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Abstract: An IoT (Internet of Things) system typically encompasses a number of devices and sensors
and is required to process a large number of messages at a high speed. To address this requirement,
we propose a dual plane architecture, which consists of a control plane and a data plane. The control
plane processes signaling messages and the data plane takes charge of processing user data messages.
This allows the system to process messages separately and simultaneously in the different planes
according to the type of incoming message. In this paper, we present the each plane’s role and how
messages are processed in the different planes. We also present the interworking method between
both planes. To verify the proposed architecture, we implement and apply the architecture to our
previous single plane IoT system. We also compare the performance of the proposed system with that
of the single plane IoT system in terms of throughput and packet loss ratio. The results reveal that the
performance of the proposed architecture is much higher than that of the previous single plane IoT
systems. The results prove that the proposed architecture is highly appropriate for IoT environments.

Keywords: Internet of Things; packet processing solution; control plane; data plane; Data Plane
Development Kit; network software architecture

1. Introduction

Through a range of studies on the IoT (Internet of Things) with versatile smart devices and
sensors, the usage of the IoT has been gradually expanded from the smart home, healthcare, smart
utilities, and smart transportation application domains to the Smart City concept, which covers all of
these application domains [1].

In this environment, IoT systems connect and integrate a diverse and large number of devices
represented as ‘things’ [2], and consequently face the following major challenges:

• The amount of messages that must be processed or forwarded is growing exponentially since
lots of devices are joined in a system. Therefore, an IoT system should be able to process huge
messages at high speed.

• Various devices use different kinds of message formats and protocols, and new devices with new
features are being introduced in the market at this very moment. In this environment, any IoT
system must have high flexibility and scalability.

• Some devices in an IoT system may have high mobility. This means that frequent association and
disassociation processes for the devices are necessary. Since these processes themselves can be a
burden to the system, a method to address the heavy load problem is required.

To address these diverse challenges, we propose a dual plane architecture for IoT systems which
consists of a control plane and a data plane. The control plane processes signaling messages and the
data plane takes charge of processing user-data messages.
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In this paper, an IoT system under the dual plane architecture is applied to the single plane
IoT system developed in our previous research [3,4]. The proposed system is applied to a remote
healthcare system as a case study of IoT environments. In the system, messages going through the
system are divided into signaling and user-data messages and are processed in the control plane and
the data plane, respectively. The signaling messages are the controlling and managing messages for
the IoT communication such as routing protocol, ARP (Address Resolution Protocol), ICMP (Internet
Control Message Protocol) messages, and so on. Association and disassociation messages for a specific
IoT device also belong to the signaling message. The user-data messages represent the measurement or
sensing messages from IoT devices and are to be used by user-space applications such as monitoring
and management servers.

We also present the results of a performance comparison between the single plane and dual plane
architecture of the IoT systems in terms of their throughputs and packet loss ratios. The experiments
indicate that the message throughput and reachability of the dual plane IoT system are much higher
than those of the single plane IoT system.

The distinguishing features and benefits of the dual plane architecture are as follows:

• High performance message processing: To improve message processing performance in the data
plane, we apply zero-copy and PMD (Poll Mode Driver) concepts. Zero-copy helps to avoid
the operation of copying received messages to a user-space application, and the PMD allows a
received message to be bypassed from the complex kernel network stack and interrupt mechanism.

• High scalability and ease of maintenance: To provide high scalability and ease of maintenance,
the IoT system in this paper is implemented under a general purpose operation system, Linux in
a commodity computer, an x86 machine, rather than a special purpose network processor. It is
also implemented in C language.

• Minimization of performance interference: To minimize the performance interference caused
by the processing signaling message, the proposed architecture is a dual plane architecture.
The control plane handles signaling messages, whereas the data plane processes the user-data
messages. Since the two planes work independently and do not affect each other, the frequent
and complex processing of signaling messages does not slow down the performance of user-data
message processing.

This paper is organized as follows. Section 2 provides an overview of the single plane IoT system
proposed in our previous research, and the existing message processing solutions and research on the
data plane architecture. Section 3 presents the design and implementation results of the dual plane IoT
system. Section 4 presents the experimental results and finally, Section 5 summarizes and concludes
the paper.

2. Related Works

2.1. Previous Single Plane IoT System

The dual plane architecture is applied to the single plane IoT system developed in our
previous research [3,4]. For this reason, we will describe the single plane IoT system before
introducing the dual plane architecture. The single plane IoT system conforms to the oneM2M
(one Machine-to-Machine) protocol, which is an international communication protocol standard for
IoT systems [5], and consists of four types of components: AE (Application Entities), MN-CSE (Middle
Nodes-Common Service Entities), IN-CSE (Infrastructure Nodes-Common Service Entities) and IN-AE
(Infrastructure Nodes-Application Entities). An AE is a program installed in IoT user devices, and its
main purposes are to measure or sense its user’s data and to send them to the MN-CSE. An MN-CSE
acts as a gateway for traffic control and/or protocol conversion and conducts communications between
AEs and IN-CSE. An IN-CSE functions as a monitoring or management server in the IoT system and
gathers AEs data through MN-CSEs. An IN-AE can access a user’s data by accessing the IN-CSE node
via an IoT network.
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Three types of PHDs (Personal Health Devices)—Medication dispenser [6], Pulse oximeter [7]
and Activity monitor [8]—were used as AEs in our previous studies and are also used in this paper.
These PHDs conform to the ISO/IEEE 11073 protocol, an international standard for PHDs [9].

The CSE (MN-CSE and IN-CSE), which is the main part of the IoT system, consists of a
Network Manager, a Message Manager, and a Resource Manager. The Network Manager deals
with communications between AEs and an IN-CSE. The Message Manager analyzes the incoming
messages and converts the ISO/IEEE 11073 protocol messages into the oneM2M protocol and vice
versa. The Resource Manager manages resource trees in which the information of every object the IoT
system manages is stored. Figure 1 shows the previously proposed single plane IoT system and the
internal structure of the CSE.

Figure 1. Structure of the Internet of Things (IoT) system and the Common Service Entities (CSE).

The communication procedures between AEs and the MN-CSE are divided into four phases:
association, configuration, operation and disassociation phases [10]. During the association phase,
PHDs and the MN-CSE establish a communication session using an AARQ (Association Request) and
AARE (Association Response) messages. During the configuration phase, PHDs send their device
configurations using a PRST (Presentation) message with an MDC_NOTI_CONFIG event type. In the
operation phase, the measurement messages are transferred from the AEs to the MS-CSE using PRST
messages with an MDC_NOTI_SCAN_REPORT event type. Finally, the disassociation phase is for
disassociating a communication session between a PHD and the MN-CSE. In this phase, an RLRQ
(Association Release Request) and RLRE (Association Release Response) message are exchanged.

The traditional network applications, as well as the CSE in the single plane IoT system, have some
shortcomings from both a message processing perspective and an architectural perspective [11–13].
The shortcomings caused by using kernel network stack in a packet processing perspective are
as follows:

• The CSE creates communication sockets using some system calls to receive and send messages.
In this way, an incoming message is copied several times to the memory for the user-space
network application (i.e., CSE), and the copy operations increase the overall system workloads.

• The CSE receives an incoming message after processing by the kernel network stack, the design of
which is quite complex, making this a time-consuming step that causes performance degradation.



Appl. Sci. 2018, 8, 550 4 of 16

• The CSE receives notice on an incoming new message by a kernel’s interrupt mechanism. That is,
an interrupt occurs whenever a new message arrives in the system, and frequent interrupts can
be problematic for an IoT system, as it should provide continuous and real-time services.

From an architectural perspective, the previous CSE was designed based on the single plane
architecture (which means that signaling messages and user-data messages are processed in one plane
together) and this leads to the following disadvantages:

• In the single plane architecture, all kinds of messages are sequentially processed in one plane.
Therefore, if the system is already processing a signaling message, user-data messages have to wait
until the signaling message is completed. This is ineffective. Signaling messages typically require
more resources and time than the user-data messages because the main purpose of the signaling
messages is to change or track some sessions or configurations, whereas the main purpose of the
user-data messages is to be forwarded. Therefore, the performance of user-data processing relies
on the performance of signaling message processing, and consequently, the overall performance
of the IoT system is inevitably decreased.

• To increase the system capacity such as the number of CPU cores, the capacity for the control part
and the data part must be increased symmetrically. In addition, all of the systems deployed in the
field should always contain two parts. In other words, an asymmetric increase of system capacity
or physically distributed deployment for the data part only is impossible, as the two parts are
not separated.

2.2. Packet Processing Solutions and Related Research

In this information age, the amount of data transferred over networks and the corresponding
traffic workloads have been growing dramatically, and IoT environments are no exception. Despite the
use of high speed NICs (Network Interface Cards) and the advancement of network applications,
this issue still remains a problem, as the essential bottlenecks arise not in the user-space, but
in the kernel-space. To solve this problem, various dedicated network hardware solutions
have been proposed. The representative examples are EZChip’s NP-4 and NPS-400(Mellanox
Technologies, Yorneam Illit, Israel) [14], Cavium’s OCTEON line (Cavium, San Jose, CA, USA) [15]
and Tilera’s Tile-Gx line (Mellanox Technologies, Yorneam Illit, Israel) [16].

Aside from the hardware-based approaches, software-based fast packet processing solutions
have been introduced as well, increasing the interest in SDN (Software-Defined Networking) and
NFV (Network Function Virtualization). The main solutions are NTOP’s PF_RING (NTOP, Pisa,
Italy) [17], Intel’s DPDK (Data Plane Development Kit) (Intel, Santa Clara, CA, USA) [18], and 6WIND’s
6WINDGate (6WIND, Montigny-le-Bretonneux, France) [19].

PF_RING is a high-speed packet capture, filtering, and analysis solution, and was proposed
by NTOP to solve the interrupt and memory copy issues of the existing network stack. There are
two versions of this solution: Vanilla PF_RING and PF_RING ZC. Vanilla PF_RING is free software and
uses NAPI (New API) [20], an extension to the device driver packet processing framework, to avoid
system interrupts. PF_RING ZC is a commercial version which supports the zero-copy concept.
Both versions of PF_RING support x86-based processors and various Linux distributions and NICs.

Intel’s DPDK is an open-source solution for developing the data plane. It uses a zero-copy
concept and PMD (Poll Mode Driver) to avoid the kernel’s interrupt mechanism. Thanks to these
features, a packet received in the NIC can be referenced to the user application directly, without the
kernel’s interference. In addition, it offers several cipher algorithms such as AES-CBC, AES-CTR,
AES-GCM and HMAC-SHA1, and some lookup algorithms such as hash and longest prefix match.
It is designed to run on Intel x86-based, IBM Power PC and ARM processors, and supports various
Linux distributions and NICs.

6WIND’s 6WINDGate is a commercial solution and works on various platforms such as ARM,
Cavium, Intel and Mellanox. It also uses a zero-copy concept and supports various cipher algorithms.
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It supports data plane and control plane architectures and provides a synchronization module to
synchronize both planes. Like the other solutions, it supports x86-based PC processors and various
Linux distributions and NICs.

Table 1 summarizes the features of the packet processing solutions. All of the solutions listed
in Table 1 can work in the cloud environment, and support x86-based PC processors and various
Linux distributions and NICs. However, while Vanilla PF_RING can bypass the kernel’s interrupt
mechanism by using NAPI polling, it still remains in overhead, requiring memory copy operations to
copy received packets into a user space buffer due to the absence of the zero-copy concept. On the other
hand, PF_RING ZC applies the zero-copy concept to bypass the kernel’s network stack. However, this
makes it difficult to add or modify some functions, since it is a commercial solution. 6WINDGate
supports all of the features of DPDK, and provides processing functions to handle IKE (Internet key
exchange) and TCP messages. However, a drawback of 6WINDGate is that it is a commercial solution.
In addition, its update schedule may be slow compared with DPDK, since it works based on DPDK;
that is, it can only be updated after applying DPDK’s updates to its base library when a new version of
DPDK is released.

Table 1. Features of the packet processing solutions.

Features Vanilla PF_RING PF_RING ZC DPDK 6WINDGate

Software base O O O O
Open source O X O X
Universality O O O O

Cloud O O O O
Bypass Network Stack 4 O O O

Security X X O O

On the other hand, it has been found that DPDK is a suitable solution to apply to IoT environments
as it is open source, works in the cloud environment and supports x86-based PC processors and
various Linux distributions and general NICs. But there are several drawbacks associated with
the development of a DPDK-enabled network system. When DPDK is used, the NIC is no longer
recognized by the Linux kernel. In other words, a DPDK-enabled network system cannot benefit from
various network processing functions that have already been implemented in the kernel’s network
stack [21].

The proposed architecture is basically the same as the SDN, and network slicing technologies
that enable flexible network control by separating the two planes have been proposed in several
advanced studies and applications. For example, Zhou et al. [22] proposed a multicore fast Ethernet
switch based on DPDK, and Pongracz et al. [23] proposed an SDN architecture in an LTE environment.
Nguyen et al. [24] applied the DPDK to an OpenFlow software switch. These previous studies applied
SDN and DPDK in order to improve packet forwarding performance and provide flexibility, but their
application was limited to the general Ethernet switch. On the other hand, several efforts have been
made to employ SDN techniques in IoT environments. Yiakoumis et al. [25] described a prototype for
slicing home networks in an IoT environment. It slices a physical network into multiple layers to isolate
the traffic and bandwidth between providers. Qin et al. [26] proposed an SDN controller and roles
for the controller such as resource matching and flow scheduling. In addition to these papers, there
have been a number of studies on using an SDN controller for the efficient orchestration of network
resources [27–29]. Although these studies provide valuable SDN architectures for IoT environments
and efficient methods for developing and deploying an SDN controller, there has been little work done
on building a high-performance data plane and application in the healthcare domain.

From a data scale perspective, when a large number of things generate huge messages, the area
of big data faces similar challenges as the area of IoT. In this area, many researchers are attempting
to address the problem of handling this large amount of data [30]. Basanta-Val et al. [31] proposed a
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big data architecture which focused on analyzing time-critical data using clusters of machines and
extended online and offline analytic tools. Memos et al. [32] proposed a compression algorithm for a
surveillance system in IoT. This approach aims to enable the rapid transmission of captured media
data from the sensors to user’s surveillance system. To achieve this, it employs a video compression
format. While it is obvious that methods for improving analysis of performance and for compressing
data to be sent would be valuable in terms of guaranteeing system scalability, our approach is focused
on addressing the scalability problem by improving the I/O performance of each single network node.

The aims of this paper are (1) to separate the control plane and the data plane, (2) to apply DPDK
to the data plane in order to improve message forwarding performance, (3) to cast complex and
time-intensive jobs for processing signaling messages on the control plane, (4) to provide a method
for synchronization between the two planes, and (5) to present a practical application of IoT in the
healthcare domain.

3. Design and Implementation Results

3.1. System Overview

To overcome the problems of the single plane architecture mentioned in Section 2.1, we propose
an approach of separating out the control part from the CSE, which is called a dual plane architecture.
Figure 2 depicts the architecture of the CSE under the dual plane architecture. The CSE is comprised of a
data plane, a control plane, and shared memory. The data plane is designed to be devoted to user-data
message processing, and the control plane is in charge of processing complex and time-intensive
signaling messages. The shared memory acts as a mediator between the two planes.

Figure 2. CSE architecture for dual plane IoT system.

The data plane includes the following components:

• Network Manager receives and sends messages to/from AEs and IN-CSE. It also passes signaling
messages to the control plane.

• Message Manager performs the same role as in the previously proposed system: message analysis
and protocol conversion. In this paper, it has the additional role of distinguishing between a
user-data message and a signaling message. If an incoming message is a user-data message, it
processes the message and then forwards the message to the IN-CSE; if not, it throws the message
to the control plane and processes next incoming message immediately.
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• Resource Manager manages resource trees in which the information and measurements of every
AE the IoT system manages is stored. It also refers to the forwarding-related information such as
the Interface Table, ARP Table and Routing Table to forward a user-data message to the IN-CSE
or AEs.

The control plane consists of the following components:

• Session Manager processes AE-related signaling messages and updates the AE session information
and configurations which are supposed to be stored as an entry of the AE Table in the Shared Memory.

• Sync Manager monitors forwarding-related information which is represented as the forwarding-related
signaling message and maintained by the Linux Kernel. When a change in forwarding-related
information is detected, the Sync Manager updates the change in the Shared Memory.

• Routing software, which runs on the Linux OS, analyzes routing messages received from the neighbor
routers, and updates the kernel’s routing table. The updated routing table is synchronized with the
Shared Memory by the Sync Manager.

The Shared Memory contains the following tables:

• AE Table contains session information such as AE device ID, IP address, and session status,
and device configurations such as types of transmitting measurements.

• Interface Table includes the information of network interfaces such as IP address, MAC address,
interface status, and so on.

• ARP Table is a mapping table between the next hop’s IP address and MAC address.
• Routing Table contains the next hop’s IP address and output interface index for message forwarding.

We divided incoming messages into two categories: user-data messages and signaling messages.
The signaling messages were further divided into two types: AE-related and Forwarding-related
signaling messages, as listed in Table 2.

Table 2. Categorized messages.

Category Message Message Type Event Type Content

User-data

Data Report PRST MDC_NOTI_
SCAN_REPORT

Invoke-id, Measurements
(pulse rate, SpO2 . . . )

Data Response PRST MDC_NOTI_
SCAN_REPORT Invoke-id

Signaling
(AE-related)

Association
Request AARQ - Device ID, Device Type,

Config-ID

Association
Response AARE - Device ID, Device Type,

Result

Disassociation
Request RLRQ - Reason

Disassociation
Response RLRE - Reason

Configuration
Request PRST MDC_NOTI_

CONFIG
Invoke-ID, Attribute-ID,

Attribute-value

Configuration
Response PRST MDC_NOTI_

CONFIG Invoke-ID

Signaling
(Forwarding-related)

Routing RIP, OSFP . . . - Routing Info.

ARP Request - Sender MAC address,
Target IP address

ICMP Request - Sender IP address,
Target IP address
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3.2. Data Plane

The data plane is designed and implemented based on Intel DPDK [18] to improve message
processing performance. The data plane uses zero-copy and PMD concepts provided by DPDK.
Zero-copy reduces the operational overhead generated by multiple copies of incoming messages,
and the PMD allows the data plane to access the incoming messages directly by bypassing the complex
and time-consuming kernel network stack and interrupts.

The distinctive feature of the dual plane architecture compared to the previous single
plane architecture is that the former processes signaling and user-data messages separately and
simultaneously in the different planes, whereas the latter handles both kinds of messages in one
plane sequentially. In the dual plane architecture, if an incoming message is an AE-related or
Forwarding-related signaling message (i.e., exception from the data plane perspective), the data
plane does not continue processing it, but throws it to the control plane instead, and processes the next
incoming message immediately. This enables the data plane to be dedicated to message forwarding,
and as a result, achieves high performance in message forwarding. In the data plane, an incoming
message goes through four phases: receiving, processing, exception handling, and forwarding.

During the receiving phase, the Network Manager periodically monitors its RX ring buffer, which
contains packet descriptors (pointers) about incoming messages. If the buffer contains a newly added
packet descriptor, then the Network Manager acquires the message using the pointer in the packet
descriptor and passes it to the Message Manager.

In the processing phase, the Message Manager analyzes the message type and the event type of
the received message. It processes only the PHD’s measurements included in a PRST message with the
MDC_NOTO_SCAN_REPORT event type, and throws the remaining messages to the control plane.
In this paper, pulse rates and SpO2 from the pulse oximeters, medication status from the medication
dispensers, and distance, activity time, intensity and steps from the activity monitors are the user-data
messages that are to be processed in the data plane. It also verifies that the incoming message is from
the associated AE by referring to the AE Table in the Shared Memory. If it is not, it considers the
message as coming from a disassociated PHD, and discards the message. In addition, the Message
Manager converts the received ISO/IEEE 11073 message [10] to the oneM2M protocol message [5]
before forwarding it as presented in our previous research [3,4].

If the incoming message is determined by the Message Manager to be a signaling message, it
enters the exception handling phase. In this phase, a signaling message is queued in an RX FIFO queue
for the KNI (Kernel NIC Interface) [33] thread and is sent to the kernel network stack. The details of
the KNI procedure are explained in Section 3.4.

During the forwarding phase, the data plane refers to three tables: Interface, ARP and Routing
Table. The Resource Manager looks up the Routing Table using the predefined server IP address as
a key and acquires the next hop’s IP address and an output interface index as the results. Next, it
refers to an interface entry in the Interface Table using the output interface index, and then extracts
an IP address and MAC address, which are used as a source MAC address and a source IP address
in the Ethernet and IP header, respectively. After that, it looks up the ARP Table using the server IP
address to determine a destination MAC address. Finally, the Message Manager rebuilds the Ethernet
and IP header of the forwarding message based on the lookup results and forwards it to the IN-CSE
through the DPDK PMD. A Longest prefix match lookup, a direct lookup and a hash lookup are used
for searching the Routing, Interface and ARP tables, respectively.

The key things here are that (1) the data plane refers the forwarding-related information from the
Shared Memory, not from the kernel space, and (2) the data plane forwards itself without the help of
the kernel network stack.

3.3. Control Plane

The main purposes of the control plane are (1) processing signaling messages received from
the data plane, (2) storing the AE-related information to the Shared Memory, and (3) synchronizing
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Forwarding-related information from the kernel to the Shared Memory. The signaling messages are
divided into two types of messages: AE-related signaling messages and forwarding-related signaling
messages, as listed in Table 2. The former type of messages are handled and stored in the AE Table
in the Shared Memory by the Session Manager, and the latter type of messages are processed by the
network software or daemons running on the Linux OS (i.e., controlled by the kernel network stack),
updated to the Linux kernel tables, and finally stored to several tables such as the Interface Table, ARP
Table and Routing Table in the Shared Manager by the Sync Manager.

The two managers use different updating methods: direct and indirect. The Session Manager
directly analyzes a message received from the data plane and extracts the message type and
the event type. It processes only the AARQ, AARE, RLRQ, RLRE, and PRST message with the
MDC_NOTI_CONFIG event type, and discards the remaining messages. In this paper, the Session
Manager updates the PHD session information such as device ID, device type, and session association
time to the AE Table to track the communication session between a PHD and a server. It also updates
configurations of PHD such as attribute IDs to the AE Table.

The Sync Manager monitors the changes of Linux kernel tables instead of directly analyzing
signaling messages. If the Sync notices a change in Linux kernel tables, then it updates the change to
the Shared Memory. This method is efficient in terms of scalability and maintainability, since it is not
necessary to modify the native kernel-based software such as Quagga [34] or kernel network stack.

3.4. Interoperation between Two Planes

Since the proposed dual plane architecture separates the data plane and the control plane,
interworking between the two planes is required. In other words, signaling messages among messages
received in the data plane have to be passed to the control plane, and the information acquired in the
control plane should be referred by the data plane.

To achieve this, we apply three interworking methods. First, the KNI of DPDK is used for
exchanging messages between the two planes. Since the interfaces under the DPDK are only used in
the data plane and are not assigned to the control plane, the control plane is not aware of the existence
of the interfaces. As a result, it is not possible to pass signaling messages from the data plane to the
control plane. For this reason, the DPDK proposed the KNI concept [33]. KNI assigns virtual interfaces
in the control plane corresponding to data plane interfaces, and allows two planes to exchange
messages each other. Second, we generate hugepage shared memory to allow data planes to refer
the forwarding-related information. The control plane updates several tables in the Shared Memory,
and the data plane uses the updated tables. Finally, we use Netlink [35]. Netlink is a Linux kernel
interface for IPCs (Inter-Process Communication) between the kernel and a user-space application.
Through Netlink, a user-space application can monitor changes of the kernel’s information [36]. In the
dual plane architecture, a change in the kernel’s information should be referred to the forwarding
decision in the data plane. The Sync Manager is made aware of the changes by Netlink and stores the
changes in the Shared Memory.

These interoperation methods are effective for performance tuning (i.e., assigning multiple cores
to the data plane and one CPU cores to the control plane) because the control plane is independent of
the data plane. In addition, these methods allow a physically distributed system which consists of one
physical server including only a control plane and several physical servers including only a data plane.

3.5. Implementation Environments

On the basis of the proposed architecture, the dual plane IoT system is constructed in this paper.
The proposed architecture is applied to the MN-CSE. The hardware and software specifications are
listed in Table 3.
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Table 3. Hardware and software specifications.

Hardware
CPU Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz
RAM 4 GB
NIC Intel I217-V

Software

Hypervisor VMware ESXi 6.5.0
OS/Kernel Ver. CentOS 7, 3.10.0-514.16.1.e17.x86

DPDK Ver. 16.11.1 (LTS)
Netlink Libnl3 3.2.28-3.el7_3

Since the proposed system is designed and implemented based on the Intel DPDK, it has a similar
hardware dependency to the DPDK. The DPDK is designed to run on Intel x86-based, IBM Power
PC and ARM processors and a wide range of NICs by multiple vendors such as Intel (Santa Clara,
CA, USA), Emulex (Costa Mesa, CA, USA), Mellanox (Yorneam Illit, Israel), and Cisco (San Jose,
CA, USA). That is, the proposed system is designed to run on commodity hardware instead of
highly specialized hardware, and is independent of any hardware type. For generality and ease of
maintenance, the proposed system is implemented in C language under a Linux CentOS in an x86
machine, and uses Intel CPU and common NIC, Intel I217-V (Intel, Santa Clara, CA, USA).

On the other hand, the proposed system requires huge pages with more than 2 GB of memory for
the large memory pool allocation used for packet buffers. Furthermore, in the proposed dual plane
architecture, a CPU core (or thread) assigned to the data plane dedicates its CPU resource to busy-wait
polling to avoid NIC interrupts and system calls. For this reason, an additional CPU core for the control
plane is needed to handle control messages. However, these hardware requirements are acceptable for
recent general computers. For high scalability, it is running under the VMware hypervisor (VMware,
Palo Alto, CA, USA) so that the deployment or cloning of the system is easy.

4. Performance Experiments

4.1. Proposed System Overhead

To prove the effectiveness of the proposed architecture, we conducted an experiment to calculate
the proportion of overhead in the system throughput in terms of time. This proportion shows the extent
to which the proposed architecture influences system performance. In this paper, the overhead indicates
the total time from receiving to forwarding a particular message excluding message processing time
such as parsing, analyzing, and converting. Therefore, the overhead for N messages, denoted by O(N),
can be represented as follows:

O(N) = tT(N)− tP(N) (1)

where tT denotes total time and tP denotes message processing time. Then the overhead ratio, OR, can
be simply calculated by

OR(N) =
O(N)

tT(N)
(2)

The overhead ratio was measured and calculated repeatedly, while increasing the number of
the messages, N, from 1000 to 10,000. The result of the evaluation is described in Figure 3. In the
experiment, the overhead ratio decreased and stayed stable at about 13.1 percent as N increased.
This proves that the overhead of the proposed architecture has a modest effect on overall performance
and is robust to heavy traffic.
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Figure 3. Overhead ratio.

4.2. Throughput and Message Loss Ratio

To validate the performance of the dual plane architecture, we compared the performance of
the proposed system with that of the single plane IoT system developed in our previous research,
which processes both user-data and signaling messages in one plane and does not apply the DPDK.
For this test, two comparison systems were run on the same hardware condition listed in Table 3.
The test messages used in the experiments are user-data messages sent from three types of PHDs to the
MN-CSE. For the test, we use PHD simulators to generate large amounts of messages. Each simulator
sends its measurements and the MN-CSE forwards the messages to the IN-CSE.

First, we conducted a throughput test which indicates the fastest forwarding rate without packet
loss at a line speed of 1 Gbps. The throughput was measured repeatedly, while increasing the size of
the messages. The result of the evaluation is described in Figure 4. According to Figure 4, the dual
plane IoT system outperforms the single plane IoT system considerably, by as much as 250%, 270%,
210%, 190% and 58% for each message size. This result shows that the dual plane architecture proposed
in this paper can forward user-data messages at a line speed with messages of 512 bytes or more while
the single plane IoT system shows a 34% line rate. Furthermore, it shows much better performance
than the single plane IoT system with small size messages. As the benchmark result shows, it is
obvious that the proposed architecture is more suited to an IoT environment, in which small messages
have to be exchanged very frequently.

Next, we measured the message loss rates of each system at a line speed of 1 Gbps while increasing
the size of the messages. In a typical network system, NIC line rate represents theoretical performance;
actual NIC performance is lower than the theoretical performance due to message processing and
packet IO overheads. Therefore, a certain number of messages should be delayed in the receiving
queue. A system or gateway that receives messages at too high a rate may experience a full queue.
Since the number of newly incoming messages is larger than amount of processed and sent messages,
the number of messages delayed in the receiving queue (waiting to be processed and forwarded) will
continuously increase. Because a network system has finite buffer memory to hold the queue and
cannot expand the buffer memory indefinitely, queue congestion occurs, and the queue becomes full
as a result [37]. In this case, the system has no other option than to simply discard excess packets
(i.e., packet loss).

Therefore, comparison of the packet loss rate provides us with information regarding which
architecture is more suitable for a network node. The results of the evaluation are shown in Figure 5.
As the result of the evaluation shows, message loss occurs in both single and dual architectures.
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However, the amount of message loss in the dual plane system is much less than in the single plane
system, since the dual plane system can handle data messages much faster than the single plane system.
The loss rate of the single plane IoT system with a 64-byte message is 72.23%, while that of dual plane
is only 9.66%. In addition, a dual plane IoT system does not drop any received messages 512 bytes or
more, while the single plane IoT system still drops some of the received messages. This result is due to
the high IO performance of DPDK, and the independent message processing approach of the dual
plane architecture.

Figure 4. Comparison of throughputs.

Figure 5. Comparison of packet loss rates.

Finally, we compared the throughput performance of two different single plane IoT systems:
a single plane IoT system without and with DPDK. The former receives and sends messages through
the kernel network stack instead of using DPDK, and the latter bypasses the kernel network stack using
DPDK. In the test, the throughput was measured with a fixed packet size of 512 bytes, while increasing
the number of control messages from 1000 to 40,000. For example, if the number of incoming control
messages is 10,000, the number of user data messages becomes 252,144 (because the maximum PPS is
262,144 for a packet size of 512 bytes). The control messages in this test consist of Association Request
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messages and Configuration Request messages, as shown in Table 2. If the system receives those
control messages, it should verify the validity of the establishing session, update session information
to its session table, establish a session with a user device and a server and configure device parameters
to its session table.

The result of the evaluation is described in Figure 6. As shown in the Figure, the performance of
the dual plane IoT system is almost the same regardless of the number of control messages, and only
a 1.9% performance loss occurs. This number represents the overhead for packet relay between the
data and control plane in the dual plane architecture. In contrast, the performance of the single
plane architecture with DPDK drops sharply when the number of control messages exceeds 10,000,
while that of the single plane architecture without DPDK approaches 0. The throughput of the single
plane architecture with DPDK only shows nearly 89%, 77%, 60%, 36%, 24%, 18% and 13% of the
throughput of the dual plane architecture with DPDK (while the number of control messages are
increased from 10,000 to 40,000), even though both systems use the same amount of memory and
the same number of cores. No matter how quickly the DPDK polls received packets, packet delay
and queue congestion in the handling of time-consuming control message are unavoidable, leading
to a performance degradation. These performance differences represent the contribution of the dual
plane architecture. That is, the dual plane architecture can improve system performance and is more
efficient than the single plane architecture, particularly in an environment where control messages are
generated frequently.

Figure 6. Comparison of throughputs.

Second, the comparison of a single plane architecture with and without DPDK found that
DPDK can relieve performance degradation. When there are few control messages, the performance
of the single plane architecture with DPDK is much different than the performance of the single
plane architecture without DPDK. We can verify that although the DPDK can increase the system
throughput and can relieve performance degradation by improving packet IO performance, it still
suffers from handling time-consuming control messages, which consequently leads to a performance
degradation problem.

4.3. Experiment Analysis

As our experiments have shown, the proposed dual plane IoT system provides better performance
than that of the previous single plane IoT system. The reason for the high performance of the proposed
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system can be explained in terms of packet IO performance and packet processing architecture.
The DPDK solution applied in our system uses a polling mechanism to avoid time-consuming
interrupts and system calls. This reduces the delay time of incoming packets stored in a receiving
queue, and prevents packet losses caused by a full receiving queue. According to the comparison tests,
the DPDK can improve system throughput by more than 200%. From an architectural point of view,
the proposed dual plane architecture contains two planes and handles different types of messages
in different planes. This helps to improve system performance by having data messages forwarded
continuously, regardless of whether control messages are being processed. As shown in Figure 6,
the dual plane architecture outperforms the single plane architecture even though both use the same
DPDK solution, and the gap between the performance of the two systems becomes wider as the
number of control messages is increased. As a result of these performance advantages, the proposed
system shows a lower message loss ratio.

To sum up, the proposed system can improve the network performance and shows high
performance when receiving packets of a small size and a large number of control messages.
This feature makes our system highly suitable for IoT environments, which usually involve the
regular transmission of small-sized messages and frequent device attach and detach events.

5. Conclusions

In this paper, we proposed a dual plane architecture for a high performance IoT system.
The proposed architecture consists of a control plane and a data plane. The control plane
processes signaling messages and the data plane processes and forwards user-data messages. In the
architecture, the data plane accesses the incoming messages directly by bypassing the complex and
time-consuming kernel network stack and interrupts. In addition, it does not process signaling
messages, and sends them to be processed in the control plane. This allows the data plane to be
dedicated to message forwarding. In contrast, the control plane analyzes signaling messages and
provides controlling information to the data plane. This allows the system to process messages
separately and simultaneously in the different planes and consequently helps to improve overall
performance. To verify the proposed architecture, we applied the architecture to our previous
single plane IoT system which consists of three types of IoT devices, an MN-CSE and an IN-CSE.
In addition, we conducted performance comparison tests with the previous single plane IoT system.
The results indicate that the performance of the proposed architecture is much higher than that of the
single plane architecture, for all message sizes. In addition, it proves that the proposed architecture
shows outstanding processing performance for small-sized messages. This means that the proposed
architecture is highly appropriate for IoT environments.

In future research, we plan to apply the proposed system to various IoT environments, such as
the smart city and smart utility areas. The scalability issue is also a major consideration in those
areas, and we expect that the proposed dual architecture system can contribute to improving system
scalability in those fields. In addition, we plan to study the distributed dual plane architecture for IoT
environments. In the architecture, there are several distributed data planes and one central control
plane which manages all other data planes.

Acknowledgments: This research was supported by the Basic Science Research Programs through the
National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology
(No. NRF-2015R1D1A3A03019278).

Author Contributions: KeeHyun Park conceived the ideas proposed in this paper and designed the dual plane
architecture; JuGeon Pak implemented the proposed architecture based on the Intel DPDK and performed the
related experiments; KeeHyun Park and JuGeon Pak analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2018, 8, 550 15 of 16

References

1. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet
Things J. 2014, 1, 22–32. [CrossRef]

2. Yaqoob, I.; Ahmed, E.; Hashem, I.A.T.; Ahmed, A.I.A.; Gani, A.; Imarn, M.; Guizani, M. Internet of Things
Architecture: Recent Advances, Taxonomy, Requirements, and Open Challenges. IEEE Wirel. Commun. 2017,
24, 10–16. [CrossRef]

3. Park, K.H.; Park, J.S.; Lee, J.W. An IoT System for Remote Monitoring of Patients at Home. Appl. Sci. 2017,
7, 260. [CrossRef]

4. Woo, M.W.; Lee, J.W.; Park, K.H. A Reliable IoT system for Personal Healthcare Device. Future Gener.
Comput. Syst. 2017, 78, 626–640. [CrossRef]

5. oneM2M Standard. Available online: http://www.onem2m.org/ (accessed on 20 October 2017).
6. Pak, J.G.; Park, K.H. UbiMMS: An ubiquitous medication monitoring system based on remote device

management methods. Health Inf. Manag. J. 2012, 41, 26–30. [CrossRef]
7. Pak., J.G.; Park, K.H. Pulse oximeter monitor for u-health service. In Proceedings of the International

Conference on Computer and Applications, Seoul, Korea, 30–31 March 2012; p. 61.
8. Pak, J.G.; Park, K.H. A smart personal activity monitoring system based on wireless device management

methods. In Communications in Computer and Information Science; Park, J., Yang, L., Lee, C., Eds.; Springer:
Berlin, Heidelberg, 2011; Volume 184, pp. 335–342. ISBN 978-3-642-22332-7.

9. IEEE 11073 for Personal Health Device Standard. Available online: http://www.11073.org (accessed on
20 October 2017).

10. IEEE 11073 for Personal Health Device Communication Protocol, ISO/IEEE 11073-20601. Available online:
http://www.11073.org (accessed on 20 November 2017).

11. Brouer, J.D. Network stack challenges at increasing speeds. In Proceedings of the Linux Conference,
Auckland, New Zealand, 12–16 January 2015.

12. Salim, J.H. When NAPI comes to town. In Proceedings of the Linux Conference, Swansea, UK, 4–7 August 2005.
13. Fusco, F.; Luca, D. High Speed Network Traffic Analysis with Commodity Multi-core Systems.

In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, Melbourne, Australia,
1–3 November 2010; pp. 218–224.

14. EZChip NP. Available online: http://www.mellanox.com/page/npu_overview?mtag=npu_overview (accessed
on 20 October 2017).

15. Cavium OCTEON. Available online: http://www.cavium.com/OCTEON_MIPS64.html (accessed on
20 October 2017).

16. Tilera Tile-GX. Available online: http://www.mellanox.com/page/multi_core_overview (accessed on
20 October 2017).

17. NTOP PF RING. Available online: http://www.ntop.org/products/packet-capture/pf_ring (accessed on
20 October 2017).

18. Intel DPDK. Available online: http://dpdk.org (accessed on 20 October 2017).
19. 6WID 6WINDGate. Available online: http://www.6wind.com/products/6windgate (accessed on

20 October 2017).
20. NAPI. Available online: https://wiki.linuxfoundation.org/networking/napi (accessed on 20 October 2017).
21. Kourtis, M.A.; Xilouris, G.; Riccobene, V.; McGrath, M.J.; Petralia, G.; Koumaras, H.; Gardikis, G.;

Liberal, F. Enhancing VNF performance by exploiting SR-IOV and DPDK packet processing acceleration.
In Proceedings of the 2015 IEEE Conference on Network Function Virtualization and Software Defined
Network, San Francisco, CA, USA, 18–21 November 2015.

22. Zhou, D.; Fan, B.; Lim, H.T.; Kaminsky, M.; Andersen, D.G. Scalable, high performance ethernet forwarding
with CuckooSwitch. In Proceedings of the 9th ACM conference on Emerging Networking Experiments and
Technologies, Santa Barbara, CA, USA, 9–12 December 2013; pp. 215–220.

23. Pongracz, G.; Molnar, L.; Kis, Z.L. Removing Roadblocks from SDN: OpenFlow Software Switch Performance
on Intel DPDK. In Proceedings of the 2013 Second European Workshop on Software Defined Networks,
Berlin, Germany, 10–11 October 2013.

http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1109/MWC.2017.1600421
http://dx.doi.org/10.3390/app7030260
http://dx.doi.org/10.1016/j.future.2017.04.004
http://www.onem2m.org/
http://dx.doi.org/10.1177/183335831204100104
http://www.11073.org
http://www.11073.org
http://www.mellanox.com/page/npu_overview?mtag=npu_overview
http://www.cavium.com/OCTEON_MIPS64.html
http://www.mellanox.com/page/multi_core_overview
http://www.ntop.org/products/packet-capture/pf_ring
http://dpdk.org
http://www.6wind.com/products/6windgate
https://wiki.linuxfoundation.org/networking/napi


Appl. Sci. 2018, 8, 550 16 of 16

24. Nguyen, V.G.; Kim, Y.H. Slicing the next mobile packet core network. In Proceedings of the 2014 11th
International Symposium on Wireless Communications Systems, Barcelona, Spain, 26–29 August 2014;
pp. 901–904.

25. Yiakoumis, Y.; Yap, K.K.; Katti, S.; Parulkar, G.; McKeown, N. Slicing home networks. In Proceedings of the
2nd ACM SIGCOMM Workshop on Home Networks, Toronto, ON, Canada, 15 August 2011; pp. 1–6.

26. Qin, Z.; Denker, G.; Giannelli, C.; Bellavista, P.; Venkatasubramanian, N. A software defined networking
architecture for the internet-of-things. In Proceedings of the 2014 IEEE Network Operations and Management
Symposium, Krakow, Poland, 5–9 May 2014.

27. Caraguay, A.L.V.; Peral, A.B.; Lopez, L.I.B.; Villalba, L.J.G. SDN: Evolution and Opportunities in the
Development IoT Applications. Int. J. Distrib. Sens. Netw. 2014, 10, 735142. [CrossRef]

28. Nakao, A. Software-Defined Data Plane Enhancing SDN and NFV. IEICE Trans. Commun. 2015, 98, 12–19.
[CrossRef]

29. Kalkan, K.; Zeadally, S. Securing Internet of Things (IoT) with Software Defined Networking (SDN).
IEEE Commun. Mag. 2017. [CrossRef]

30. Lv, Z.; Song, H. Next-Generation Big Data Analytics: State of the Art, Challenges, and Future Research
Topics. IEEE Trans. Ind. Inform. 2017, 13, 1891–1899. [CrossRef]

31. Basanta-Val, P.; Audsley, N.C.; Wellings, A.J.; Gray, I.; Fernandez-Garcia, N. Architecting Time-Critical
Big-Data Systems. IEEE Trans. Big Data 2016, 2, 310–324. [CrossRef]

32. Memos, V.A.; Psannis, K.E.; Ishibashi, Y.; Kim, B.G.; Gupta, B.B. An Efficient Algorithm for Media-based
Surveillance System (EAMSuS) in IoT Smart City Framework. Future Gener. Comput. Syst. 2017. [CrossRef]

33. Yigit, F. Interworking with the Linux Kernel, Intel Shannon, DPDK Summit Userspace. 2016.
Available online: https://dpdksummit.com/Archive/pdf/2016Userspace/Day02-Session06-FerruhYigit-
Userspace2016.pdf (accessed on 20 October 2017).

34. Quagga Routing Suite. Available online: http://www.nongnu.org/quagga (accessed on 20 October 2017).
35. Netlink Protocol Library Suite. Available online: https://www.infradead.org/~tgr/libnl (accessed on

20 October 2017).
36. He, KK. Kernel korner: Why and how to use netlink socket. Linux J. 2005, 2005, 11.
37. Fiems, D.; Vuyst, S.D.; Wittevrongel, S.; Bruneel, H. Packet loss characteristics for M/G/1/N queueing

systems. Ann. Oper. Res. 2006, 170, 113–131. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2014/735142
http://dx.doi.org/10.1587/transcom.E98.B.12
http://dx.doi.org/10.1109/MCOM.2017.1700714
http://dx.doi.org/10.1109/TII.2017.2650204
http://dx.doi.org/10.1109/TBDATA.2016.2622719
http://dx.doi.org/10.1016/j.future.2017.04.039
https://dpdksummit.com/Archive/pdf/2016Userspace/Day02-Session06-FerruhYigit-Userspace2016.pdf
https://dpdksummit.com/Archive/pdf/2016Userspace/Day02-Session06-FerruhYigit-Userspace2016.pdf
http://www.nongnu.org/quagga
https://www.infradead.org/~tgr/libnl
http://dx.doi.org/10.1007/s10479-008-0436-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Previous Single Plane IoT System 
	Packet Processing Solutions and Related Research 

	Design and Implementation Results 
	System Overview 
	Data Plane 
	Control Plane 
	Interoperation between Two Planes 
	Implementation Environments 

	Performance Experiments 
	Proposed System Overhead 
	Throughput and Message Loss Ratio 
	Experiment Analysis 

	Conclusions 
	References

