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Abstract: In order to study the anti-shock performance of equipment under different working
conditions, a hydraulic servo shaking table is used to replicate the desired motion with high
fidelity. However, the sinusoidal acceleration response waveform is not a pure sinusoid due to the
inherent nonlinearities within the system. The generating higher harmonic deteriorates the control
performance and leads to system instability. To suppress the harmonic distortion and accurately
estimate harmonic information, the harmonic estimation scheme based on simulated annealing
algorithm is proposed. The sum of error square between actual value and estimated value is defined
as the objective function. The amplitude and phase of each harmonic can be directly extracted when
the objective function is minimized. Simulation and experimental results indicate that the proposed
algorithm has good convergence performance and high estimation precision.

Keywords: hydraulic servo shaking table; nonlinearities; harmonic distortion; simulated annealing
algorithm; harmonic estimation

1. Introduction

A shaking table is usually used to replicate various vibration conditions that occur in civil
engineering, automation industry, and aseismatic performance tests [1–5]. According to the drive
mode, a shaking table falls into categories of mechanical shaking tables, electrical shaking tables,
and hydraulic servo shaking tables. Hydraulic servo shaking tables are widely used in the engineering
field because of their advantages: higher force-to-weight ratio, higher response speed, higher load
stiffness, and control precision [6]. However, they have many drawbacks, such as a dead zone in the
servo valve, friction and backlash in joints, and the dynamic characteristic in hydraulic actuator [7].
Due to the above nonlinear factor, the sinusoid acceleration response shows amplitude attenuation
and phase delay, which causes waveform distortion. The harmonic distortion deteriorates the control
performance of system and leads to system instability [8]. In order to suppress harmonic distortion
and precisely reproduce the desired signal, it is necessary to obtain the amplitude and phase of the
each harmonic component. Furthermore, the estimated information can be used to compensate for the
harmonic distortion [9].

In past decades, various estimation methods have been developed in order to accurately estimate
harmonic information. The most widely used method is the fast Fourier transform (FFT). Nevertheless,
this method has some problems, namely aliasing, leakage, and picket-fence effect, which could result
in harmonic estimation inaccuracy [10]. Some recursive algorithms, like the least mean square (LMS)
and recursive least square (RLS), are also proposed to solve harmonic estimation problem [11–13].
Ray et al. developed the ensemble Kalman filter to estimate the amplitude and phase of distorted power
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system signal [14,15]. Barros presented the wavelet-packet transform to estimate the harmonic groups in
voltage and current waveforms [16]. Sahoo et al. studied a digital algorithm for harmonic identification
based on complex H∞ filter [17]. Soliman et al. utilized a new algorithm based on fuzzy linear regression
to estimate the frequency and harmonic component of the voltage signal in a power network [18].
With the development of intelligent optimization theory, it offers the possibility of estimating the harmonic
component with modern optimal algorithm [19]. Almaita and Asumadu applied the radial basis function
(RBF) neural network to duly estimate harmonic components of converter waveforms [20]. Wang used
a Hopfield neural network to simultaneously determine the supply frequency variation, the amplitude
variation and phase variation of fundamentals, as well as each harmonic [21]. Ray et al. proposed particle
swarm optimization (PSO) algorithm to identify current harmonic associated with fundamental current
from measurement [22]. Ji et al. adopted an adaptive bacterial swarming (ABS) algorithm to dynamically
estimate the frequencies and phases of the voltage or current harmonics in power grids [23].

The difficulty in harmonic estimation is due to the fact that harmonic generating is dynamic
and nonlinear in nature. Thus, fast and accurate harmonic estimation approaches are required.
However, the aforementioned methods can only be implemented offline and have several limitations
on convergence and accuracy. In this paper, the simulated annealing optimization algorithm is used
for hydraulic servo shaking table acceleration harmonic estimation. Simulation and experimental
results indicated that the proposed algorithm can accurately estimate the amplitude and phase of each
harmonic. Furthermore, the estimation algorithm has better real time performance and convergence
performance when compared with conventional algorithm, such as RLS.

2. Hydraulic Servo Shaking Table

Figure 1 shows the hydraulic servo shaking table developed by Harbin Engineering University, which
includes three subsystems: mechanical system, hydraulic system, and control system. The mechanical
system consist of a platform and a symmetric cylinder controlled by a two-stage symmetric servo valve.
The hydraulic system is used to provide hydraulic energy and control the pressure and flows of servo
actuator. The control system consists of a host computer and a target computer. The host computer serves
as user interface and allows users to generate a command signal, and obtain current experiment data.
The real time control algorithm and serial communication with the programmable logic controller are
operated on the target computer. Some main parameters of the shaking table are listed in Table 1.

Figure 1. The hydraulic servo shaking table. (a) Mechanical system; (b) hydraulic system; (c) control system.
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Table 1. The main parameters of shaking table.

Component Parameter

Piston diameter 40 mm
Rod diameter 35 mm

Stroke 25 mm
Supply pressure 8 Mpa
Frequency range 0~50 Hz

Maximum velocity 1.4 m/s
Maximum acceleration 10 m/s2

2.1. Dynamic Model

The power mechanism of the hydraulic servo shaking table includes servo valve, hydraulic
cylinder, and load, which can be simplified as symmetric hydraulic cylinder controlled by four-way
valve. The schematic diagram of the power mechanism is shown in Figure 2, where ps and pb are
the supply/return pressure, qi and qo are the input/output oil flow of the cylinder, pi and po are
the input/output pressure, Vi and Vo are the input/output oil volume, m is the mass, xv is the valve
position, B is the piston’s viscous damping coefficient, y is the load position, A is the effective area
of the cylinder. The physical features of shaking table’s hydraulic system can be described by the
following three equations.

The linearized flow equation of the servo valve can be expressed as

qL = Kqxv − Kc pL (1)

where qL = (qi + qo)/2 is load flow, Kq = ∂qL/∂xv is flow gain, pL = pi − po is pressure burden,
Kc = ∂qL/∂pL is flow-pressure coefficient.

Figure 2. Schematic diagram of the hydraulic system.

The flow continuity equation of the cylinder is

qL = A
dy
dt

+ Ctp pL +
Vt

4βe
·dpL

dt
(2)

where Ctp is leakage coefficient, Vt = Vi + Vo is the total volume of the actuator’s two chambers, βe is
the effective bulk modulus.
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The force balance equation is

Fg = A(pi − po) = ApL = m
d2y
dt2 + B

dy
dt

+ FL (3)

Performing Laplace transform from Equation (1) to Equation (3), the transfer function Gp(s) from
the valve displacement xv to the hydraulic cylinder displacement y can be expressed as

Gp(s) =
Y
Xv

=
Kq/A

s
(

s2

ω2
h
+ 2ζh

ωh
s + 1

) (4)

where ωh =
√

4βe A2

mVt
is load inherent resonant frequency, ζh = Kc

A

√
βem
Vt

+ Bc
4A

√
Vt

βem is load damping ratio.

2.2. Control Principle

Figure 3 shows the schematic diagram of the hydraulic servo shaking table. The three variable
controller (TVC) is a commonly used controller for shaking table [24]. The three variable of TVC
represent displacement, velocity, and acceleration of the shaking table. The TVC feedforward gain (Kdr,
Kvr, Kar) is used to improve system stability and the feedback gain (Kd f , Kv f , Ka f ) is used to extend
frequency bandwidth and reduce tracking error. The velocity feedback signal is usually synthesized
from the measured displacement and acceleration, as it is difficult to measure the displacement,
velocity, and acceleration simultaneously. The velocity in the high/low frequency range is obtained
from the displacement/acceleration using a high pass filter (HPF) or low pass filter (LPF), respectively.
The measured displacement, velocity, and acceleration are acquired by the ACL-8316 A/D port,
transforming analogue signal into digital signal. The input signal is obtained by input filter. The TVC
compares the feedback signal (d f , v f , a f ) with the given signal (dr, vr, ar) to generate the control signal
e, which is sent to hydraulic actuator by means of ACL-8316 D/A port that transforms digital signal
into analogue signal. Hydraulic power is supplied by the hydraulic pump to drive the hydraulic
cylinder, causing the desired movement of hydraulic servo shaking table.

Figure 3. Control principal of the hydraulic servo shaking table.

3. Simulated Annealing Algorithm

The simulated annealing is a population based stochastic algorithm, which was first introduced
by Metropolis in 1953 [25]. Since then, it has been widely used to solve combination optimization
problem. The algorithm stimulates the process of heating up a solid to a high temperature followed by
slow cooling [26–31]. As the temperature goes up, the particles of solid change into disordered state,
causing an increase in internal energy. However, the internal energy of solid decreases with a drop in
temperature, and the particles gradually back in order. If the cooling rate is cooled slowly enough for
the solid, the particles can reach thermal equilibrium at each temperature [32]. The minimum energy
is obtained by reaching the ground state of room temperature. According to the Metropolis guidelines,



Appl. Sci. 2018, 8, 524 5 of 13

the probability of particles tend to become equilibrium state exp(−∆ f /kT) at a given temperature T,
where k denotes the Boltzmann constant. Assuming a solid in current state m0 with energy level f (m)
and the next state m′ with energy level f (m′), if the difference between the two energy levels is less
than or equal to zero, the new state m is accepted. Otherwise, if the difference ∆ f = f (m′)− f (m) is
greater than zero, the new state is accepted with Metropolis criteria. The acceptance probability is
compared to a number Pr ∈ [0, 1] generated randomly and m is accepted whenever P > Pr. The initial
temperature T0 is supposed to be high enough to allow acceptance of any new state in the first step.
In each step, the procedure generates a fixed number of neighborhood solutions and evaluates them
using the current temperature value Ts = αT0, where α(0 < α < 1) is an attenuation factor [33,34].
The proposed simulated annealing algorithm used in this paper can be summarized as Figure 4.

Figure 4. Flow chart of the simulated annealing algorithm.

4. Harmonic Estimation Scheme

The distorted signal can be considered as the sum of fundamental response and harmonic
component. Each harmonic has its own amplitude and phase, and a frequency that is integral multiple
of the fundamental response. Therefore, the sinusoidal acceleration response of the shaking table at
time t can be expressed by

a(t) =
N

∑
n=1

An sin(nωt + φn) (5)

where N represents the order of the harmonic; ω is the fundamental frequency; An and ϕn are the
amplitude and phase of nth harmonic, respectively.

The discrete time version of Equation (5) can be represented as

a(k) =
N

∑
n=1

An sin(nωk + φn) (6)
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For estimating amplitude and phase, Equation (6) can be rewritten as

a(k) =
N

∑
n=1

(An cos φn sin nωk + An sin φn cos nωk) (7)

Define xn1 = An cos φn, xn2 = An sin φn. Then, Equation (7) can be written as

a(k) =
N

∑
n=1

(xn1 sin nωk + xn2 cos nωk) (8)

Sinusoidal signal in parametric form becomes

a(k) = h(k)x(k) (9)

where h(k) = [sin ωk, cos ωk, sin 2ωk, cos 2ωk, · · · , sin Nωk, cos Nωk]T is the input vector and
x(k) = [x11, x12, x21, x22, · · · xN1, xN2]

T is the weight vector.
The estimation model for the algorithm is

â(k) = h(k)x̂(k) (10)

where x̂(k) is the estimation weight vector.
The estimate value x̂(k) for the requested parameters x̂(k) can be obtained by minimizing the

objective function

f (x) =
N

∑
n=1

[e(k)]2 =
N

∑
n=1

[a(k)− â(k)]2 (11)

The harmonic estimation scheme based on simulated annealing algorithm can be illustrated with
Figure 5. The sinusoidal acceleration response is used as desired signal, and the reference harmonic
generates the input vector. The error between the actual value and the estimated value is optimized using
simulated annealing algorithm. The problem is formulated as an optimization problem, where the goal
is to minimize the objective function. After updating the weight vector, the amplitude and phase of the
fundamental and nth harmonic are derived as follows{

An =
√

x2
n1 + x2

n2

φn = tan(xn2/xn1)
(12)

Figure 5. Block diagram of the harmonic estimation scheme.
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Moreover, fundamental as well as each harmonic can be directly extracted from the final updated weights

ân(k) = xn1 sin nωk + xn2 cos nωk (13)

5. Simulation and Results

In order to verify the effectiveness of the developed acceleration harmonic estimation algorithm,
the simulation is firstly implemented. The simulation signal contains six harmonic. It is

a(t) = 10 sin(10πt) + 8 sin(20πt− 1.2) + 6 sin(30πt + 0.55) + 4 sin(40πt− 0.8)
+2 sin(50πt + 1.4) + 1 sin(60πt + 1)

Figures 6 and 7 are the estimated amplitudes and phases, respectively. It is seen that the estimated
values converge to their corresponding original values after about 0.4 s. Figure 8 shows the error
between the given signal a(t) and the estimated signal â(t) along with time. The estimation error is
asymptotically converged to zero within 0.4 s, which means that the given signal is estimated precisely.
The amplitude and phase of each estimated harmonic when they in stable states are listed in Table 2
with its given value. At the same time, it is clear that the estimated amplitude and phases are very close
to its given value for each harmonic. Thus the developed acceleration harmonic estimation scheme
can estimate harmonic information efficiently.

Table 2. The estimated value compared with given value.

Harmonic Order
Given Value Estimated Value

Amplitude (m/s2) Phase (rad) Amplitude (m/s2) Phase (rad)

Fundamental response 10 0 9.999816 −0.000004
Second harmonic 8 −1.2 8.000417 −1.19999
Third harmonic 6 0.55 5.999853 0.550035

Fourth harmonic 4 −0.8 4.000689 −0.79981
Fifth harmonic 2 1.4 1.999284 1.399997
Sixth harmonic 1 1 0.999776 0.999728

Figure 6. Estimation of amplitude.
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Figure 7. Estimation of phase.

Figure 8. Estimation of error.

6. Experiment and Results

When the acceleration excitation is 4 sin(2π × 5t) m/s2, the excitation signal and acceleration
response in the time domain are shown in Figure 9. It can be seen that the acceleration response is
seriously distorted, due to the effects of nonlinearities in the hydraulic servo shaking table. Since higher
harmonics are less dominant in all harmonics, the harmonic estimation is usually up to sixth harmonic
in practical applications. The amplitude frequency diagram computed by FFT in Figure 10 indicates
that the fundamental response is at 5 Hz, the second harmonic is at 10 Hz, the third harmonic is at
15 Hz, and so on. The total harmonic distortion (THD) is a very important criterion to evaluate its
waveform performance and it is given by

THD =

√
A2

2 + A2
3 + · · · A2

N

A1
× 100% (14)

where A1 is the amplitude of the fundamental, A2 the amplitude of the second harmonic, A3 the
amplitude of the third harmonic, and so on.
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The result of THD based on FFT is calculated off line as shown in Table 3. It can be seen that the fifth
harmonic plays a vital role in all harmonics, and the fourth harmonic is the least harmonic. The THD is
22.22%, which is a large value.

Table 3. Total harmonic distortion analysis result.

THD Harmonic Amplitude (m/s2)

22.22%
A1 A2 A3 A4 A5 A6

3.9830 0.4162 0.3510 0.1971 0.5824 0.3306

Figure 9. The response in time domain.

Figure 10. The response in frequency domain.

Figures 11 and 12 represent the amplitude and phase estimation results respectively using
simulated annealing and RLS algorithm of the given acceleration response. As can be seen from
the figures, RLS based estimation method has large estimation error and oscillatory in the initial stage
of estimation process, though it converges to the stable value. From the perspective of harmonic
estimation, the estimated algorithm by simulated annealing is better than RLS in real time performance
and convergence performance. In addition, each harmonic can be directly extracted from the distortion
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signal. Its results are shown in Figure 13, from which it can be seen that there are large fluctuations at
the beginning of the estimation, but converge quickly to its steady states within 0.5 s.

Figure 11. Estimation of amplitude.

Figure 12. Estimation of phase.
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Figure 13. Estimation of each harmonic.

7. Conclusions

Due to the inherent nonlinearities within the hydraulic servo shaking table, the acceleration
response produced is a time varying signal. Thus, fast and accurate harmonic estimation algorithm
is required. In this paper, the simulated annealing optimization algorithm is performed on the
acceleration sinusoidal response replication. Simulation and experimental results show that the
harmonic estimation scheme can estimate the amplitude and phase of each harmonic and reconstruct
individual harmonics at the same time. As an intelligent optimization technique, the proposed
algorithm does not require a priori knowledge of the system.

Compared with conventional RLS algorithms, experimental results show that the proposed
simulated annealing algorithm is better in convergence performance and real time performance. This is
important for harmonic estimation and harmonic suppression. In addition, the proposed technique
can be extended to many areas: online estimation, optimization, and control problems.
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