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Abstract: With the rapid growth of electricity demands, many traditional distributed networks
cannot cover their peak demands, especially in the evening. Additionally, with the interconnection
of distributed electrical and thermal grids, system operational flexibility and energy efficiency
can be affected as well. Therefore, by adding a portable energy system and a heat storage tank
to the traditional distributed system, this paper proposes a newly defined distributed network
to deal with the aforementioned problems. Simulation results show that by adding a portable
energy system, fossil fuel energy consumption and daily operation cost can be reduced by 8% and
28.29%, respectively. Moreover, system peak load regulating capacity can be significantly improved.
However, by introducing the portable energy system to the grid, system uncertainty can be increased
to some extent. Therefore, chance constrained programming is proposed to control the system while
considering system uncertainty. By applying Particle Swarm Optimization—Monte Carlo to solve the
chance constrained programming, results show that power system economy and uncertainty can be
compromised by selecting appropriate confidence levels α and β. It is also reported that by installing
an extra heat storage tank, combined heat and power energy efficiency can be significantly improved
and the installation capacity of the battery can be reduced.

Keywords: chance constrained programming; portable energy resources; decoupling heat and power;
microgrid; particle swarm optimization; Monte Carlo simulation

1. Introduction

In order to fully develop the benefits of renewable energy generation systems, the integration
and optimization of microgrids have become hotspots of recent research [1]. The microgrid is a
new type of network supply and management technology, which can provide convenient access to
renewable energy systems. Today, it plays an increasingly important role as the supplementary of the
main grid [2,3]. However, with the rapid development of the industry, the electrical demands of a
distributed network are increased sharply, which makes it difficult to meet network peak demand,
especially in the evening.

To cope with the rapid growth of network electrical demands, it was the first time that a portable
energy resource system was introduced in [4] to regulate peak demand and to participate in system
demand response program. By adding an extra portable energy system, this can increase system peak
load regulating capacity; however, this method can result in the increase of system uncertainty and
this method also neglects system thermal demand.
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As for the increase of system uncertainty, it is mainly caused by the added renewable energy
generators. As reported in [5–7], it is very difficult to predict wind output because of the high
randomness of the wind speed, which makes it troublesome to accurately control the small-scaled wind
turbine system. Moreover, scattered solar radiation increases the difficulty in predicting photovoltaic
(PV) panel output, which is clearly demonstrated in [8–10]. Therefore, after adding a small-scaled
portable wind turbine and a set of PV panels to the distributed microgrid, system uncertainty can be
increased to some extent.

Additionally, by simply adding an extra portable energy system to the distributed network,
Tabar V. S. et al. neglect the influence of the newly introduced portable energy system on heat loads [4].
Considering that sizing and controlling combined heat and power (CHP) units are mainly dependent
on the heat loads [11], simply introducing a portable energy system can lead to the CHP generating
redundant heat or power [12]. In [13], an economic operation model of the CHP is established, and it
demonstrates that the output power of the CHP is constrained by the thermal demand, which can
affect the peak load regulating capacity of the CHP. In [14], it is reported that the coupling effect of heat
and power can cause the wind turbine power curtailment condition, which reduces energy efficiency.
Therefore, it is quite uneconomic if the portable energy resource system is directly connected to the
distributed network without decoupling heat and power.

To solve system uncertainty, many existing mathematical models have been developed in previous
literature; for example, the expected value model, fuzzy programming and chance constrained
programming, and so forth [15–17]. Compared with other models, chance constrained programming
is more flexible, and it can coherently consider the uncertainty variables in the objective function and
the constraints. Therefore, in this paper, chance constrained programming is applied to model the
economy and safety operation of the distributed network. In previous literature, many optimization
algorithms have been raised to solve chance constrained programming; for example, the genetic
algorithm, the ant colony algorithm, and the particle swarm optimization [18–20]. Compared with
other algorithms, the particle swarm optimization (PSO) algorithm has the obvious advantages of
easy implementation, fewer parameters, and better optimization ability. However, the PSO algorithm
needs fixed parameters and it cannot be used to deal with the stochastic variables in an efficient way.
Therefore, the stochastic variables need to be converted to the fixed variables before implementing
the PSO. It is stated in [21] that the Monte Carlo simulation is an efficient tool to model electrical
characteristics of power systems, which makes it possible to covert the stochastic variables (e.g., outputs
of wind turbines, PVs, and electric loads) to the fixed variables. Therefore, this paper develops a
combined Particle Swarm Optimization—Monte Carlo (PSO–MC) algorithm to optimize the chance
constrained programming, which eliminates stochastic variables and reduces operation parameters.

To deal with the coupling effects of heat and power in energy system optimization, an extra
thermal energy storage system is added to the microgrid to increase the system operation efficiency
and the peak load regulating capacity in [22]; and in [23], a boiler and a thermal energy storage tank are
installed in the microgrid to decouple heat and power, which increases the flexibility of CHP operation.
Therefore, based on the existing research, to improve network efficiency, an extra heat storage tank is
installed to the distributed network to decouple heat and power.

Therefore, the main contributions of this paper can be summarized as follows: (1) it is the first
time that a portable energy storage system is installed in the microgrid to increase power system
peak load regulating capacity, taking thermal demand into consideration; (2) the combined PSO–MC
algorithm is proposed to optimize power system operation, which reduces the stochastic variables
and accelerates computation speed; (3) a heat storage tank is introduced to the distributed microgrid
to decouple heat and power, and by doing that fossil energy efficiency is significantly improved and
battery installation capacity is reduced as well.
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2. Modelling of Microgrids

In this section, the structure of a newly defined microgrid will be introduced at the beginning.
In the following part of this section, the mathematical power flow models and economic evaluation
models of all energy carriers are reviewed, to prepare for optimizing the power flow within the
distributed network in the following sections.

2.1. The Structure of Microgrids

As shown in Figure 1, a traditional microgrid normally equips a distributed wind turbine system
and a PV system to supply electrical power. However, renewable generators have great uncertainties
compared with fossil fuel generators. To cope with the uncertainties caused by renewable energy
systems, there are two key solutions. First, connect the renewable energy system to the grid and
equip local fossil fuel generators (for example, fuel cells). By introducing fossil fuel generators to
the distributed network, the uncertainties caused by the renewable system can be improved to some
extent. Alternatively, batteries are one of the best choices to deal with the uncertainties caused by the
renewable energy system. They can be charged by the redundant electrical power generated by the
renewable energy system, and they can also be discharged immediately when needed.

Figure 1. The structure diagram of a newly defined microgrid.

For a traditional microgrid system, it needs some thermal generators to generate and store thermal
energy. CHP is one of the most widely used infrastructures in traditional distributed networks due
to its high output efficiency. However, CHP couples electrical and heat outputs together, and in
this context, redundant heat may be generated by CHP when it is used to supply electrical demand.
Therefore, a heat storage tank is installed together with CHP to decouple heat and power in this paper.
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With the increasing number of electrical loads, traditional microgrids cannot cover all electrical
demands, especially in the peak demand time [24]. In this paper, it is the first time that the portable
energy system is connected to the distributed network to supply power at the peak demand time while
considering the coupling effects between heat output and electrical output.

2.2. Modeling of Different Energy Carriers

In this section, the mathematical power flow models of all energy infrastructures shown in Figure 1
are proposed to illustrate the work conditions of different energy carriers. Additionally, the economic
evaluation models of all energy carriers are analyzed in this section.

2.2.1. Portable Resources Modeling

A portable renewable energy generation system includes three parts: a small-scaled portable
wind turbine, a set of PV panels, and an energy storage system.

Portable Wind Turbine Modeling

The output power of a portable wind turbine system can be greatly influenced by the wind
speed, blade area, and air density, and the mathematical expression of the wind turbine system can be
expressed as:

PWT,PORT =

{
0 v < v′i or v > v′0
0.5 · ρ · A · ηwmin(v, vnom)3 v′i ≤ v ≤ v′0

(1)

Portable PV System Modeling

The output power of a PV system can be directly affected by the ambient temperature and light
intensity [25]; therefore, the output power of a portable PV system can be approximately equal to
Equation (2):

PPV,PORT(t) = PPV,STC ·
GT(t)
GTSTC

· (1− γ · (Tb(t)− Tr)) (2)

where:

Tb(t) = Tamp(t) +
GT(t)
GTSTC

· (TNOC − 20) (3)

Portable Energy Storage System Modeling

By participating in demand–response activities, local consumers can achieve the financial
incentives granted by the government. Moreover, the operational cost of a portable energy storage
system is relatively low compared with importing energy from the main grid; therefore, local
users’ total energy cost can be reduced significantly by installing a portable energy storage system.
Equation (4) is the mathematical expression of the profit that consumers can obtain by participating in
demand–response activities.

BB,PORT =
T

∑
t=1

PB,PORT(t) · RPORT · θ (4)

where:
PB,PORT(t) = (PWT,PORT(t) + PPV,PORT(t)) · ηB,PORT (5)

2.2.2. CHP System Modeling

CHP has many potential advantages, for example, high energy efficiency, easy maintenance,
and environmental friendliness. However, with the increasing number of CHP units, redundant
electricity would be generated at a low-demand time, which can decrease the penetration rate of



Appl. Sci. 2018, 8, 567 5 of 18

renewable energy. Therefore, state-of-the-art CHP units are installed together with heat storage tanks
to decouple heat and power.

CHP Unit Modeling

For a gas engine CHP unit, the electrical output is constant if it works at the rated condition.
The thermal output is related to the electrical output and the heat-to-power ratio of the CHP. Therefore,
the mathematical expression of the CHP thermal output can be formulated as:

QCHP(t) = PCHP(t) · RHP (6)

where:

RHP =
(1− ηCHP − ηCHP,loss)

ηCHP
(7)

Even though gas engine CHP units are relatively environmentally friendly, they need to consume
fossil fuel to generate heat and power. The cost of spending on the fuel cell is [13]:

CCHP, f =
c
L
· θCHP

PCHP
ηCHP

(8)

Heat Storage Tank Modeling

The total thermal energy stored in the heat storage tank at time t (EHST (t)) is directly related to
the thermal energy stored in the heat storage tank at the previous time interval (EHST (t − 1)) and the
heat storage charge efficiency (ηHST,ch)/discharge efficiency (ηHST,dis), and it can be expressed as [26]:

EHST(t) =

{
EHST(t− 1) + ηHST,ch ·QHST(t) · θHST , QHST(t) ≥ 0
EHST(t− 1) + ηHST,dis ·QHST(t) · θHST , QHST(t) < 0

(9)

2.2.3. Fuel Cell System Modeling

The output power of fuel cells is directly related to its power generation efficiency and its
installation capacity. Taking 40 kW IFC PC-29 fuel cell as an example, the mathematical expression of
the fuel cell system output and system fuel cost can be expressed as [27,28]:

PFC(t) = −434.78 · ηFC + 292.83 (10)

CFC, f =
c
L
· θFC ·

PFC
ηFC

(11)

2.2.4. Battery System Modeling

There are three main states of a battery storage system, which are discharging, standby, and
charging states. It is worth noting that battery storage systems can be charged or discharged at any
time to collect or supply redundant power for distributed power systems, and they are not necessarily
discharged at the peak price/demand time, compared with a portable energy storage system. As a
core parameter to represent the amount of electrical energy left in a battery, the state of charge (SOC) is
defined as [29]:

SOCB(t) =


SOCB(t− 1)− PB(t)θBηB,dis

EB
PB(t) > 0

SOCB(t− 1) PB(t) = 0

SOCB(t− 1)− PB(t)θBηB,ch
EB

PB(t) < 0

(12)

Considering that the operational cost of a battery system is relatively low [30,31], the operational
cost of implementing the battery storage system is neglected.
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2.2.5. Renewable Energy Generator Modeling

The mathematical expressions of their outputs are similar to that of the portable wind turbine and
portable PV systems, which are clearly demonstrated in Equations (1) and (2). Therefore, it will not
be introduced in this part. Because renewable energy generators do not need to consume any fuel to
generate power, the fuel costs are negligible for the wind turbine and PV systems.

In this section, the structure of the newly introduced microgrid system is introduced, and the
mathematical power flow models and economic evaluation models of all energy carriers have been
demonstrated. To optimize the distributed power system in a more feasible way, chance constrained
programming is introduced to deal with power system constraints in the next section.

3. Constraints of Power System Operation

The economic energy dispatching of distributed networks is a complex constrained optimization
problem, which contains multiple random variables. However, the classical method—the determined
planning method—has difficulty in dealing with random variables accurately and efficiently. Therefore,
chance constrained programming is proposed in the recent literature [17], to solve the uncertainties
caused by the random variables.

3.1. The Objective Function

This paper tries to minimize the operational cost of the microgrid while taking carbon emissions
into consideration. In addition, by setting the confidence level to restrain the objective function and the
constraints, the stability of the distributed system can be guaranteed. Therefore, an objective function
of the economic energy dispatch problem, which coherently considers system carbon emissions and
operational cost, can be expressed as follows:

min Fm =
T
∑

t=1
(

N
∑

i=1
Ci,c+m(t) + CG(t) + CCHP, f (t) + CFC, f (t)

+ CCHP,e(t) + CFC,e(t)− BH(t)− BB,PORT(t))
(13)

As demonstrated in the aforementioned sections, renewable power generation and electrical
demands have great uncertainties. In other words, the distributed power system cannot be controlled
as planned. Therefore, in realistic cases, the objective function needs to be transformed into the into
the chance constrained form, which tolerates random events. The specific mathematical expression of
the objective functions can be expressed as:

min Fm

Pr{ F =
T
∑

t=1
(

N
∑

i=1
Ci,c+m(t) + CG(t) + CCHP, f (t) + CFC, f (t)

+CCHP,e(t) + CFC,e(t)− BH(t)− BB,PORT(t) ≤ Fm} ≥ α

(14)

3.2. Power System Operation Constraints

3.2.1. Constraints of Power Balance

To keep the power system working in a stable condition, it is necessary to meet the requirement
of the power balance between supply and demand for a distributed microgrid. Equation (15) shows
the constraint of balance power in a distributed microgrid.

PL(t) = PB,PORT(t) + PWT(t) + PPV(t)+
PCHP(t) + PB(t) + PFC(t) + PG(t)

(15)



Appl. Sci. 2018, 8, 567 7 of 18

3.2.2. Constraints of Heat Balance

To keep the power balance in distributed power systems, CHP units may generate redundant
heat at the peak demand time to guarantee power supply. Therefore, differently from the electrical
connection, heat generation should be greater or equal than the thermal demands when scheduling.
Equation (16) is the constraint of heat balance, and (17) and (18) are the constraints of input/output
power and the SOC of the heat storage tank, respectively.{

QCHP(t) + ηHST,ch ·QHST(t) ≥ QL(t), QHST(t) ≥ 0
QCHP(t) + ηHST,dis ·QHST(t) ≥ QL(t), QHST(t) < 0

(16)

QHST,min ≤ QHST(t) ≤ QHST,max (17)

EHST,min ≤ EHST(t) ≤ EHST,max (18)

3.2.3. Constraints of Fossil Fuel Energy Generators

There are two components of fossil fuel energy generators in the predefined distributed system,
which are the CHP unit and the fuel cell. Their outputs are restrained by their rated capacity and
ramp-up constraints:

Pi,min ≤ Pi(t) ≤ Pi,max (19)

Ri,minθ ≤ Pi(t)− Pi(t− 1) ≤ Ri,maxθ (20)

3.2.4. Constraints of the Battery System

Similar to the heat storage tank, the battery system should meet the constraint of the input/output
power of the battery system and the constraint of the battery SOC. In addition, for economical and
robust operation of the battery system, the battery should be charged/discharged to its initial value by
the end of the day [28].

PB,min ≤ PB(t) ≤ PB,max (21)

SOCB,min ≤ SOCB(t) ≤ SOCB,max (22)

SOCB(t0) = SOCB(tE) (23)

3.2.5. Constraints of Spinning Reserve

With the access of the renewable energy system to the microgrid, the uncertainties of the grid
will increase to some extent. In this paper, the spinning reserve of the system is designed to meet the
system reliability requirements at a certain confidence level, which can be expressed as:

Pr{PB,PORT(t) + PWT(t) + PPV(t) + PCHP(t)+
PFC(t) + PG(t) + PB,max(t) + PSR(t) ≥ PL(t)} ≥ β

(24)

PSR(t) =
2

∑
i=1

min(Ri · θR, Pi,max − Pi(t)) (25)

In this section, the chance constrained programming has been clearly demonstrated, and the
objective function and system constraints of the chance constrained programming have been analyzed
as well. In the next section, an optimization algorithm will be introduced to solve the proposed chance
constrained programming.

4. Optimization Algorithm

The particle swarm optimization algorithm has the obvious advantages of easy implementation,
fewer parameters, and better optimization ability compared with the genetic algorithm, the ant colony
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algorithm, and so forth. [20]. Therefore, in this paper, the particle swarm optimization algorithm is
selected to solve the chance constrained programming.

4.1. The PSO–MC Algorithm

The PSO algorithm has many potential advantages compared with other intelligent optimization
algorithms; however, it suffers difficulty in dealing with stochastic variables. Therefore, the particle
swarm optimization algorithm cannot be used to deal with the wind turbine, PV, and electrical demand
uncertainty problems in an efficient way. To improve this situation, the stochastic variables—for
example, the output of wind turbines, PVs, and network demands—should be converted to the
determined variables. MC is an efficient simulation tool that is widely used to model power system
operation parameters by predicting the probability distribution of demands of renewable generators in
advance. In this paper, a combined PSO–MC method is proposed to optimize the chance constrained
programming, which relates to the distributed system optimization.

4.2. Specific Steps of the PSO–MC Algorithm

The specific steps of the PSO–MC algorithm can be summarized as:
Step 1: Input the operation parameters of all distributed generators, including power flow

parameters and economic parameters related to distributed system operation, and set the confidence
level of the objective function and the chance constraints.

Step 2: Initialize the optimization parameters of the particle swarm algorithm, including the
number of particles, the maximum number of iterations, the learning factor, the learning rate, the initial
inertia weight, and the final inertia weight.

Step 3: Based on the probability distribution of wind turbine power, solar power, and electrical
demands, generate daily wind output, PV output, and load curves of the proposed system with the
MC simulation.

Step 4: Generate daily output curves of CHP, fuel cells, and battery systems randomly to form
a particle.

Step 5: Test the feasibility of the randomly generated particle under the condition of the
daily wind output, PV output, and loads generated by the MC simulation in Step 3, according
to Equations (15)—(25). If the particle is not feasible, regenerate another particle until the number of
feasible particles is equal to the number of particles defined in Step 2.

Step 6: Calculate the fitness value of each particle, and then compare the fitness value with the
local extreme. If the fitness value of the particle is superior to the local extremum, then the current
local extremum will be replaced by this particle. In addition, compare the fitness value of the local
extrema with the global optimum, and if the local extremum value is superior to the global optimum,
update the current global optimum with the local extremum.

Step 7: After calculating the fitness value of each particle, it is necessary to update the current
speed and positions of all particles based on Equations (15)–(25). It is worth noting that the speed and
location of each particle may not be feasible; therefore, the speed and location of the unsuitable particle
needs to be regenerated.

Step 8: Check the number of the iteration. If it reaches the maximum number of iterations,
calculate the power flow of the system and implementing cost of the system. Otherwise, return to
Step 6.

5. Case Study

The structure of the newly introduced distributed network is shown in Figure 1, and the rated
parameters of the traditional microgrid are shown in Table 1. In addition, the nominal parameters
of the portable energy system are shown in Table 2. Moreover, the daily thermal demands, electrical
demands, wind turbine output, and PV output, which are generated by the Monte Carlo simulation,
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are displayed in Figure 2. Finally, the emissions generated by different generators and the standard
grade of pollutant values are based on previous work [32].

Table 1. The rated parameters of the traditional microgrid.

Energy Carrier CHP Wind Turbine PV Fuel Cell Battery System

Capital cost (10,000 ¥/kW) 1.0 1.2 2.0 2.8 0.0667
Life (Year) 10 10 20 10 10

Min power (kW) 15 0 0 7 −60
Max power (kW) 75 30 30 40 60

Table 2. Portable energy system data sheet.

Parameters Rated Value Parameters Rated Value

ρ (kg/m3) 0.8 Tamp (◦C) 20
A (m2) 10 GTSTC (kW/m2) 1

ηw 0.59 TNOC (◦C) 45.5
vnom (m/s) 12 PPV,STC (kW) 0.165
vi
′ (m/s) 5 γ 0.043%

vo
′ (m/s) 22 Tr (◦C) 25

Figure 2. The Monte Carlo simulation results of the renewable system outputs, thermal demands, and
electrical demands.

To optimize the PSO model, the related parameters are defined as follows: the number of particles
is 250; the largest number of iterations is 300; the maximum and the minimum speed and positions are
±1 and±5, respectively; and the inertia weight c1 and c2 used in this paper are 1.3 and 2.8, respectively.
Considering the randomness of the PSO, the results shown in next section are the average values of
20 group simulations.

6. Results and Discussions

In this section, the simulation results will be demonstrated in three aspects: (1) the influence of
introducing confidence levels; (2) network performance with installation of an extra portable energy
system; and (3) the influence of decoupling heat and power by installing a heat storage tank.
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6.1. Results of Introducing Confidence Levels

The system operational cost increases sharply with the increase of the confidence level. Table 3
shows the operational costs of the proposed microgrid in different confidence levels, and Figure 3 is a
three-dimensional graph revealing the relationship between operational costs and confidence levels.

Table 3. System operational costs in different confidence levels.

β
Operational Costs (¥)

α = 0.8 α = 0.9 α = 1.0

0.8 2776.47 2926.02 3152.34
0.9 3866.33 4016.04 4502.28
1.0 5747.36 6038.09 7605.58

Figure 3. The varied-curve surface diagram of operational cost.

6.1.1. Confidence Level β

Table 3 reveals that with the rise of the confidence level β, the system operational cost increases
sharply, especially when β is closer to 1. Figures 4 and 5 show the optimal output power of different
energy generators at β = 0.8 and β = 0.9, respectively.

Figure 4. The optimal output power of different energy generators at β = 0.8.

The value of the confidence level β represents the chance of achieving the spinning reserve
constraints in the uncertain environment. With the decrease of β, the spinning reserve for the system
will be reduced and the gap of power exchange between the main grid and the microgrid will be
increased. Figures 4 and 5 show that the chance constrained programming focuses on the operational
cost optimization when electrical demands are light and the reserve demands are small. On the
contrary, when electrical demands are heavy, the objective of the optimization changes to improve
system reliability.
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Figure 5. The optimal output power of different energy generators at β = 0.9.

For example, when β = 0.8, the probability that total power generation of the microgrid is greater
than the electrical demands is low. In this situation, the proposed distributed network takes the higher
risk of reducing system stability and loss of loads. Meanwhile, the gap of power exchange between
the main grid and the microgrid is relatively high. However, But on the other hand, the distributed
system purchases power from the main grid at a lower price time and sells back at the peak price time,
which improves the system’s economy.

When β = 0.9, the probability that the total power generation of the microgrid is greater than the
electrical demand becomes slightly higher. In this case, the proposed distributed network takes the
lower risk of loss of loads and increases system reliability. Additionally, compared with β = 0.8, the gap
of power exchange between the main grid and the microgrid is reduced to some extent. Because of the
large amount of spinning reserve prepared for the peak demand time and the conservation of selling
electricity to the main grid, the system’s economy can be affected.

In summary, a lower confidence level β can lead to good system economy, while it can also result
in higher risk of reducing system stability.

6.1.2. Confidence Level α

As shown in Table 3 and Figure 3, with the increase of confidence level α, the system operational
cost shows a similar tendency to that of β.

Differently from the confidence level β, the confidence level α reflects the possibility of
accomplishing the objective function in an uncertain environment. Moreover, because the objective
function contains uncertain variables, the confidence level α also can be used to represent the activity
of the uncertain variables in the model. The smaller value of α represents the lower requirement of
achieving the constraints of the function and the greater flexibility of the uncertain variables, which can
lead to a lower operational cost. On the contrary, the potential risk is increased because of the uncertain
factors, namely the control of the renewable generators. Therefore, according to the varied-curve
surface diagram of the system operational costs shown in Figure 3, the power system’s economical
operation and stable operation can be compromised by selecting appropriate confidence levels α and β.

6.2. Results of Installing a Portable Energy System

An extra portable energy system installed in the demand side is normally used as the backup
generators to improve system security. However, in this part, simulation results are mainly focused
on demonstrating that the added portable energy system has great potential in participating in a
demand–response program, which can enhance network peak load regulating capacity and improve
system economy.

Table 4 shows the optimal output power of different energy carriers in the traditional microgrid
which does not have any portable energy system installed. To prove the added portable energy system
has a great potential in participating in demand–response and enhancing network peak load regulating
capacity, Table 5 shows the optimal output power of different energy carriers in the traditional
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microgrid in which an added portable energy system is installed. Meanwhile, the output power of
the portable energy system is shown in Figure 6. It is worth noting that to clearly show the variation
tendency of different generators’ output power, Tables 4 and 5 and Figure 6 divide the optimization
results into six periods, and each period has four samples. The optimization results shown in Tables 4
and 5 and Figure 6 are the average value of four samples in each period, and the third and fifth periods
represent the peak demand time.

Table 4. Output power of different generators in a traditional distributed network, which does not
have any portable energy system installed.

Periods PCHP (kW) PFC (kW) PWT (kW) PPV (kW) PB (kW) PSell (kW) PBuy (kW)

1 0 0 22.43 0 −18.18 0 52.97
2 25.12 0 27.48 2.50 −13.98 0 42.75
3 72.90 13.33 28.58 14.98 15.20 16.20 0
4 52.03 0 25.35 24.25 −31.03 0 41.50
5 67.82 13.74 24.28 1.62 21.55 0 2.98
6 55.60 7.21 25.48 0 2.61 0 1.88

Total cost (¥): 1919.98

Table 5. Output power of different generators in a traditional distributed network, in which a portable
energy system is installed.

Periods PCHP (kW) PFC (kW) PWT (kW) PPV (kW) PB (kW) PSell (kW) PBuy (kW)

1 0 0 22.43 0 −18.18 0 52.97
2 24.05 0 27.48 2.50 −12.98 0 42.75
3 58.95 11.29 28.58 14.98 14.03 21.2 0
4 53.98 0 25.35 24.25 −32.63 0 41.50
5 58.65 12.60 24.28 1.62 21.55 1.2 0
6 56.30 7.01 25.48 0 3.23 0 1.88

Total cost (¥): 1376.71

Figure 6. The output power of the portable energy system.

By comparing Table 5 with Table 4, it is easy to find the changes in the local generators’ outputs
and the changes in power exchange between the distributed network and the main grid. During
the first period, the electrical demands are relatively low, and the wind turbine power is selected to
supply the microgrid. To increase system benefits, the microgrid system imports electricity directly
from the main grid for a cheaper price. At this time, all local fossil fuel generators are switched
off. In the second period, with the rapid growth of electrical loads, the CHP unit is switched on to
supply power for the microgrid, and renewable energy generators increase their outputs at this time.
Moreover, less power can be collected to charge the battery. For the third period, the output power of
each local generator increases significantly to cover the peak demand compared to the second period.
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Meanwhile, the microgrid starts to sell electrical power to the main grid. It is worth noting that by
adding a portable renewable energy system to participate in a demand–response program, the output
of CHP can be reduced at this time, and this allows reduction of fossil fuel cost. In the fourth period,
with the slight decrease of network electrical loads, the fuel cell decreases its output, and meanwhile,
the battery is charged in this period. Next, in the fifth period—the second peak demand time of
day—with installation of a portable energy system, the output of the CHP system can be reduced about
14%, which reduces fossil fuel cost. Additionally, by installing the portable energy system, instead of
importing high-price power from the main grid, the microgrid can sell electrical power back to the
main grid at a relatively high price. In this way, system economy can be improved. Finally, for the last
period, the demands are relatively low, and therefore the outputs of all units are reduced.

In conclusions, the output power of CHP is significantly reduced by installing portable renewable
energy resources. Moreover, the added renewable energy resources can cooperate with other local
generators to supply power at peak times and deliver redundant power back to the main grid at a
higher price. By installing the portable energy system, network peak load regulating capacity has been
significantly improved and system daily operational cost is reduced by 28.29%.

6.3. Results of Decoupling Heat and Power

As mentioned in the previous part, system peak load regulating capacity and system economy
can be improved to some extent by installing an extra portable energy system in the demand side.
To improve CHP energy efficiency, reduce battery installation capacity, and improve system reliability,
adding an extra thermal storage tank to work with the CHP unit is necessary, because this can help to
decouple heat and power. Figure 7 shows the simulation results of the output power of the battery and
CHP in the proposed system before and after decoupling. In Figure 8, the optimization results of the
total electrical energy that needs to be stored in the battery is shown to reveal the minimum capacity
of the battery with which it needs to be equipped.

Comparing Figure 8 with Figure 7, it is easy to find that before decoupling heat and power,
the output of CHP shows an opposite trend to the daily electrical loads. At the off-peak time, power
generated by the CHP unit exceeds the electrical demands, and therefore the battery needs to be
charged at higher power to collect the redundant power generated by CHP. However, at peak demand
time, CHP output power is reduced to a relatively low value because of lower thermal demand,
and thus the battery needs to be discharged at higher power to supply the electrical demand. In this
situation, the system needs to equip a higher-capacity battery to meet the electrical demands, which is
clearly shown in Figure 8.

Figure 7. Simulation results of the output power of the battery and CHP.

After decoupling heat and power, thermal demand can be supplied by the heat storage tank
independently when CHP is switched off. Alternatively, when CHP is switched on, CHP always
works at its rated maximum output, which can significantly promote power generation efficiency.
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Additionally, for a full operation cycle, CHP only needs to be switched off once, which simplifies the
operation and gives some maintenance time for the CHP.

Figure 8. Total electrical energy needs to be stored in the battery.

In summary, decoupling heat and power by installing an extra heat storage tank is helpful for
improving CHP energy generation efficiency, reducing battery installation capacity, and improving
system reliability.

7. Conclusions

This paper tries to enhance network peak load regulating capacity and to increase system
efficiency by adding an extra portable energy resource system and an extra heat storage tank to
the distributed network.

After installing an extra portable energy resource system to the distributed microgrid, the amount
of fossil fuel energy consumption is reduced by about 8%. Additionally, by installing an extra portable
energy system, the distributed network can obtain additional benefits by exporting electricity to the
main grid at the peak demand time, which leads to a 28.29% reduction of system daily operational
cost. More importantly, with the installation of the portable energy system, the peak load regulating
capacity has been significantly improved, which can be reflected by the fact that much more electrical
energy can be sold back to the main grid at the peak demand time, and the portable energy system has
greater potential to supply electrical power for the distributed grid.

However, after introducing an extra portable energy resource system to the distributed system,
the system’s uncertainty can be increased to some extent. In this paper, chance constrained
programming is proposed to deal with system uncertainty caused by the added extra portable energy
system. By applying the PSO–MC algorithm to optimize the chance constrained programming problem
in the proposed network, simulation results show that power system economy and system uncertainty
can be compromised by selecting appropriate confidence levels α and β. In addition, compared
with existing optimization algorithms, the proposed PSO–MC has the obvious advantages of higher
computational efficiency, fewer stochastic variables, and higher accuracy.

When introducing an extra heat storage tank to the distributed microgrid, system thermal outputs
and electrical outputs can be decoupled. After decoupling heat and power, thermal demand can be
supplied by the heat storage tank independently if necessary. Alternatively, the CHP unit can work at
its rated power to simultaneously generate heat and power at the peak demand time, and the redundant
heat can be stored in the heat storage tank, which promotes CHP output efficiency and reduces fossil
fuel energy consumption as well. Moreover, simulation results show that battery installation capacity
can be reduced by about 40% and system reliability can be improved if an extra heat storage tank
is installed.
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Appendix A. List of Symbols and Abbreviations

Nomenclature Meaning Nomenclature Meaning

PWT,PORT
Output power of a portable wind turbine
system

ρ
Air density of a portable wind turbine
system

A
Blade area of a portable wind turbine
system

ηw
Power coefficient of a portable wind
turbine system

v
Actual wind speed of a portable wind
turbine system

vnom
Rated wind speed of a portable wind
turbine system

vi
′ Cut-in speed of a portable wind turbine

system
vo
′ Cut-out speed of a portable wind

turbine system

PPV,PORT Output power of a portable PV system PPV,STC
Maximum power under the standard
test condition

GT (t)
Solar radiation of a portable PV system at
time t

GTSTC
Solar radiation under the standard
test condition

γ A coefficient Tr
Reference battery temperature of a
portable PV system

Tb (t)
Battery temperature of a portable PV
system at time t

Tamp (t) Ambient temperature at time t

TNOC
Battery temperature under the normal
operating condition

BB,PORT

Profit that consumers can obtain by
participating in demand–response
activities

PB,PORT (t)
Output power of a portable energy system
at time t

RPORT
Unit revenue of a portable energy
storage system

θ Time interval ηB,PORT
Overall efficiency of a portable energy
storage system

PCHP (t) Electrical output of gas engine CHP QCHP Thermal output of gas engine CHP

RHP Heat-to-power ratio of gas engine CHP ηCHP
Electrical power generation efficiency
of gas engine CHP

ηCHP,loss System loss coefficient of gas engine CHP CCHP,f Fossil fuel cost of gas engine CHP

c Unit natural gas price L Low calorific value of natural gas

θCHP Time interval of CHP EHST (t)
Total thermal energy stored in a heat
storage tank at time t

EHST (t− 1)
Total thermal energy stored in a heat
storage tank at time t − 1

ηHST,ch Heat storage charge efficiency

ηHST,dis Heat storage discharge efficiency QHST (t)
Net heat power flow into/out of the
heat storage tank at time t

θHST Time interval of a heat storage tank CFC,f Fossil fuel cost of a fuel cell

PFC (t) Output power of a fuel cell system ηFC
Power generation efficiency of a fuel
cell system

θFC Time interval of a fuel cell system SOCB (t)
State of charge of a battery system at
time t
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Nomenclature Meaning Nomenclature Meaning

SOCB (t− 1)
State of charge of a battery system at time t
− 1

PB (t)
Power exchange of a battery system at
time t

ηB,ch Battery charging efficiency ηB,dis Battery discharging efficiency

θB
Time interval of charging/discharging the
battery

EB
Installation capacity of a battery
system

T Scheduling time period N
Number of distributed power
generators

Ci,c+m
Sum of the capital cost and the maintenance
cost of the ith distributed power generators

CG
Cost of importing/exporting
electricity from/to grid

CCHP,e Carbon emission cost of CHP CFC,e Carbon emission cost of a fuel cell

PL (t) Electrical demands at time t PWT (t)
Output power of a wind turbine
system at time t

PPV (t) Output power of a PV system PG (t)
Total electrical power imported
from/exported to the main grid

QL (t) Thermal demands at time t QHST,min
Minimum power flow out of and into
the heat storage tank

QHST,max
Maximum power flow out of and into heat
storage tank

EHST,min

Minimum of thermal energy that
needs to be stored in the heat storage
tank

EHST,max
Maximum thermal energy that needs to be
stored in the heat storage tank

Pi,min
Minimum outputs power of the ith
fossil fuel energy generator

Pi,max
Maximum outputs power of the ith fossil
fuel energy generator

Ri,min
Minimum ramp-up rates of the ith
fossil fuel energy generator

Ri,max
Maximum ramp-up rates of the ith fossil
fuel energy generator

PB,min
Minimum power exchange of a
battery system

PB,max
Maximum power exchange of a battery
system

SOCB,min Lower limit of battery SOC

SOCB,max Upper limit of battery SOC SOCB (t0) Initial SOC before scheduling

SOCB (tE) Final SOC after scheduling Pr Probability function of an event

β
Confidence level of spinning reserve
constraints

α
Confidence level of the objective
function

PSR(t)
Spinning reserve capacity provided by the
fossil fuel generators at time t

θR Response time

Abbreviation Meaning Abbreviation Meaning

PSO–MC Particle swarm optimization—Monte Carlo SOC State of charge

MC Monte Carlo PV Photovoltaic
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