissociation reactions could be seen.

Figure 6. FTIR spectra of final products for N2/O2 system in the TM-DBD and CC-DBD reactors.

Above all, NO abatement was performed mainly through the reduction channel in the TM-DBD
and CC-DBD reactors under low O2 concentration, and moreover, the electrode structure of TM-DBD
was preferable. However, When O2 concentration increased, O· produced by the dissociation of O2 in
reaction system rapidly enhanced and the channel of oxidation reaction was predominant. The new
NOx, generated from the reaction of N+O→NO, N+O2→NO+O, and NO+O→NO2 [21] cannot be
ignored in the TM-DBD. The electrode structure of the CC-DBD reactor was advantageous under high
oxygen conditions. The results also revealed that the electrode structure was the key role in the new
NOx produced in the DBD reactors.

3.3. Numerical Simulation Result

Numerical simulation was a method of investigating the relationship between discharge
parameters and electron energy. Figure 7 demonstrated the electric potential distribution of two
types of electrode structures in the TM-DBD and CC-DBD reactors. Similarly, the voltage was linearly
decreasing from anode to cathode in the two reactors, and the electromagnetic field was uniform
distribution in the CC-DBD reactor, while that was stronger in the central discharge zone in the
TM-DBD reactor with nonuniform voltage distribution.
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Figure 7. Electric potential distribution of the TM-DBD and CC-DBD reactors (DBD was driven by 5
kV, 20 kHz AC power). (a) TM-DBD; (b) CC-DBD.

The distribution of electron velocity and electron drift in the space of the CC-DBD and TM-DBD
reactors are shown in Figure 8. Once the plasma was generated and the number of micro-discharges
inside the cell exceeded the threshold limit (10 macro-particles per particle), the particles were
combined into larger micro-discharge [47]. Electron velocity distribution presented periodic drift
as a variation of discharge voltage. According to Figure 8, electron velocity distribution was more
balanced in the CC-DBD reactor. Summing up the electron velocity data of simulation, the largest
electronic velocity and average electron velocity were 1.345 × 106 m/s and 1.014 × 106 m/s in the
CC-DBD reactor, respectively. On the other hand, electron velocity distribution in the TM-DBD reactor
was typical Poisson distribution [48] and stronger in the center area between the two electrodes.
The maximum and average of electron velocity were 2.052 × 106 m/s and 1.081 × 106 m/s in the
TM-DBD reactor, respectively.

Figure 8. Distribution of electron velocity in the CC-DBD and TM-DBD reactors (5000 particles were
randomly selected for this plot). (a) TM-DBD; (b) CC-DBD.

Considering that the motion energy of the electron is predominant in a plasma reactor, we
determined the electron energy based on electron velocity distribution. The largest electron energy



Appl. Sci. 2018, 8, 618 9 of 12

and average electron energy in the TM-DBD reactor were 12.09 eV and 3.35 eV, respectively. While
they were 5.25 eV and 2.96 eV in the CC-DBD reactor, respectively.

The bond energies for N2, NO and O2 were 9.76, 6.5 and 5.12 eV, respectively [49]. Thus, O2 could
be dissociated all in TM-DBD and CC-DBD reactors in view of the largest electron energy of 12.09 eV
and 5.25 eV respectively in the two reactors, but N2 could be decomposed into N· by the electron
impact dissociation reaction only in the TM-DBD reactor.

4. Discussion

Based on the above facts, the possible reaction channels [28] involved in two reactors under
different O2 concentration were shown in Table 2.

Table 2. The reactions in CC-DBD and TM-DBD under different O2 concentrations.

CC-DBD

Low O2

e+NO→e+NO*
NO*+NO*→N2O+O
NO*+NO*→N2+O2

High O2

e+NO→e+NO*
e+O2→e+2O

NO*+O→NO2
NO*+NO*→N2O+O

O+O2→O∗3
O∗3+M→O3

O3+NO→NO2+O2

TM-DBD

Low O2

e+N2→e+2N
e+NO→e+N+O
NO+N→N2+O

High O2

e+N2→e+2N
e+O2→e+2O

e+NO→e+N+O
NO+O→NO2

N+O→NO
N+O2→NO+O

N+NO2→N2O+O

In the TM-DBD and CC-DBD reactors, the reduction reactions were the main channels for NO
abatement under low O2 concentration, while the channel of oxidation reaction was predominant
when O2 concentration increased.

As the result, the electrode structure of TM-DBD was preferable when O2 concentration was
low, but the electrode structure of CC-DBD was better under high O2 concentration condition. In
other words, at low O2 concentration, a higher electron energy yielded a better DRE of NO and NOx,
while the opposite result was seen when O2 concentration increased. These results verified that the
electrode structure influenced the electron energy and further decided the production of new NOx in a
DBD reactor.

5. Conclusions

The DRE of NO and NOx were obviously influenced by electrode structure. Under deficient
oxygen, better DRE of NO and NOx is realized in the TM-DBD, and the electron impact dissociation
mainly determined the destruction rate of NO with the conversion products of N2 as well as N2O.
When O2 concentration increased, the DRE of NOx decreased, whereas the DRE of NO decreased and
then increased in the two DBD reactors. Under O2 abundant conditions, NO was actively turned into
NO2 by the oxidation reaction. Higher DRE of NO and NOx is realized in the CC-DBD reactor because
new NOx was produced by the oxidation of N generated from N2 dissociation in the TM-DBD reactor.
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The simulation results showed that the electron energy distribution in the TM-DBD reactor was
typical Poisson distribution differing from the CC-DBD reactor. The largest electron energy and
average electron energy were 12.09 eV and 3.35 eV in the TM-DBD reactor, respectively, while they
were 5.25 eV and 2.96 eV in the CC-DBD reactor, respectively.

These experimental and simulation results verified that enough energy could initiate the reaction
of N2→2N and then produce new NOx in the presence of O2 in the TM-DBD reactor. Therefore, the
electrode structure of the CC-DBD reactor is preferable for better NO abatement and fewer new NOx

generation in the DBD reactor under higher O2 concentration condition.
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