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Abstract: A quartz Bulk Acoustic Wave resonator is designed to coherently trap phonons in such
a way that they are well confined and immune to suspension losses so they exhibit extremely high
acoustic Q-factors at low temperature, with Q × f products of order 1018 Hz. In this work we
couple such a resonator to a Superconducting Quantum Interference Device (SQUID) amplifier and
investigate effects in the strong signal regime. Both parallel and series connection topologies of
the system are investigated. The study reveals significant non-Duffing response that is associated
with the nonlinear characteristics of Josephson junctions. The nonlinearity provides quasi-periodic
structure of the spectrum in both incident power and frequency. The result gives an insight into the
open loop behaviour of a future Cryogenic Quartz Oscillator in the strong signal regime.
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1. Introduction

In the past ultra-stable low phase noise photonic frequency sources have been implemented for
a range of applications including very high precision probes of fundamental physics, high precision
oscillators as local oscillators for atomic clocks and advanced radar systems [1–4]. The best results
at microwave and radio frequencies to date have been those derived from sapphire oscillators at
room [3,4] and cryogenic temperatures [1,2,5] as well as lasers locked to optical cavities down converted
through a frequency comb [6–10]. For example, such oscillators have been exploited to demonstrate
possible violation of the Lorentz symmetry in the photon sector [1]. Though the photonic devices have
extraordinary stability, they can be used to test only certain range of physical phenomena, and devices
where the resonance conditions depend upon mechanical motion of matter can test totally different
sectors including frequencies of the bulk elastic waves, which are sensitive to the photon-, electron-,
proton- and the neutron-sector. Moreover, recently new oscillator systems with rival performance of
pure photonic systems have been demonstrated involving high-Q frequency stable phonon systems.
Such systems include but are not limited to, phonon lasers [11], optomechanical systems [12–14] and
phonon induced Brillouin scattering devices [15–19].

Traditionally, the most stable oscillators based on acoustic resonance have been realised from
technology based on Bulk Acoustic Wave (BAW) resonators, which trap phonons in a cavity in
a similar way to a Fabry Perot cavity. These techniques have been perfected for decades allowing
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precision room temperature oscillators and related devices, culminating in Q × f products as high
2 × 1013 Hz and oscillator frequency stability reaching below 10−13 between 1 and 10 s of integration
time [20]. Only recently has this technology has been extended to cryogenic temperatures attaining
Q × f products as high 2 × 1018 Hz. Thus, such cryogenic BAW systems shows great potential
for use in applications that require precision control, measurement, and sensing at the quantum
limit. This is mainly due to the relatively high mechanical frequencies and extremely high Q-factors
achievable at cryogenic temperatures (Q ≈ 1010) [21] for frequencies ranging from a MHz to tens
of GHz, beyond the capability of any other competing technology compared in Aspelmeyer et al.
and others [22–25]. Such high-Q devices with nonlinear properties are very valuable in many areas
of physics. This includes quantum metrological applications where nonlinearities are employed
to perform quantum state preparation [26]. In regards to creating low noise oscillators, nonlinear
processes are used to create a limit cycle in feedback frequency to maintain stable output power.

The further improvement of BAW oscillators can only be achieved by cooling the resonators
and reducing the resonator flicker phase self-noise, since this is the dominant noise source both at
cryogenic and room temperature. The influence on the frequency stability of high-performance quartz
oscillators on time scales of order 1–50 s is well-documented and it has been observed that the flicker
self-noise decreases with decreasing power of the incident signal, and our recent results confirm that
the resonators are thermal noise limited, and flicker-free without the carrier [27]. Thus, the noise
in the quartz oscillator is dependent on power, with the white noise floor decreasing with power,
while the flicker noise increases. The best quartz typically has frequency instabilities of better than
10−13 limited by flicker fluctuations. However at cryogenic temperatures the white noise floor is
reduced by 40 dB, allowing a much lower oscillator power and a large reduction of the flicker noise
so the increased Q-factor may be exploited. Assuming the typical phase noise of −130 dBc/Hz at
1 Hz Fourier frequency limited by the resonator self noise, the increase in Q-factor at 4K should see
frequency instabilities as low as 2 × 10−16 [28], and if this can be pushed down further due to power
optimisations it is strongly feasible to push the stability into the 10−17 regime. The other advantage at
low temperatures, is the significantly reduced temperature coefficient, in the standard quartz BAW,
the coefficient is annulled at around 1 K in operating temperature [29]. However, this value may be
raised by varying the cut angle with respect to the anisotropy of quartz [30].

Although, in general all devices are nonlinear in nature, the feasibility to achieve nonlinear
regimes are usually limited for a variety of reasons. For example, these regimes usually require
considerably high amounts of incident power that may also cause nonlinear effects in auxiliary
components, induce noise processes such as flicker noise, and cause the heating. So, in order to
reduce this threshold of nonlinearity, it is required to reduce the system losses and increase nonlinear
interactions. These requirement, in particular for BAW devices, usually contradict each other leading
to trade offs. Another possible solutions is to utilise ultra high Quality factor resonators and couple
them to a nonlinear superconducting circuit with a low threshold power. The former can thus provide
very narrow spectral lines, while the latter adds the strong nonlinearities required at low powers.
Thus, our goal to achieve better performance is to couple BAWs at low temperatures [27] to SQUID
amplifiers [31] and operate them with low power oscillations of order −80 dBm. To further increase
the power output, a chain of regular cryogenic ultra-low noise amplifiers will be used allowing us to
generate reasonable power of order 10 dBm, with fractional frequency instabilities of 10−16 or better.
In this work we make the first step towards this goal and show the large signal characteristics of
a SQUID coupled to a BAW resonator. Similar SQUID-mechanical resonator systems have been used
in the past as Gravity Wave detectors [32–34] and more recently as quantum hybrid systems [35,36]
but only in the non-driven or weakly driven regimes.

2. Results: Towards a Cryogenic Quartz Oscillator

One of the major requirements for feedback oscillators is an existence of a nonlinear element used
to to create a limit cycle by transferring the main tone energy to higher harmonics. Despite the long
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history of classical feedback oscillators, the latter problem has recently emerged again for designing of
CQO. Typically a CQO operating around 7 K has an extremely high power dependence with a power
coefficient of frequency of order 1 Hz µW at −30 dBm of input power, about 1000 times higher than
a room temperature oscillator [37]. A solution is to utilise an ultra high Quality factor resonator coupled
to a nonlinear superconducting circuit to lower the threshold power. The BAW resonator can thus
provide very narrow spectral lines, while the superconducting circuit adds the strong nonlinearities
required at low powers. In this work we utilizes a Superconducting Quantum Interference Device
(SQUID) circuit [31] coupled to a high Q BAW Cavity [27].

The connection topologies involve a SQUID input coil, a two electrode BAW resonator and
an external signal source. The parallel connection is realised when all three devices share the same
voltage (see Figure 1A), and the series connection, when the three devices form a single current contour
(see Figure 1B). These topologies may be understood as loaded feedback QCO with an open-loop.
In both cases, the SQUID-BAW system is cooled down to 3.8 K with a conventional pulse-tube
cryocooler. The acoustic resonator is an SC-cut [38] BVA (electrodeless) [39] quartz BAW device (1 mm
thick, 30 mm diameter), whereas the SQUID is a commercial Niobium amplifier for which the current
bias is applied across the loop. The SQUID amplifier does not have additional noise cancellation,
and its flux bias is static. Bias parameters are tuned to maximise gain in the small signal case that is
estimated to be 1.2 MOhm in terms of transimpedance relating input current and the output voltage.
Both devices have been used for Nyquist noise measurements at liquid helium temperatures [27].

The signal is fed through a long coaxial line ending at a −60 dB cold attenuator. The output signal
of the cold part of the DC SQUID amplifier is retrieved via a micro-coaxial line, which is connected
to and read out by a room temperature amplifier. All the data is acquired by a Vector Network
Analyser locked to a Hydrogen maser providing extra frequency stability over long averaging times.
Long averaging times are required to keep the measurement bandwidth as low as 3–10 Hz in order to
avoid system ringing due to very high Quality factors.

BAW
SQUID

-60 dB

   SQUID

CONTROL

3.8K

BAW
SQUID

-60 dB

   SQUID

CONTROL

3.8K(A) (B)

Figure 1. Experimental setups representing two ways to connect a Bulk Acoustic Wave (BAW) resonator
and a Superconducting Quantum Interference Device (SQUID) amplifier: (A) parallel connection,
(B) series connection.

The BAW resonator equivalent model may be represented by an equivalent circuit comprising
a number of motional branches and a shunt capacitance. Each motional branch is a series connection
of resistive, capacitive and inductive components. In this work we limit the investigation to a few
low order modes that fall into the frequency range of the SQUID amplifier. The nonlinear response of
mechanical resonators can be usually approximated by the Duffing model [40–43] arising from the
nonlinear elastic terms of the constitutive equations or thermoelectroelasticity [44]. This holds true
for the ultra-high Quality factor cryogenic BAW resonators under investigation in this work [24,45],
with the exception of resonators which are not swept of impurities and as a result have a large
amount [46].
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The amplifier is a standard DC Niobium SQUID device with an nominal input inductance of
400 nH and the transfer coefficient of about 300 µV/φ0. The experiment was repeated with two
identical amplifiers with similar results. For each experiment the SQUID bias was kept in such a way
that the system works on the linear part of its characteristic.

Figure 2 shows the amplitude and phase response of the parallel system as a function of the
incident power and frequency of excitation in the vicinity of the 3rd overtone of the C bulk acoustic
mode (4.993027 MHz), with the periodicity of the power dependence apparent and demonstrated
further for three values of the detuning signal. These dependencies can not be described by the Duffing
model used to describe the response of bare mechanical resonators and requires full trigonometric
function representation. It is seen that in both frequency and power the system response is best
described by chirp functions. The applied powers are too low to induce the resonator own nonlinearity,
and the same type of response is observed for all low frequency BAW modes with the nonlinearity
becoming apparent at different power levels depending on the mode Quality factor and motional
resistance (which describes the electromechanical coupling). For the 3rd overtone of the C bulk acoustic
mode, the Quality factor is 4.9 × 107 as found from Nyqvist noise spectrum [27].

(A) (B)

(C)

(D)

(E)

(F)

Figure 2. Top: Amplitude (A) and Phase (B) response of the parallel system as a function of the incident
power in the vicinity of the 3rd overtone of the C bulk acoustic mode (4.993027 MHz). Bottom Left:
Amplitude (C) and Phase (D) response as a function of power for three specific values of the detuning
frequency from the data represented on the left. Bottom Right: Amplitude (E) and Phase (F) response
for three specific values of the incident power from the data represented on the left.

Figure 3 shows the amplitude and phase response of the series system as a function of the incident
power and frequency of excitation in the vicinity of the 5th overtone of the A (quasi-longitudinal) mode
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(15.732444 MHz). In addition to quasi-periodic structure of the spectrum, the system demonstrates
symmetry around the resonance frequency in the linear regime: mirror symmetry for the magnitude
and diagonal symmetry for the phase. Also, similar to the parallel connection results, the intrinsic
BAW nonlinearity is not observed. For this mode, the Quality factor is 27 × 107 obtained from Nyqvist
noise spectrum [27].

(A) (B)

(C)

(D)

(E)

(F)

Figure 3. Top: Amplitude (A) and Phase (B) response of the series system as a function of the
incident power in the vicinity of the 5th overtones of the A (quasi-longitudinal) mode (15.732444 MHz).
Bottom Left: Amplitude (C) and Phase (D) response as a function of power for three specific values of
the detuning frequency from the data represented on the left. Bottom Right: Amplitude (E) and Phase
(F) response for three specific values of the incident power from the data represented on the left.

The system Hamiltonian (in the units with h̄ = 1) can be written based on the equations of motion:

H = ωma†a + ωJ ∑
i

( q2
i

2
+

δ2
i
2

− ξ cos δi

)
− ωJδ1δ2 − ωJ(φ+δ1 + φ−δ2) − g(a† + a)(δ1 − δ2) (1)

where a (a†) is an annihilation (creation) operator for an acoustic mode, ωm is an angular frequency
of the mechanical mode, qi and φi are conjugate variables for two SQUID branches, ωJ = 1/

√
CJ LJ

is the Josephson junction plasma frequency, φ+ and φ− are properly scaled biasing current and flux,
ξ = I0

φ0
LJ . The charge terms containing qi may be removed since the effect of shunting capacitances

is negligible at the working frequencies. It is also worth noting that none of the higher order modes
of the resonator is an integer or rational multiple of the modes of interest. The deviation from being
integer multiples of the fundamental mode for quartz resonators is due to the piezoelectric effect.
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Nevertheless, direct simulation of this system is associated with certain difficulties. For example,
low dimensional nonlinear physical models are often treated asymptotically using perturbation
techniques, which utilize only one higher harmonic [47,48]. Though this technique is able to give
adequate approximations for weakly nonlinear systems, in contrast systems with strong nonlinearities
require complex numerical techniques such as the Harmonic Balance approach. The Harmonic Balance
approach is a powerful technique to simulate the steady-state response of nonlinear systems in
the frequency domain [49,50]. Generally, this numerical approach splits a system into a linear and
nonlinear parts and requires representation of each variable in a series of harmonics. Whereas the
linear part represents the dynamical response at each frequency, the nonlinear part mixes the harmonic
components. As a result the system is represented by a set of nonlinear algebraic equations that are
solved numerically. The more advanced versions of this methods have been implemented for solving
nonlinear circuit problems [51,52]. These types of software for designing nonlinear electrical circuits
may be used for further numerical system analysis and design of future related devices.

3. Discussion

Understanding of the nonlinearity of a SQUID amplifier coupled to a high-Q resonator is
important for designing of a future Cryogenic Quartz Oscillators. The experiments presented in
this work present results for open loop response of possible CQO topologies. Being a necessary
condition for any feedback oscillator to create a limit cycle, the degree of nonlinearity controls the
phase noise budget trade off. The strong low power nonlinearity keeps the oscillator circulating power
low, which will typically reducing the flicker noise (the main limit in room temperature oscillators)
but increasing the effect of thermal fluctuations due to the weaker signal to noise ratio of the acoustic
resonance frequency determination. Weaker nonlinearity needs higher circulating power for saturation,
thus minimising the thermal noise but inducing excess flicker noise [53]. For CQO, thermal noise is
naturally reduced by orders of magnitude by keeping the temperature low, so the SQUID-BAW system
gives a way to reduce the oscillator power significantly to keep flicker noise as low as possible. Thus,
this work is an enabling step towards producing high frequency stability [54] beyond the limit achieved
at room temperature devices [20] required for some tests of fundamental physics, e.g., the Lorentz
invariance in the neutron sector [28].
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