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Featured Application: The method of reverberation-ray matrix (MRRM) and the interpretation
of bending waves proposed in this paper provide respectively analysis method and
profound knowledge for bending waves in bi-coupled periodic multi-component beams.
These achievements will push forward the applications of bi-coupled periodic multi-component
beams in wave filtering and vibration isolation.

Abstract: Most existing research on periodic beams concerns bending waves in mono-coupled and
bi-coupled periodic mono-component beams with the unit cell containing only one beam segment,
and very few works on bi-coupled periodic multi-component beams with the unit cell containing more
than one beam segments study the bending waves in structures with only binary unit cells. This paper
presents the method of reverberation-ray matrix (MRRM) as an alternative theoretical method for
analyzing the dispersion characteristics of bending waves with the wavelength greater than the size of
the cross-sections of all components in bi-coupled periodic multi-component beams. The formulation
of MRRM is proposed in detail with its numerically well-conditioned property being emphasized,
which is validated through comparison of the results obtained with the counterpart results by other
methods for exemplified bi-coupled periodic beams. Numerical examples are also provided to
illustrate the comprehensive dispersion curves represented as the relations between any two among
three in frequency, wavenumber (wavelength) and phase-velocity for summarizing the general
features of the dispersion characteristics of bending waves in bi-coupled periodic multi-component
beams. The effects of the geometrical and material parameters of constituent beams and the unit-cell
configuration on the band structures are also demonstrated by numerical examples. The most
innovative finding indicated from the dispersion curves is that the frequencies corresponding to
the Brillouin zone boundary may not be the demarcation between the pass-band and stop-band for
bending waves in bi-coupled periodic multi-component beams.

Keywords: bi-coupled periodic beams; multi-component beams; bending waves; method of
reverberation-ray matrix (MRRM); dispersion curves; Brillouin zone boundary

1. Introduction

A periodic structure consists of repeated unit cells which are joined together
end-to-end/side-by-side [1]. The most important property determined by this constructional
feature is that the frequency domain of the waves falls into pass-bands and stop-bands that correspond
respectively to those frequencies at which waves propagate without attenuation and to others at
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which waves attenuate with no propagation [1–3]. Consequently, periodic structures may have
wide applications in various fields requiring wave filtering or vibration isolation, which drives the
investigations of wave propagation in periodic structures in various scientific fields such as solid-state
physics, electrical engineering and mechanical engineering, that are concerned with electron waves,
electromagnetic waves, and electric current and elastic waves [2,3].

As one of the most important periodic structures, a periodic beam consists of beam segments
possessing frequency bands of bending waves. Since the beam structure is a basic component in
engineering and the bending wave is one of the main vibration forms and noise origins in engineering
structures [4], the study of bending waves in periodic beams hence provides a method for vibration
control and noise reduction in engineering structures, e.g., railway trains and tracks. Using the
elastically point-supported, flexibly interconnected periodic beam and Timoshenko beam theory (TBT)
or Euler–Bernoulli beam theory (EBT) to model railway train, Sakuma et al. [5] analyzed the harmonic
and time-history responses of high-speed trains and train-like articulated systems travelling in confined
fluid. Adopting the elastically point-supported periodic beam and based on the TBT, EBT or extended
beam theory to model the railway track, Gry and Gontier [6] and Hosking and Milinazzo [7] studied
bending-wave propagation together with the forced responses of railway tracks and floating ladder
tracks, respectively. Sheng et al. [8] derived the propagation constant equations and used them for
ballasted track to study the harmonic responses to steadily moving or static loads [8] and to discuss the
propagation and resonance properties [9]. Using the Green’s function approach, Mazilu [10] predicted
the interaction between a simple moving vehicle and the infinite periodic Timoshenko tract beam.
Employing the elastically point-supported periodic Euler–Bernoulli beam to model the direct fixation
track and the periodic beam with a unit cell consisting of a double beam on an elastic foundation
to model the floating slab track, Gupta and Degrande [11] computed the transfer functions of the
coupled track–tunnel–soil system and the dynamic forces accounting for the interaction between the
moving vehicle and the periodic track. Although in recent years active periodic beams with smart
components have been proposed on the basis of initially presented passive periodic beams made of
only elastic materials in order for the bending-wave bands to be adjusted intelligently for controlling
vibration and reducing noise in a more effective way, in this paper we still exclusively consider passive
periodic beams in which only the construction of unit cell affects the band properties and the dispersion
characteristics remain after the unit cell is determined. This is because there are still pending problems
on this research objective, as will be summarized after an extensive literature review.

Passive periodic elastic beams may fall into two categories according to the minimum number of
coupling coordinates between the structural beams, i.e., mono-coupled and bi-coupled periodic beams
that have one and two minimum coupling coordinates, respectively [1,12]. For example, as the flexible
interconnection of the articulated train system in Reference [5] transfers one or two generalized forces,
the analysis models are mono-coupled and bi-coupled periodic beams, respectively. Mono-coupled
periodic beams are mainly introduced in the form of periodic multi-span beams. There already
exist extensive investigations on the bending waves in mono-coupled periodic beams, and without
exception periodic multi-span beams [1,4,12–20], have led to the very wide applications of these
structures in engineering practice, such as periodically supported bridges for instance. Thus, here we
focus on bi-coupled periodic beams in this paper. Note that there are five kinds of bi-coupled periodic
beams that have been presented so far: (1) a periodic beam composed of a uniform beam periodically
attached with elastic supports with/without lumped masses; (2) a periodic beam composed of a
uniform beam periodically attached with mass-spring systems (together with lumped masses and/or
elastic supports); (3) a periodic beam made of periodically arranged two or more beam segments
of different material/geometrical properties; (4) a periodic beam formed by combining the third
and the first concepts; (5) a periodic beam formed by combining the third and the second concepts.
It should be pointed out that periodic beams formed by combining the first and the second concepts
belong to the second kind itself. It should also be emphasized that the second and the fifth kinds of
bi-coupled periodic beams introduce a locally resonant mechanism [2] other than the Bragg scattering
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mechanism [2,3] into the formation of band gaps, so that low-frequency band gaps may possibly
provide a new way in controlling low-frequency waves/vibrations without using unrealistically large
structures. Note further that the first two kinds of periodic beams all have unit cells containing
only one beam segment with attachments, and these structures are referred here to as bi-coupled
periodic mono-component beams. In contrast, the last three kinds of periodic beams all have unit cells
containing more than one beam segments without or with attachments, which are referred to here as
bi-coupled periodic multi-component beams. Up until now, the bending waves in all the five types of
bi-coupled periodic beams have been of concern.

First, the bending waves in the first kind of periodic beams have gained attention since the 1960s.
Some literature considered the bending wave/vibration properties of infinite/finite periodic beams.
For the periodic beams supported by translational/rotational springs: Lin [21] pioneered the analysis of
the natural frequencies and modes of finite beams; then, Mead [16] derived the dispersion equation of
characteristic bending waves in the infinite beams and discussed the interaction between characteristic
bending waves and the alternating pressure field using the receptance method (RM); Zhu and
Cheng [22] constructed the mutual variational principle of bending wave propagation in periodic
structures, which provided the theoretical basis for the corresponding h-type finite element method
(FEM). With the h–p hybrid FEM, Bardell et al. [17] analyzed the phase constant curves of the bending
waves in infinite periodic Euler–Bernoulli beams; Romeo and Luongo [23] presented the design of
periodic undamped and damped beams aimed at reducing the transmitted vibrations by referring
the bi-dimensional analytical maps of the single unit free-wave propagation domains (stop, pass and
complex domains) as the optimal choice of the cell properties and ordering. For periodic beams
supported by translational/rotational springs with lumped masses: Wei and Petyt [18,19] introduced
the extended Rayleigh–Ritz method to analyze the pass band properties and the natural properties of
infinite and finite periodic structures, respectively; Brunskog [24] discussed the propagation properties
of bending waves. For periodic beams with only added masses, Domadiya et al. [25] investigated
numerically and experimentally the dispersion curves and the transmission loss coefficient of infinite
and semi-infinite beams, respectively. Others consider the responses of infinite/finite periodic beams
under external excitation: Ungar [26] discussed the propagation constants of bending waves in
infinite periodic beams supported by translational springs and analyzed the steady-state response
at the supported joint under harmonic loads by considering the effect of damping and fluid loads;
using Fourier transform, Belotserkovskiy [27] analyzed the transient responses of infinite periodic
Euler–Bernoulli beams with translational springs under a concentrated load; Cheng et al. [28,29]
presented the wavenumber-harmonic method to analyze the frequency responses and sound radiations
of a translational point-spring supported periodic Timoshenko beam subjected to a convected or
travelling harmonic loading by considering the fluid-loading effect and discussing the influences of
the spring support and the loading speed; Mead and Pujara [30] and Mead and Mallik [31] analyzed
the steady-state response of infinite periodic Euler–Bernoulli beams with translational/rotational
springs under alternating random loads by the space harmonic method and complex modal method,
respectively; Mead [32] proposed a method to analyze the propagation constants of bending waves in
infinite-period Timoshenko beams attached with translational/rotational springs and lumped-mass
and their responses to an alternating harmonic pressure field; Mead and Yaman [33] analyzed the
steady-state responses of infinite periodic beams with translational/rotational spring supports or
lumped-mass under harmonic loads based on propagation constants.

Second, the bending waves in the second periodic beams classified above have been studied
ever since 2005. The main concerns have been the band gaps and frequency responses of bending
waves caused by Bragg scattering and locally resonant in infinite/finite periodic beams. For periodic
beams with single DOF (degree-of-freedom) resonators: Yu et al. [34] and Liu et al. [35] analyzed the
complex band structures using the transfer matrix method (TMM) based on TBT and EBT, respectively.
Yu et al. [34] further analyzed the frequency response function (FRF, i.e., transmission) using the
FEM and validated the results by experiments. Liu et al. [35] further analyzed the FRF using TMM,
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particularly concerning the influence of different local resonators, and summarized some design
guidelines for this kind of structure. Xiao et al. [36] analyzed the complex band structures by the
spectral element method (SEM) and examined the effects of various system parameters on band-gap
behavior. The band formation mechanisms and formulas determining the transition and near-coupling
conditions between local resonance and Bragg scattering were obtained. Sharma and Sun [37] studied
the attenuation behavior of low-frequency waves in sandwich beams by closed form expression
obtained from a phased array approach and verified the results by FEM. For periodic beams with
two DOF resonators: Wang et al. [38] analyzed the band structures by TMM and the FRF by FEM,
respectively, with a simplified model proposed to determine the edge frequencies of the band gaps and
to enhance the understanding of the locally resonant mechanism. Pai et al. [39] calculated the dynamic
behaviors by FEM and explained how the spring-mass-damper subsystem created two stopbands and
negative effective mass and stiffness. For periodic beams with three DOF resonators: Wang et al. [40]
studied the suppression of flexural vibration theoretically and numerically by the dispersion relation
obtained using Hamilton’s principle and Bloch’s theorem. For periodic beams with more than three
DOF resonators: Wang et al. [41] analyzed the band structures and characteristic modes of infinite
periodic beams using the lumped mass method (LMM) and calculated the FRF of finite periodic
beams using the FEM, based on three-node triangular plane stress elements. The theoretical FRF was
validated by experimental measurements on a finite periodic beam specimen. For bending waves in a
uniform beam attached with both translational/rotational spring supports and mass-spring resonators
and with/without lumped mass: Lin and McDaniel [42] analyzed the FRF of a finite periodic beam by
TMM based on EBT; based on Winkler’s foundation model and EBT, Yu et al. [43] studied the complex
band structures and FRF of periodic beams on elastic foundations attached also with a locally-resonant
mass-spring system; Raghavan and Phani [44] derived by RM the closed-form expressions for the
location and width of sub-Bragg bandgaps, obtained the rigid body modes of the unit cell setting the
bounding frequencies for local resonance bandgaps, and validated these results by experiments.

Third, the above-classified third kind of periodic beams have also received much attention.
The main concern was the flexural wave/vibration in and frequency response of infinite/finite period
beams. For periodic binary beams with two kind of materials: Lee et al. [45] proposed a basis theory
of bending wave propagation; Han et al. [46] and Ni et al. [47] introduced a modified transfer matrix
method (MTM) by transforming the state parameters of TMM into four initial parameters based on EBT
and TBT, respectively; Tao and Liao [48] investigated the effects of the clamped boundary condition and
disturbance on the flexural wave propagation using the method of multiple reflections; de Miranda
and Dos Santos [49] investigated theoretically using FEM, SEM, the wave finite element method
(WFEM), the wave spectral element method (WSEM), the conventional and improved plane wave
expansion (PWE) method and experimentally the forced response and band structure based on EBT.
Cheng et al. [50] investigated complex dispersion relations and the evanescent wave modes by their
developed extended differential quadrature element method (EDQEM). For periodic binary beams
with two kinds of cross-sections: Díaz-de-Anda et al. [51] analyzed the normal-mode frequencies and
amplitudes of finite beams using TMM based on TBT, which were compared with the results based
on EBT and were verified by experimental results from electromagnetic acoustic transducer (EMAT)
measurements; Domadiya et al. [25] investigated numerically and experimentally the dispersion
curves of periodic beams and the transmission loss coefficient of semi-periodic beams, respectively;
Gao et al. [52] used TMM to explore the natural frequencies and the band-gap properties of the periodic
beams based on the EBT and TBT, and verified the results by FEM and an experiment, with attention on
the influences of the cross-section ratios and the length ratios on the dynamic properties. For periodic
binary beams with two kind of materials of different cross-sections: Wen et al. [53,54] calculated the
band structures of an infinite periodic beam with the PWE and the vibration attenuation spectra of a
corresponding finite sample by FEM. The theoretical results were validated by vibration experiment,
and a vibration isolation structure was designed based on these investigations. Xiang and Shi [55]
proposed the differential quadrature method (DQM) for the analysis of band structures and properties
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with comparing the effects of TBT and EBT on the results. The influences of geometrical parameters and
material parameters on the band-gap properties were discussed. For periodic beams with continuously
changed parameters, Ying and Ni [56] proposed a double-expansion method for the frequency response
of finite-length beams under harmonic excitation. For practical engineering applications of periodic
binary beams: Richards and Pines [57] analyzed the propagation parameters and the frequency spectra
based on EBT using SEM aiming at the reduction of the gear mesh flexural vibration using a periodic
drive shaft. The influences of added inertia, boundary conditions and structural configuration were
also considered. The analytical results were verified by experimental data, which indicated the real
attenuation efficiency. Asiri et al. [58] designed periodic binary beams for supporting the ocean
platform to reduce the propagation of the ocean noise to the platform, analyzed with a method based
on EBT and TMM the band structure and the frequency response of the infinite and finite periodic
binary beams, respectively, and verified the results by comparing them with an experiment of the
scaled model of the ocean platform.

Fourth, bending waves in periodic beams of the above-classified fourth kind have been
investigated since the 1980s. All the unit cells in the numerical examples considered up to now
were binary. As the attachments are lumped, McDaniel and Carroll [20] analyzed the band structure of
infinite periodic beams supported by translational springs and discussed the free vibration properties
based on the EBT and the TMM. As the attachments are distributed, Tassilly [59] analyzed the
band structures of periodic beams with spring and viscously-damped supports based on EBT and
Floquet theory. Gei et al. [60] studied the band structures of prestressed periodic perfect and defected
beams on an elastic foundation based on EBT, with special attention on the effects of prestress on
the position/width of the band-gaps. The band-gap localized modes and effective negative mass
effects of periodic perfect beams on an elastic foundation with an additional mass were also discussed
using a Green’s function formulation. Xiang and Shi [61] analyzed the band gaps and the dynamic
responses of periodic and quasi-periodic beams on a Pasternak foundation based on TBT and using
the DQM. Yu et al. [43] studied the complex band structures and FRF of periodic beams on elastic
Winkler foundations based on EBT. Also based on EBT, Zhang et al. [62,63] analyzed the vibration
band gaps of periodic beams on Winkler and two-parameter foundations by the proposed MTM and
by the TMM, respectively. Liu et al. [64] developed the EDQEM to study the effect of initial stress
on the attenuation zones and attenuation coefficients of periodic Timoshenko beams resting on a
two-parameter elastic foundation.

Fifth, the fifth periodic beams classified above have been devised since 2006. In all the unit cells
considered, actually the beam itself was homogenous along the whole structure. In the case of attached
two DOF resonators, Yu et al. [65] analyzed the band structures of infinite periodic beams using the
TMM based on EBT. The FRF and the characteristic modes of a finite periodic beam were calculated by
the FEM. Theoretical results were validated by experimentally measured FRF on a finite periodic beam
specimen, with special attention on the material damping in the rubber. Zuo et al. [66] investigated the
band gaps by TMM with the results validated by FEM, and observed the effects of band-gap coupling,
the intervals, and oscillator parameters. In the case of attached resonators with more finite DOF,
Xiao et al. [67] extended the PWE method to study the complex band structures of locally resonant
beams attached with multiple periodic arrays of spring-mass resonators based on EBT, which were
validated by the FRF obtained with commercial FEM software. Zhu et al. [68] suggested a chiral
lattice-based elastic metamaterial beam with multiple embedded local resonators to achieve broadband
vibration suppression without sacrificing its load-bearing capacity. In the case of attached resonators
with infinite DOF, Wang and Wang [69] investigated the frequency band structure by TMM based on
EBT, and showed richer dispersion properties in their proposed periodic beam with distributed DOF
than those with the conventional force-only resonators.

Reviewing the above literature, we can summarize the current status of research on bending wave
propagation in bi-coupled periodic beams:
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(1) There is plenty of literature on bi-coupled periodic mono-component beams with the unit cell
containing only one beam segment. The works on bi-coupled periodic multi-component beams
so far mainly have concerned bi-coupled periodic beams with the unit cell containing only two
beam segments, particularly in the numerical examples, although most literature has presented
the analysis on a unit cell model consisting of an arbitrary number of components. To the best of
the authors’ knowledge, only Yan et al. [70] studied the complex band structures, the localization
factors, and the characteristic modes of bending waves in periodic fourfold (quaternary) beams by
TMM based on EBT. Nevertheless, as revealed by Liu and Hussein [71], the types/properties of
periodicity have clear influence on bending wave characteristics. Hence, deducing the properties
of bending waves in bi-coupled periodic multi-component beams from those of the adequate
studies on similar structures may not be feasible, unless the similarities and differences between
them have been obtained.

(2) Although many methods have been proposed or used in analyzing the bending waves in
bi-coupled periodic multi-component beams, such as PWE, TMM, SEM, DQM among the
analytical ones and FEM among the numerical ones, effectively analyzing the bending waves at a
relatively high frequency range is still challenging due to the essential deficiency in some of the
existing methods. For example, the PWE method and the FEM are too computationally inefficient
(expensive) for providing satisfactory results at a high frequency range. The TMM suffers from
numerical weakness in cases of high frequency and a long transfer path [72].

(3) The dispersion of bending waves in bi-coupled infinite periodic beams has been monotonously
represented by the band structures, i.e., the frequency-wavenumber dispersion curves, in all
previous research. There is very little knowledge on the properties of the wavelength and
phase velocity of the characteristic bending waves in bi-coupled periodic beams. In particular,
the general dispersion characteristics of bending waves in bi-coupled periodic multi-component
beams have not been revealed so far.

Considering the pending problems in the aforementioned three aspects, this paper takes
bi-coupled periodic multi-component beams with unit cells composed of arbitrary beam segments
of different materials and cross-sections. Various periodic binary, ternary and quaternary beams are
analyzed in the numerical examples, with special emphasis on the effect of unit-cell configuration
on the dispersion curves and properties. The method of reverberation-ray matrix (MRRM) [73–75] is
introduced as an alternative method for analyzing bending wave propagation in bi-coupled periodic
multi-component beams. Note that MRRM compromises somewhat the computational efficiency as
compared to the very efficient transfer matrix method (TMM). This is because the global scattering
matrix in MRRM is formed by grouping all the element-related scattering matrices as compared to the
global transfer matrix in TMM which is formed by the multiplication of all element transfer matrices,
and thus the dimension of the system equation in MRRM is four times the element number as compared
to the dimension of the system equation in TMM always being four regardless of the element number.
However, by avoiding the matrix multiplications in the MRRM formulation, a numerical well-condition
is achieved, as will be validated in Section 3.2. The comprehensive dispersion curves have been
presented to illustrate the general dispersion characteristics of bending waves in bi-coupled periodic
multi-component beams; in particular, the wavelength-related and phase velocity related dispersion
curves are newly introduced to represent the dispersion of waves from all viewpoints. The influences
of various construction factors in the unit cell, especially the beam component number, on the band
structures are studied. We hope that the proposed method and interpretation will push forward
better design and optimization of bi-coupled periodic multi-component beams for controlling bending
waves and vibration isolation in engineering practice, such as for aircraft/automobile engines [57] and
ocean platforms [58]. The outline of the paper is as follows. In Section 2 we derive the formulation of
MRRM. The theoretical derivation and the computer program are verified by numerical examples in
Section 3, where the advantages of the proposed MRRM as compared to TMM, the general dispersion
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characteristics, and the influence of various construction factors of the unit cell on the band structures,
are discussed. Some conclusions are drawn in Section 4.

2. The Method of Reverberation-Ray Matrix (MRRM) for the Analysis of Bending Waves in
Bi-Coupled Periodic Beams

Consider the bending waves in an infinite periodic structure whose unit cell of length l containing
m beams and n (= m + 1) joints are depicted in Figure 1. Each constituent beam in the unit cell is
rigidly connected to its adjacent beam and is a carrier member of bending waves including the coupled
flexural and thickness-shear modes. Thus, each joint in the unit cell has two coupling coordinates,
at which the bending waves scatter. Therefore, the structure considered is a bi-coupled periodic
beam [1]. Because the infinite periodic structures satisfy the Floquet–Bloch principle [1–3], the unit cell
model in Figure 1 is adequate for determining the dispersion characteristics of bending waves in the
infinite bi-coupled periodic beam as considered.

Figure 1. The schematic of a selective unit cell of an infinite bi-coupled periodic beam.

In the unit cell, any constituent beam is assumed to have a straight axis, homogenous material and
uniform cross-section, and is deemed as one structural member. If it does not satisfy this assumption,
the beam can always be further re-divided into more members to meet this requirement. In this
case, the model in Figure 1 also applies but with enlarged m, in which the geometrical parameters
A, I and κ are the area, moment of inertia and shear coefficient of the cross-section, respectively,
and the material parameters ρ, E and G are the mass density, Young’s modulus and shear modulus,
respectively. These geometrical and material parameters are all constant for each member. In addition,
the cross-sectional dimensions of each constituent beam are comparatively smaller than the length,
so that beam theories such as the Timoshenko or Euler–Bernoulli theory can be adopted to model the
bending waves in the member. Thus, the deflection v, rotation ϕ, shear force Q and bending moment
M should be the variables to describe the dynamic state of the member. The amplitudes ar and dr of the
respective backward (arriving) and forward (departing) waves of flexural (r = 2) or thickness-shear
(r = 3) mode are used to represent the bending wave motion in the member. All members from left
to right are denoted in turn by numbers (1) to (m) with their lengths signified by l(1) to l(m). In the
unit cell, the end joints connecting the current unit cell to its neighbors and the intermediate joints
linking the contiguous members are referred to as the exterior joints and the interior joints, respectively.
All joints from left to right are signified in sequence as 1 to N (= n), which include exterior joints 1,
N and interior joints 2 through N − 1.

For an arbitrary member (j) with left joint J and right joint K, a pair of dual local coordinate
systems (x, y, z)JK and (x, y, z)KJ of right-handed type are introduced, as shown in Figure 2a, to describe
the cross-section and physical variables of this member within the framework of MRRM, and the
variables of member (j) in respective coordinates are described by superscripts JK and KJ, as shown
in Figure 2b–d. By this means, the axial coordinate of any one end cross-section in the local coordinate
system with its origin on this cross-section is always zero. Accordingly, the joint coupling equations
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can be represented in a simple form without exponential functions, and the waves propagating
in the same and opposite directions are naturally divided into groups, as indicated in Figure 2d.
These advantages of introducing dual local coordinates will be indicated in the following derivations.
For all joints, the global right-handed coordinate system (X, Y, Z), as shown in Figure 2a, is set
up to describe the physical variables, and the joint label is served as superscript to indicate their
affiliation except for the exterior joints. For example, uJ

Y and θ J
Z in Figure 2b are the translational

and rotational displacements of a typical interior joint J, respectively, which combine the generalized
displacements. No external generalized forces arise at any interior joint since only free bending waves
are considered here. The coupling variables including the translational and rotational displacements at
the left (right) exterior joint 1 (N) are denoted by uYL (uYR) and θZL (θZR), respectively. Meanwhile,
the corresponding force and moment are pYL (pYR) and mZL (mZR), respectively. These quantities at
exterior joint 1 (N) represent the interactions between the left (right) neighbor and the current unit
cells. The translational displacements and the forces of joints and of members are deemed positive
in the forward coordinate direction, and the rotational displacements and the moments are deemed
positive around the counter clockwise, as clearly indicated in Figure 2b,c.

Figure 2. Cont.
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Figure 2. Description of the unit cell: the coordinates and the physical variables. (a) The global
coordinates for joints and the local dual coordinates for structural members; (b) sign convention of the
generalized displacements for joints and members; (c) sign convention of the generalized forces for
joints and members; (d) convention of the wave amplitudes and wave vectors.

2.1. Wave-Based Modeling of Structural Members

For any structural member described in either of its local right-handed coordinates, the governing
equations based on the Timoshenko beam theory [76] are:

κGA
(

∂2v
∂x2 −

∂ϕ

∂x

)
= ρA

∂2v
∂t2 , EI

∂2 ϕ

∂x2 + κGA
(

∂v
∂x
− ϕ

)
= ρI

∂2 ϕ

∂t2 . (1)

Assuming time harmonic variation eiωt to the generalized displacements with ω the circular
frequency, Equation (1) can be reduced to the wave equations as:

d2v̂
dx2 −

dϕ̂

dx
+

ω2

c2
t

v̂ = 0,
d2 ϕ̂

dx2 +
Ac2

t
Ic2

l

dv̂
dx

+

[
ω2

c2
l
− Ac2

t
Ic2

l

]
ϕ̂ = 0, (2)

where cl =
√

E/ρ and ct =
√

κG/ρ are the velocities of quasi-longitudinal and quasi-transverse waves
in the structural beam, respectively; and an over caret signifies the quantities in the frequency domain.

Equation (2) can be solved by virtue of the theory of ordinary differential equations to give the
solutions to the generalized displacements as:

v̂(x) = (a2eik2x + a3eik3x) + (d2e−ik2x + d3e−ik3x),

ϕ̂(x) = (β2a2eik2x + β3a3eik3x)− (β2d2e−ik2x + β3d3e−ik3x),
(3)

where i =
√
−1 is the imaginary unit. The terms in the former and latter parenthesis of Equation (3),

as combined with eiωt, signify backward (arriving) and forward (departing) traveling waves.
The wavenumbers kr of flexural (r = 2) and thickness-shear (r = 3) modes are related to ω by:

k2,3 =
ω√
2cl

√√√√√√
( c2

l
c2

t
+ 1

)
±

√√√√( c2
l

c2
t
− 1

)2

+ 4
Ac2

l
Iω2

, (4)

where k2 is always purely-real indicating the propagation property of the flexural mode all along the
frequency domain, and k3 is first purely-imaginary below ωc and then purely-real above ωc manifesting
the first attenuation and then propagation property of the thickness-shear mode. ωc =

√
κGA/(ρI) is
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the cut-off frequency. Note that in order to guarantee the numerically well condition of our formulation,

k3 = −iω

√
−
[
(c2

l /c2
t + 1)2 −

√
(c2

l /c2
t − 1)2

+ 4Ac2
l /(Iω2)

]
/(
√

2cl) should be adopted as ω < ωc.

It is indicated from Equation (3) that the flexural and the thickness-shear waves are coupled to each
other, since the solutions to the generalized displacements contain contributions from both waves.
βr = [ω2/c2

t − k2
r ]/(ikr) representing the contribution of the flexural (r = 2) or thickness-shear (r = 3)

wave on rotation displacement, is called the influence coefficient of rotation displacement, as the
influence coefficients of transverse displacement are both unit. It can also be deduced from Equation (4)
that the velocities c2,3 = ω/k2,3 of flexural and thickness-shear waves are frequency dependent.
This indicates that the flexural and thickness-shear waves are dispersive.

Substituting Equation (3) into the spectral constitutive relations based on the Timoshenko beam
theory as follows: Q̂ = κGA(dv̂/dx − ϕ̂), M̂ = EIdϕ̂/dx [76], the solutions to the generalized
forces are:

Q̂(x) = (ζ2a2eik2x + ζ3a3eik3x)− (ζ2d2e−ik2x + ζ3d3e−ik3x),

M̂(x) = (µ2a2eik2x + µ3a3eik3x) + (µ2d2e−ik2x + µ3d3e−ik3x),
(5)

where ζr = (ikr − βr)κGA and µr = ikrβrEI are the influence coefficients of shear force and bending
moment corresponding to r wave mode, respectively.

2.2. Wave-Based Modeling of Joints: Scattering Relations

2.2.1. Coupling Conditions between the Beam Elements and Scattering Relations at the Interior Joints

At any interior joint J (J = 2, 3, · · · , N − 1) where two adjacent structural members in the current
unit cell are rigidly connected, the spectral equations of compatibility of displacements and equilibrium
of forces should be:

−v̂J I(0) = ûJ
Y = v̂JK(0), ϕ̂J I(0) = θ̂ J

Z = ϕ̂JK(0); −Q̂J I(0) + Q̂JK(0) = 0, M̂J I(0) + M̂JK(0) = 0. (6)

Substitute the solutions to the generalized displacements and forces of the members, as given
respectively in Equations (3) and (5), into Equation (6), and one obtains the local scattering relation of
interior joint J as:

AJ(ω)aJ + DJ(ω)dJ = 0 ( J = 2, 3, · · · , N − 1), (7)

where aJ = [aJ I
2 , aJ I

3 , aJK
2 , aJK

3 ]
T

and dJ = [dJ I
2 , dJ I

3 , dJK
2 , dJK

3 ]
T

are the arriving and departing wave vectors
of interior joint J, respectively, with the superscript T signifying the transpose of a vector or a matrix
here and after. The corresponding coefficient matrices are:

AJ =


1 1 1 1

−β2(i) −β3(i) β2(j) β3(j)
−ζ2(i) −ζ3(i) ζ2(j) ζ3(j)
µ2(i) µ3(i) µ2(j) µ3(j)

, DJ =


1 1 1 1

β2(i) β3(i) −β2(j) −β3(j)
ζ2(i) ζ3(i) −ζ2(j) −ζ3(j)
µ2(i) µ3(i) µ2(j) µ3(j)

 (8)

where Γr(i) and Γr(j) (Γ = β, ζ, µ, r = 2, 3) are the influence coefficients of rotation, shear force and
bending moment for members (i) and (j) associated with r wave mode, respectively.

2.2.2. Periodic Conditions between the Unit Cells and Scattering Relations at Exterior Joints

At the exterior joint pair 1 and N where the current unit cell is rigidly connected to the left and
right adjacent unit cells, periodic conditions exist between the generalized displacements (forces)
of joint pairs due to the Floquet–Bloch principle [1–3]. Further considering the coupling conditions
between the generalized displacements (forces) of the exterior joint and the corresponding generalized
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displacements (forces) of the correlated end member at the section of the joint, the spectral periodic
conditions between the unit cells [77,78] are written as:

−v̂N(N−1)(0) = ûYR = eiql ûYL = eiql v̂12(0), ϕ̂N(N−1)(0) = θ̂ZR = eiql θ̂ZL = eiql ϕ̂12(0);

Q̂N(N−1)(0) = p̂YR = −eiql p̂YL = eiqlQ̂12(0), −M̂N(N−1)(0) = m̂ZR = −eiqlm̂ZL = eiql M̂12(0);
(9)

where q is the wavenumber of the characteristic wave in the periodic beam, and l is the length of the
unit cell. iql = µ is known as the complex propagation constant, with its imaginary part qRl = µI and
real part −qI l = µR are the well-known phase constant and attenuation constant, respectively.

Introduction of the solutions to the generalized displacements and forces of members provided
respectively in Equations (3) and (5) into Equation (9) leads to the local scattering relations of joint
pairs 1 and N. These scattering relations are written as:[

A1(ω, q) A1N(ω, q)
AN1(ω, q) AN(ω, q)

]{
a1

aN

}
+

[
D1(ω, q) D1N(ω, q)

DN1(ω, q) DN(ω, q)

]{
d1

dN

}
=

{
0
0

}
, (10)

where a1 = [a12
2 , a12

3 ]
T (aN = [aN(N−1)

2 , aN(N−1)
3 ]

T
) and d1 = [d12

2 , d12
3 ]

T (dN = [dN(N−1)
2 , dN(N−1)

3 ]
T

) are
the arriving and departing wave vectors of exterior joint 1 (N), respectively, and the corresponding
partitions of the coefficient matrices are:

A1 = eiql

[
1 1

β2(1) β3(1)

]
, AN1 = eiql

[
ζ2(1) ζ3(1)
µ2(1) µ3(1)

]
, A1N =

[
1 1

−β2(m) −β3(m)

]
, AN =

[
−ζ2(m) −ζ3(m)

µ2(m) µ3(m)

]
;

D1 = eiql

[
1 1

−β2(1) −β3(1)

]
, DN1 = eiql

[
−ζ2(1) −ζ3(1)
µ2(1) µ3(1)

]
, D1N =

[
1 1

β2(m) β3(m)

]
, DN =

[
ζ2(m) ζ3(m)

µ2(m) µ3(m)

] (11)

with Γr(1) and Γr(m) (Γ = β, ζ, µ, r = 2, 3) denoting the influence coefficients of rotation, shear force
and bending moment for members (1) and (m) associated with r wave mode, respectively.

2.2.3. Global Scattering Relation

Grouping the scattering relations of all joints as provided typically in Equations (7) and (10) in
order of the joint label, one obtains the global scattering relation:

A(ω, q)a + D(ω, q)d = 0, (12)

where a and d are, respectively, the global arriving and departing wave vectors composed of:

a = [(a1)
T

, (a2)
T

, · · · , (aJ)
T

, · · · , (aN)
T
]
T

, d = [(d1)
T

, (d2)
T

, · · · , (dJ)
T

, · · · , (dN)
T
]
T

, (13)

and the corresponding 4 m × 4 m square coefficient matrices A and D are formed as:

A =



A1 0 · · · 0 · · · 0 A1N

0 A2 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · AJ · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · AN−1 0
AN1 0 · · · 0 · · · 0 AN


, D =



D1 0 · · · 0 · · · 0 D1N

0 D2 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · DJ · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · DN−1 0
DN1 0 · · · 0 · · · 0 DN


. (14)

It should be emphasized that the exponential functions in the solutions to generalized
displacements and forces of members as shown in Equations (3) and (5) do not appear in the local and
global scattering relations, as can be inferred from Equations (8) and (11), because the axial coordinate
of the end cross-section of every correlated structural member at any joint is always zero in the utilized
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local coordinate system. This is one of the main advantages of introducing the dual local coordinates
in the MRRM for structural members.

2.3. Spectral System Equation and Dispersion Relation

The global scattering relation (12) gives altogether 4 m equations for the 4 m unknown arriving
wave amplitudes and the 4 m unknown departing wave amplitudes in vectors a and d, respectively.
Obviously, another 4 m equations should be supplemented for solving the wave problem. Fortunately,
the global phase relation a = P(ω)d̃ = P(ω)Ud exactly provides another 4 m equations for the
global arriving and departing wave vectors a and d, whose derivation is detailed in Appendix A.
Substitution of this global phase relation into the global scattering relation (12) gives the spectral
system equation:

[A(ω, q)P(ω)U + D(ω, q)]d = Rd(ω, q)d = 0, (15)

where Rd = APU + D is the 4 m × 4 m system matrix. Equation (15) in fact poses a non-linear and
implicit eigenproblem with the eigenvector d and the eigenvalue eiql as the frequency ω is specified or
the eigenvalue ω in case of given wavenumber q.

For an existing non-trivial solution to the system Equation (15), the determinant of the system
matrix should vanish to give

det[Rd(ω, q)] = det[A(ω, q)P(ω)U + D(ω, q)] = 0, (16)

which is a transcendental dispersion equation determining the dispersion characteristics of bending
waves in the infinite bi-coupled periodic beams. In practice, except for the closed-form transcendental
dispersion equation provided in Reference [74] for simply configured bi-coupled periodic beams with
a binary unit cell having only two constituent beams, the concrete dispersion equation is difficult to
write out in closed-form for the general bi-coupled periodic multi-component beams. This is because
complicated operations of matrix multiplication and matrix determinant are involved in deriving the
closed-form of Equation (16). Consequently, the dispersion equation is usually solved numerically.
If any one among three in frequency ω, wavenumber q (or wavelength λ = 2π/q) and phase velocity
c = ω/q is specified within a prescribed range, the other two can be determined by properly searching
the root of Equation (16). The solving process and the adopted techniques are summarized as follows:

(1) Initially preset a beginning value and the increment to the known quantity. In later circulation
computations, add an increment to the current value of the known quantity to give it an
updated value.

(2) Specify two tentative values to the requested quantity. The first tentative value should be specified
at the initial computation and obtained from step (6) during the later calculations. The second
tentative value is obtained from the first tentative value by adding a specified increment. Based on
the golden section method, the two golden points between the first and the second tentative values
are calculated. Then, the wavenumbers q and frequencies ω can be computed corresponding to
the value of known quantity and the four values of requested quantity including two tentative
values and two golden section values.

(3) Substitute the resulting four (q,ω) groups into the pertinent formulas and matrices to form the
system matrices associated with the four values of requested quantities. Then calculate the
determinants of the system matrices in these four cases.

(4) According to the golden section method and referring to the determinant amplitudes of the
four system matrices, decide whether there is a root to the requested quantity within the two
tentative values. If there is not, directly go to step (6); If there is, search the root by virtue of the
dichotomizing method through inspecting the real or imaginary parts of the determinants or finish
the root searching by the golden section method by observing the amplitudes of the determinants.
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(5) Judge if adequate numbers of the requested quantity have been obtained or judge if the second
tentative value is exceeding the required range. If so, go to step (7). If not, go to the next step.

(6) Assign the second tentative value as the first one and then return to step (2).
(7) Judge if adequate numbers of root have been obtained for the current value of known quantity

or judge if the current value of known quantity exceeds the required range. If not, start the
calculation from step (1) again. If yes, terminate the calculation.

After all the roots within the required range of the requested quantity have been obtained for all
the specified values of known quantity with a given range, the dispersion spectra between the known
and requested quantities in the corresponding area can be plotted. These dispersion curves represent
the dispersion properties of the characteristic waves from a viewpoint.

It should be emphasized that the involved exponential functions in system Equation (15) and the
dispersion Equation (16) are eiql from the global scattering relation (12) and e−ikr(j) l(j) from the global
phase relation (A3), respectively. Since the elaborately chosen kr(j) has guaranteed Re[−ikr(j)l(j)] ≤ 0,

thus e−ikr(j) l(j) is always an exponentially decaying function. Comparatively, the other analytical
methods like the well-known transfer matrix method (TMM) contain both e−ikr(j) l(j) and eikr(j) l(j)

in its formulation, and thus inevitably both exponentially decaying and growing functions are
involved, which will lead to a numerically ill-condition problem as discussed in Ref. [79]. Our MRRM
formulation, however, should be numerically well-conditioned as long as Re[iql] ≤ 0 satisfies or
Re[iql] is not too big. These conditions are relatively easy to guarantee since in the wave problem
studied here the eigenvalue [iql] is symmetrical with respect to q = 0, i.e., the characteristic waves
in opposite directions should give the same dispersion property. Thus, our proposed MRRM is
applicable for accurate calculation of the dispersion curves until a relatively high frequency where
the Timoshenko beam theory still holds for modeling structural members. With regard to the
aforementioned numerically well-conditioned property, the advantage of our MRRM as compared to
TMM will be illustrated by numerical examples in Section 3.2.

It should also be pointed out that our proposed MRRM formulation based on the Timoshenko
beam theory in this section can actually be degenerated to a counterpart formulation for the bi-coupled
periodic Euler–Bernoulli beam structures, as long as ct = ∞, βr = ikr, ζr = −(ikr)

3EI, µr = (ikr)
2EI,

k2 = k = 4
√

ω2 A/(c2
l I) and k3 = −ik2 = −ik are adopted [76] in all the above related formulas. Again,

the MRRM formulation in this case is valid as long as the Euler–Bernoulli beam theory is effective.

3. Numerical Examples

Bi-coupled periodic multi-component beams with five kinds of unit cell, including two binary,
two ternary and one quaternary unit cells, have been considered in all the numerical examples
to validate our proposed MRRM, to illustrate the advantages of our MRRM compared to TMM,
to demonstrate the general dispersion characteristics of bending waves in bi-coupled periodic
multi-component beams, and to study the influences of various construction factors of the unit cell on
the band structures. The configurations of these five kinds of unit cells are listed in Table 1, with the
parameters of all the four involved materials provided in Table 2. In all the following calculations,
the Timoshenko beam theory and the shear coefficient 5/6 are used for all of the constituent beams
in the unit cells. Nevertheless, in Section 3.1 the Euler–Bernoulli beam theory is also exploited to
model the structural member for the sake of observing the effect of beam theories on the dispersion
curves. Except for the different geometric parameters of the exemplified periodic beams in Sections 3.2
and 3.4.1, the cross-sectional area and the cross-sectional inertia moment of all constituent beams in the
unit cell are given as 0.1 m2 and 2.083× 10−3 m4 for the exemplified periodic beams in all the other
sections of this part.

Adopting the aforementioned parameters, the comprehensive dispersion curves of
the five exemplified bi-coupled periodic multi-component beams are calculated by our
proposed MRRM, containing the frequency-attenuation constant, the frequency-phase constant,
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the frequency-wavelength, the frequency-phase velocity dispersion curves that are in group called as
the frequency-related spectra and the phase velocity-phase constant, the phase velocity-wavelength,
and the phase velocity-frequency dispersion curves that are called the phase velocity-related dispersion
curves in group. For the convenience of plotting these dispersion curves and also for the ease of
discussing the corresponding dispersion characteristics, the engineering frequency f = ω/(2π),
the dimensionless wavenumber (phase/attenuation constant) ql/π, the dimensionless wavelength
λ/l and the dimensionless phase velocity c/clR f are used with clR f =

√
ER f /ρR f as the wave speed

of longitudinal mode in the referred constituent beam. If the unit cell of the considered periodic beam
contains a concrete beam member, then it is taken as the referred beam. Otherwise, the aluminum
beam is deemed as the referred beam.

Table 1. The configuration of five kinds of unit cell in our exemplified bi-coupled periodic beams.

Unit Cell Type Configuration of the Unit Cell

Binary-I 1.0 m Concrete beam + 1.0 m Steel beam
Binary-II 1.0 m Aluminum beam + 1.0 m Epoxy beam
Ternary-I 0.5 m Aluminum beam + 1.0 m Concrete beam + 0.5 m Steel beam
Ternary-II 0.5 m Aluminum beam + 1.0 m Epoxy beam + 0.5 m Steel beam

Quaternary 0.5 m Aluminum beam + 0.5 m Concrete beam + 0.5 m Steel beam + 0.5 m Epoxy beam

Table 2. The material constants of the four materials involved.

Material Young’s Modulus
E (GPa)

Shear Modulus
G (GPa)

Mass Density
ρ (kg·m−3)

Concrete 25 9.40 2300
Steel 210 78.95 7850

Aluminum 77.56 28.87 2730
Epoxy 4.35 1.59 1180

3.1. Validation of the Proposed MRRM

Consider the bi-coupled periodic beam with Binary-I unit cell. The first several phase-constant
spectra below 2.0 kHz obtained by proposed MRRM based on the Timoshenko beam theory (TBT) are
shown in the right half-part of Figure 3. Also provided are the counterpart results by TMM obtained
by ourselves and by DQM in Ref. [55]. The comparison of the boundary frequencies of the first four
band gaps obtained by the aforementioned three methods are also listed in Figure 3. In order to also
validate the proposed MRRM based on the EBT and for the sake of illustrating the effects of rotary
inertia and shear deformation on the phase constant spectra and boundary frequencies of band gaps,
the calculations are also conducted based on the EBT. In the left half part of Figure 3, the results by the
MRRM, TMM and DQM are depicted corresponding to the right half part.

In both cases of TBT and EBT, the good agreement between the results by the MRRM, TMM and
DQM validates our formulation. Moreover, the good agreement between the first spectrum by TBT and
EBT indicates both EBT and TBT work well in the relatively low frequency range. But the discrepancy
between the second upwards spectra and the boundary frequencies of band gaps based on TBT and
EBT becomes more and more distinct with the increasing of spectra order, which indicates that the
rotary inertia and shear deformation have more and more obvious influences on the phase constant
spectra and boundary frequencies of band gaps with the increasing frequency. EBT, which neglects the
effects of rotary inertia and shear deformation, ceases to be effective in a somewhat high-frequency
range above the second pass-bands.



Appl. Sci. 2018, 8, 531 15 of 30

Figure 3. The first several phase constant spectra and the boundary frequencies of band gaps
of characteristic bending waves in the bi-coupled periodic beam with Binary-I unit cell. EBT:
Euler–Bernoulli beam theory; TBT: Timoshenko beam theory; MRRM: Method of reverberation-ray
matrix; TMM: Transfer matrix method; DQM: Differential quadrature method; BG: Band gap.

3.2. The Advantages of the Proposed MRRM as Compared to the Transfer Matrix Method (TMM)

Consider the bi-coupled periodic beams with one Binary-II as the unit cell and three Binary-IIs as
the super cell. The cross-sectional area and the cross-sectional inertia moment of all constituent beams
are A = 2× 10−4 m2 and 1/6× 10−8 m4 in the respective unit/super cell of the above two exemplified
periodic beams. The phase and attenuation constant spectra of these two periodic beams are computed
by the proposed MRRM and the well-known TMM. These band structures of the periodic beam with
one Binary-II as the unit cell are given and compared in Figure 3 within 0–700 Hz, while those of the
periodic beam with three Binary-IIs as the super cell are provided and contrasted in Figure 4 within
0–100 Hz.

Figure 4. Comparison of the band structures obtained by the method of reverberation-ray matrix
(MRRM) and transfer matrix method (TMM) for a bi-coupled periodic beam consisting of one Binary-II
as the unit cell.
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Figures 4 and 5 indicates that the classical TMM formulation is ill-conditioned, as the frequency
is above 380 Hz and 40 Hz for the exemplified periodic beam with one Binary-II as the unit cell
and the periodic beam with three Binary-IIs as the super cell under consideration, respectively.
The comparison between Figures 4 and 5 demonstrate that the increasing of transfer path will reduce
the critical frequency above which the TMM will be ill-conditioned. These findings illustrate the
possible ill-condition problem of the TMM in cases of relatively high frequency and long transfer path.
However, our proposed MRRM formulation is always well-conditioned for both exemplified periodic
beams within the respectively considered frequency ranges. This serves as the main advantages of the
MRRM as compared to TMM.

Figure 5. Comparison of the band structures obtained by MRRM and TMM for bi-coupled periodic
beam consisting of three Binary-IIs as the super cell. (MRRM: Method of reverberation-ray matrix;
TMM: Transfer matrix method.)

3.3. The General Dispersion Characteristics of Bending Waves in Bi-Coupled Periodic Multi-Component Beams

Among all kinds of dispersion curves, the corresponding ones of bending waves in the five
exemplified bi-coupled periodic multi-component beams illustrate qualitatively identical features
although they show quantitatively different shapes and positions. As a representative, the first several
frequency-related dispersion curves and the first several phase velocity-related dispersion curves of
the bending waves in a bi-coupled periodic beam with Ternary-I unit cell are exhibited respectively in
Figures 6 and 7. Figure 8 depicts those frequency-related dispersion curves within the frequency range
500–505 kHz of bending waves in the same bi-coupled periodic ternary beam, which again indicates
that the present MRRM formulation is well-conditioned within the considered high frequency range.

The comparison of the corresponding subfigures in Figures 6 and 8 verifies that the frequency
related dispersion curves illustrate similar features at low and relatively high frequency ranges.
In addition, when the bending-wave dispersion curves in Figures 6–8 are compared to the counterpart
longitudinal-wave dispersion curves in a periodic multi-component rod [75], a typical mono-coupled
periodic structure, features that are alike and unlike may be sought out.

The features that are alike include: (1) among the diversified dispersion curves representing
the propagation characteristics, only those frequency-related dispersion curves reflect the band
property; (2) in the frequency-wavenumber spectra, the phase and the attenuation constant spectra
are both symmetrical about ql = 0, since +ql and −ql denoting a pair of characteristic waves in
opposite directions should have the same propagation property. Within each pass-band, the phase
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constant spectrum is periodic about wavenumber with the minimum positive period being ql/π = 2.
Within each stop-band, the attenuation constant spectrum is a closed loop and non-periodic about
the wavenumber; (3) in the frequency-wavelength spectra, the wavelength associated with a given
frequency in pass-band is multi-valued. As we take λ/l = 1 as the dividing line, the spectra below
it become more and more intensive with the decrease of dimensionless wavelength, while those
above it are sparse. The frequency-wavelength spectra within the second and higher pass-bands
take the bounding frequencies with phase 0 as their asymptotes as the wavelength tends to infinity.
This means that near ql = 0 all the unit cells are displaced in the same direction without phase delay,
thus the periodic structure displaces as a whole; (4) in the frequency-phase velocity spectra, the phase
velocity associated with a given frequency in pass-band are also multi-valued. There is not any cut-off
value for phase velocity in the second and higher order pass-bands. The spectra become more and
more intensive as the phase velocity decreases. By contrast with the frequency-wavelength spectra,
the frequency-velocity spectra do not have clear division between the intensive and sparse regions.
The frequency-velocity spectra also take the bounding frequencies with phase 0 as their asymptotes as
the phase velocity tends to infinity; (5) the phase velocity-related dispersion curves show the dispersion
properties of the frequency-related dispersion curves in different viewpoints. As observed from the
phase-velocity related dispersion curves, the spectrum in the first pass-band has cut-off phase velocity,
but does not have cut-off wavelength, as noted in Figure 6c.

The special features of bending-wave dispersion curves in bi-coupled periodic multi-component
beams, as compared to the longitudinal-wave dispersion-curves in a mono-coupled periodic
multi-component rod, include: (A) the frequency-related dispersion curves in some pass-bands
may not be entirely constrained between the bounding frequencies corresponding to ql = 0 and
ql = π, which means that the frequencies corresponding to the Brillouin zone boundary may not be
the demarcation between pass-band and stop-band. This should be the most innovative dispersion
feature for bending waves in bi-coupled periodic multi-component beams, which never exist in
mono-coupled periodic structures; (B) the pass-bands and stop-bands no longer appear alternately due
to the existence of two kinds of characteristic bending waves. There may be frequency regions that are
pass-bands/stop-bands for both characteristic modes, because in these regions the phase/attenuation
constant spectra associated with different characteristic modes may overlap. There are regions that
have neither phase constant spectra nor attenuation constant spectra, in which the wavenumbers
are neither purely real nor purely imaginary, but are complex; (C) since the attenuation spectra in
some stop-bands are concave, more than one forms of attenuations at a given frequency occur in this
case; (D) the cut-off phase velocity should be obtained by setting ql = π, which is different from the
determination of the cut-off phase velocity in the mono-coupled periodic multi-component rods by
setting ql = 0 (ω = 0).
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Figure 6. Frequency-related dispersion curves of bending waves in the bi-coupled periodic beam
with Ternary-I unit cell: (a) the attenuation constant spectra; (b) the phase constant spectra; (c) the
wavelength spectra; (d) the phase velocity spectra.
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Figure 7. Phase velocity-related dispersion curves of bending waves in the bi-coupled periodic beam
with Ternary-I unit cell: (a) the phase velocity-wavenumber curves; (b) the phase velocity-wavelength
curves; (c) the phase velocity-frequency curves.
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Figure 8. Frequency-related dispersion curves of bending waves in the bi-coupled periodic beam with
Ternary-I unit cell within frequency range 500–505 kHz: (a) the phase constant and the attenuation
constant spectra; (b) the wavelength spectra; (c) the phase velocity spectra.
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3.4. Influences of Various Construction Factors of the Unit Cell on the Band Structures

In what follows, the effects of various construction factors of the unit cell (with fixed length
2 m) on the band structures, including the geometrical and material parameters of the constituent
beams and the unit-cell configuration, are studied on the bi-coupled periodic beams with the Ternary-I
unit cell. The referred geometrical parameters to all the constituent beams are A = 0.1 m2 and
I = 2.083 × 10−3 m4. During the research on the influences of geometrical and material parameters,
only the considered parameters of the concrete beam in the Ternary-I unit cell are altered, while the
other parameters of this beam and all parameters of the other constituent beams remain unchanged.
The degree of alteration is represented by the ratio of these parameters defined by the updated
value of the varied beam divided by the original value of the previous beam. These ratios are
specified during our study. Except for the shape and position of the band structures, particularly
emphasized are the effects of the geometrical and material parameters on the newly found novel
dispersion property, i.e., the frequencies corresponding to the Brillouin zone boundaries may not
be the demarcation between pass-bands and stop-bands for bending waves in bi-coupled periodic
multi-component beams.

3.4.1. Effect of the Geometrical Parameters of Constituent Beams on the Band Structures

The involved geometrical parameters of the constituent beams are the cross-sectional area and
the cross-sectional inertia moment. The cross-sectional area or the cross-sectional inertia moment of
the altered beam is changing independently on each other. The ratio of cross-sectional area γA has
been specified as three values 0.25, 1 and 4. Similarly, the ratio of cross-sectional inertia moment are
specified as the same three values γI = 0.25, γI = 1 and γI = 4. Figures 9 and 10 depict respectively
the phase/attenuation constant spectra of the resulting periodic beams with Ternary-I unit cell as the
cross-sectional area and the cross-sectional inertia moment change independently.

Figures 9 and 10 indicate that both the phase and the attenuation constant spectra are sensitive
to the variation of the cross-sectional area and the cross-sectional inertia moment. From Figure 9,
it can be noticed that the band structures generally move to the lower frequency side with the increase
of the cross-sectional area. As the cross-sectional inertia moment decreases, Figure 10 shows the
same phenomena. The highlighted regions of phase constant spectra in Figures 9 and 10 indicate that
with the alterations of γA or γI , the novel dispersion property, i.e., the feature that the frequencies
corresponding to the Brillouin zone boundaries may not be the demarcation between pass-bands
and stop-bands, will probably disappear or re-occur. It seems that there is not a general rule for
this phenomenon.
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Figure 9. Effect of the cross-sectional area of constituent beam on the band structures of the bi-coupled
periodic beam with Ternary-I unit cell.

Figure 10. Effect of the inertia moment of constituent beam on the band structures of the bi-coupled
periodic beam with Ternary-I unit cell.

3.4.2. Effect of the Material Parameters of Constituent Beams on the Band Structures

The material parameters involved include the Young’s modulus, the shear modulus and the
mass density. The Young’s modulus and the shear modulus are not independent, and are related
by the Poisson’s ratio. To inspect the effect of the modulus, we fixed the Poisson’s ratio and let
both the Young’s modulus and the shear modulus change synchronously. The specified ratios are
γE = γG = 0.25, γE = γG = 1 and γE = γG = 2, and the band structures of the corresponding
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periodic beams are depicted in Figure 11. To observe the effects of the Poisson’s ratio, the Young’s
modulus remains fixed and the shear modulus changes, because the variation of the Poisson’s ratio
is equivalent to changing the shear modulus as the Young’s modulus fixes. Three cases of the shear
modulus are considered, i.e., γG = 0.9, γG = 1 and γG = 1.2, with the corresponding band structures
provided in Figure 12. For the sake of investigating the effect of mass density on the band structures,
the ratio of mass density γρ is assumed as γρ = 0.25, γρ = 1 and γρ = 4 with the corresponding band
structures shown in Figure 13.

Figure 11. Effect of the modulus of constituent beam as its Poisson’s ratio remains on the band
structures in the bi-coupled periodic beam with Ternary-I unit cell.

Figure 12. Effect of the Poisson’s ratio of constituent beam as its Young’s modulus remains on the band
structures in the bi-coupled periodic beam with Ternary-I unit cell.



Appl. Sci. 2018, 8, 531 24 of 30

Figure 13. Effect of the mass density of constituent beam on the band structures in the bi-coupled
periodic beam with Ternary-I unit cell.

In general, Figures 11–13 indicate that the decreasing of modulus, the decreasing of Poisson’s
ratio and the increasing of density have similar effects on the variation of band structures of bending
waves in bi-coupled periodic multi-component beams, which are also similar to the increasing of
cross-sectional area and the decreasing of cross-sectional inertia moment as these figures are compared
to Figures 9 and 10. In the cases of these changes, the first pass-bands all appear at higher frequency
and the phase spectra all become sparser in a specified frequency range. From the attenuation constant
spectra, it is indicated that not only the central frequencies and widths of the stop-bands but also the
attenuation values in the stop-bands are influenced by these changes.

3.4.3. Effect of the Unit-Cell Configuration on the Band Properties

Just as the comparisons of the results in Section 3.3 have indicated, the five bi-coupled periodic
beams have quantitatively and slightly different dispersion curves and band properties, which exactly
reflect the influence of the unit-cell configuration. Table 3 lists the bounding frequencies of the first
10 pass-bands, and the bounding frequencies of the first 10 stop-bands can be easily written out
accordingly. Figure 14 shows the contrast of the central frequencies and the bandwidths of these
pass-bands as the unit-cell configuration is the observing factor.

Figure 14. The contrast of the first 10 pass-bands properties for the five exemplified bi-coupled periodic
multi-component beams. (a) the central frequencies; (b) the frequency bandwidths.
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Table 3. The bounding frequencies of the first 10 pass-bands of bending waves in the five exemplified
bi-coupled periodic multi-component beams.

Pass-Bands Periodic Binary Beams Periodic Ternary Beams Periodic Quaternary Beam

Order Bounding Frequencies (Hz) Binary-I Binary-II Ternary-I Ternary-II Quaternary

First
Lower 0.00 0.00 0.00 0.00 0.00
Upper 162.13 102.88 165.24 83.63 88.54

Second
Lower 171.35 126.66 196.46 107.72 141.59
Upper 520.61 353.47 589.39 296.93 340.82

Third
Lower 731.37 484.77 690.65 472.36 497.86
Upper 1052.51 686.77 1120.80 617.87 673.13

Fourth
Lower 1338.31 893.94 1253.65 885.74 937.24
Upper 1684.79 1040.70 1650.56 984.39 1096.64

Fifth
Lower 1796.83 1348.76 1822.11 1335.82 1238.31
Upper 2075.91 1500.30 2105.90 1443.82 1349.03

Sixth
Lower 2479.84 1515.88 2437.78 1525.62 1909.45
Upper 2506.23 1535.84 2475.43 1541.03 1910.74

Seventh
Lower 2638.36 1713.27 2574.76 1648.44 2063.38
Upper 2687.30 1863.85 2745.19 1735.87 2139.10

Eighth Lower 2869.99 2038.70 3018.43 2038.54 2422.14
Upper 3005.43 2203.39 3105.16 2110.07 2498.37

Ninth
Lower 3468.91 2203.39 3221.10 2234.20 2968.38
Upper 3542.20 2268.12 3224.44 2262.24 3010.78

Tenth
Lower 3622.93 2540.88 3473.08 2545.36 3068.38
Upper 3830.39 2677.25 3584.17 2597.76 3077.64

Figure 14 infers that the minimum bandwidth appears at the sixth pass-band for all the five
periodic beams. From Table 3 and Figure 14, we see that the number and arrangement of constituent
beams in the unit cell can be used to adjust the quantitative properties of the frequency bands,
which provides an effective way for designing and optimizing bi-coupled periodic multi-component
beams according to specific wave-controlling requirements in engineering practice.

4. Conclusions

The method of reverberation-ray matrix (MRRM) is formulated based on analytical beam theory
and matrix operation for analyzing the dispersion characteristics of bending waves (coupled flexural
and thickness-shear waves) in bi-coupled periodic multi-component beams. It entails a numerically
well-condition so as to be an accurate and uniform method, especially applicable for relatively high
frequency analysis, where the wavelength is still larger than the size of beam cross-section and
where other methods often cease to be effective. Through plentiful numerical examples on the
dispersion curves and band properties of bending waves in exemplified periodic multi-component
beams, the proposed MRRM formulation has been validated and its advantages as compared to the
classical transfer matrix method have been illustrated. Special attention is paid to the comprehensive
dispersion characteristics represented as the relationship between any two among three in frequency,
wavenumber (or wavelength) and phase velocity. The dependence of band structures (properties) on
the geometrical and material parameters of the constituent beams and the unit-cell configuration are
studied as well. The investigation in this paper leads to the following conclusions:

(1) MRRM is an analytical method based on a distributed-parameter model and yields a unified
formulation possessing a numerically well condition. It provides an alternative accurate method
for analyzing bending waves in bi-coupled periodic multi-component beams. The method is
effective as long as the adopted beam theory, such as the Timoshenko or Euler–Bernoulli beam
theory, is valid for modeling the structural members. The advantages of MRRM as compared
to TMM should be the consistently well-condition of MRRM, even in cases of relatively high
frequency and long unit cell where TMM is ill-conditioned and may fail to give reasonable results.

(2) Being different from the dispersion curves of longitudinal waves in periodic multi-component
rods, essentially a kind of mono-coupled periodic structure, the dispersion curves of the bending
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waves in bi-coupled periodic multi-component beams no longer show alternately distributed
pass-bands and stop-bands due to the existence of two characteristic wave modes. Pass-bands
and stop-bands for both characteristic wave modes may arise due to the overlaps of the dispersion
curves of different wave modes in the same regions. The wavenumber of the characteristic waves
may be complex in some frequency ranges other than purely real or purely imaginary in other
ranges. In some stop-bands, the attenuation constants may be multi-valued. The most innovative
finding is that the bounding frequencies corresponding to the Brillouin zone boundary are not
always the demarcations between the pass-band and stop-band. The cut-off phase velocity should
be obtained by setting ql = π rather than ql = 0 (or ω = 0).

(3) The cross-sectional area and the cross-sectional inertia moment as involved in the geometrical
parameters, the modulus, the Poisson’s ratio and the density as involved on the material
parameters, as well as the unit-cell configuration, all affect both the central frequencies and
the widths of the frequency bands. In particular, the increasing (decreasing) of the cross-sectional
area and the density have similar effects on the variation of band structures with the decreasing
(increasing) of the cross-sectional inertia moment, the modulus and the Poisson’s ratio, which all
push the band structures toward the lower frequency side and vice versa. The unit cell
configuration does have an effect on the band structures and properties, but there seems not
to be any general influence rule. All these findings can guide the adjustment of bending wave
propagation/attenuation characteristics.

In summary, we believe the presented MRRM and the deep understanding of bending-wave
dispersion curves in this paper will push forward the quantitative design and optimization of
bi-coupled periodic multi-component beams for wave filtering and vibration isolation applications.
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Appendix A. The Global Phase Relation between a and d

For a typical member (j) [(j) = (1), (2), · · · , (m)], the compatibility conditions between the generalized
displacements/forces of the member in dual local coordinates (x, y, z)JK and (x, y, z)KJ (x JK + xKJ = l(j)) are
written as:

v̂JK(x JK) = −v̂KJ(l JK − x JK), ϕ̂JK(x JK) = ϕ̂KJ(l JK − x JK);

Q̂JK(x JK) = Q̂KJ(l JK − x JK), M̂JK(x JK) = −M̂KJ(l JK − x JK).
(A1)

Substituting the solutions to the generalized displacements (forces) as provided in Equation (3) [Equation (5)]
into the former (latter) two formulas of Equation (A1) and noticing the functions eikr x and e−ikr x are independent
of each other, one obtains the local phase relation of member (j):

a(j) = P(j)(ω)d̃(j) = P(j)(ω)U(j)d(j), (A2)

where a(j) = [aJK
2 , aJK

3 , aKJ
2 , aKJ

3 ]
T

and d(j) = [dJK
2 , dJK

3 , dKJ
2 , dKJ

3 ]
T

are the arriving and departing wave

vectors of member (j), respectively; d̃(j) = [dKJ
2 , dKJ

3 , dJK
2 , dJK

3 ]
T

has the same components but arranged in

different sequence as d(j). They are related by d̃(j) = U(j)d(j), where U(j) = [0, I2; I2, 0] is an orthogonal
permutation matrix of member (j) with I2 the identity matrix of second order. In Equation (A2), P(j) =<

−e−ik2(j) l(j) ,−e−ik3(j) l(j) ,−e−ik2(j) l(j) ,−e−ik3(j) l(j) > is the phase matrix of member (j) with < · > here and after
denoting the (block) diagonal matrix. Note that Equation (A2) can also be written out directly according to the
wave propagation concept and the sign convention of the wave amplitudes, as indicated in Figure 2d. The resulting
equations are aJK

r = −e−ikr(j) l(j)dKJ
r , aKJ

r = −e−ikr(j) l(j)dJK
r . It should be noted that the chosen wavenumbers kr(j)

in Section 2.1 can always guarantee Re[−ikr(j)l(j)] ≤ 0. Thus, no exponentially growing function appears in
Equation (A2), which results in the numerically well condition of our matrix formulation.

Grouping the local phase relations of all members in sequence of member label (j) = (1), (2), · · · , (m),
we have the global phase relation as follows:

a = P(ω)d̃ = P(ω)Ud, (A3)

where a = [(a(1))
T, (a(2))

T, · · · , (a(j))
T, · · · , (a(m))

T]
T

and d = [(d(1))
T, (d(2))

T, · · · , (d(j))
T, · · · , (d(m))

T]
T

are
the global arriving and departing wave vectors that are essentially identical to those provided in Equation

(13), and d̃ = [(d̃(1))
T

, (d̃(2))
T

, · · · , (d̃(j))
T

, · · · , (d̃(m))
T
]
T

is a variant of d that relating to d by d̃ = Ud.U =<

U(1), U(2), · · · , U(j), · · · , U(m) > and P =< P(1), P(2), · · · , P(j), · · · , P(m) > are the 4 m × 4 m global permutation
and phase matrices.
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