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Abstract: Raman imaging requires the effective extraction of chemical information from the
corresponding datasets, which can be achieved by a range of analytical methods. However, since each
of these methods exhibits both strengths and weaknesses, we herein directly compare univariate,
bivariate, and multivariate analyses of Raman imaging data by evaluating their performance in the
quantitation of two adulterants in paprika powder. Univariate and bivariate models were developed
based on the spectral features of the target adulterants, whereas spectral angle mapper (SAM),
adopted as a multivariate analysis method, utilized the complete dataset. The obtained results
demonstrate that despite being simple and easily implementable, the univariate method affords
false positive pixels in the presence of background noise. Luckily, the above problem can be easily
resolved using the bivariate method, which utilizes the multiplication of two band images wherein
the same adulterant shows high-intensity peaks exhibiting the least overlap with those of other
sample constituents. Finally, images produced by SAM contain abundant false negative pixels of
adulterants, particularly for low-concentration samples. Notably, the bivariate method affords results
closely matching the theoretical adulterant content, exhibiting the advantages of using non-complex
data (only two bands are utilized) and being well suited to online applications of Raman imaging in
the agro-food sector.
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1. Introduction

Raman spectroscopy coupled with chemical imaging finds numerous applications in the
food and pharmaceutical industries, combining both spectral and spatial information and thus
allowing the simultaneous identification and localization of chemical species. Since the chemical
properties and distribution of species usually influence the quality of both food and pharmaceutical
samples, the above technique can be used to generate chemical maps showing the distributions of
certain parameters of interest [1]. This unique feature of Raman imaging has made it a popular
method of pharmaceutical quality analysis from the initial step of preparing API-excipient solid
dispersions (e.g., by powder blending) through the manufacturing process until the final product
fabrication step [2,3]. Although Raman imaging has also been used for food quality analysis,
its full-scale potential for food quality and authenticity evaluation as well as the selection of appropriate
processing methods for imaging data are yet to be optimized. The applications of Raman imaging for
agro-food product evaluation are reviewed in reference [1,4].
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Up to now, Raman imaging has been performed using confocal imaging systems that collect
a large number of spectra at the desired sample positions, which is known as the point-scan
method. Recently, macro-scale, line-scan Raman imaging for high-throughput screening, pioneered by
Qin et al. [5], has been established and used for a range of applications related to agro-food quality
analysis, in particular determining the authenticity of powdered foods. The above method uses
a several-centimeters-wide laser line to illuminate the sample and a relatively large charge-couple
device (CCD) detector to generate the corresponding Raman chemical images. Since the laser line can
illuminate a large sample area, and the scattered Raman signal can be mapped by the CCD, one sample
dimension can be scanned at a time, allowing faster analysis.

As the hyperspectral imaging technique acquires spectral information from each pixel unit, it can
yield detailed sample information on the scale of a single pixel [6]. The numeric format of line-scan
Raman imaging data corresponds to a 3D hypercube in which intensity values are functions of two
spatial dimensions and one spectral dimension. Since macro-scale Raman imaging requires the effective
extraction of information from this hypercube, the analysis of collected data is very important for
evaluating the spatial distribution of a given constituent. The choice of an appropriate data analysis
method allows the visualization of sample biochemical constituents separated into particular image
regions, with methods for preprocessed Raman hypercube analysis broadly classified into univariate,
bivariate, and multivariate methods.

The simplest and most convenient approach is the univariate method, which considers only one
Raman peak and thus presents information on only one characteristic functional group. Since Raman
spectra comprise numerous peaks, the intensity of a single band can be utilized to map the component
of interest by plotting unique frequencies as functions of spatial position and spectral intensity.
However, the key requirement of univariate imaging is the precise spectral characterization of the
sample (i.e., adulterant materials) prior to imaging, as the uniquely assignable wavenumbers should
be known in advance [7]. In food authenticity analysis, the unique peaks of potential adulterants are
either known or determined experimentally and thus allow single-band imaging of the target chemical,
as exemplified by the successful application of Raman mapping in chocolate analysis [8], detection of
melamine in milk powder [9,10], and benzoyl peroxide in wheat flour [11].

When the target chemical (adulterant) does not show a relatively high-intensity band or this
band partially overlaps with the Raman peaks of other components, imaging can be performed
using bivariate analysis. This method utilizes two data points such as two Raman peaks of the
same component, using the summation or multiplication of the two selected bands to improve the
signal-to-noise ratio and thus generate the required Raman image. Since most studies utilizing Raman
imaging for the detection of food adulteration focus on a single adulterant showing intense Raman
peaks not overlapping with those of the background material, bivariate analysis has not yet been used
for agro-food quality analysis.

In contrast to the above methods, multivariate analysis employs full spectra and can thus be
adopted when selective information is not available [12]. Although the application of this method for
both qualitative and quantitative imaging has been reviewed by [1,13], most of the provided examples
correspond to pharmaceutical and biomedical domains. Only few investigations apply multivariate
analysis for Raman imaging of agro-food products, probably because the unique Raman peaks of
adulterants allow the application of the univariate method. However, multivariate analysis methods
are highly suggestive when the nature of adulterants is unknown or when the sample is suspected to
contain multiple adulterants, particularly if one wants to evade target-based conventional methods
that can only deal with one kind of adulterant at a time. The above methods are particularly useful for
extracting pure component spectra by means of classical least square analysis, self-modeling mixture
analysis (SMA), independent component analysis, etc. Another option is the development of a spectral
library of potential adulterants for a particular food product and the utilization of spectral similarity
analysis to compare individual adulterant spectra with those of collected pixels. Qin et al. [14] and
Dhakal et al. [15] used an SMA algorithm to extract the Raman signature of adulterants added to milk
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powder and create Raman chemical images of these samples, revealing a strong correlation between
the predicted and SMA imaging-based adulterant contents.

Very few studies compare univariate and multivariate analysis methods, particularly in the case
of pharmaceutical [7] and biomedical applications [16]. To the best of our knowledge, no comparison
of analysis methods for the quantitative characterization of food material Raman imaging data has yet
been reported. Thus, since Raman imaging-based food quality and authenticity analysis is gaining
popularity, and food samples are different (e.g., due to exhibiting higher fluorescence backgrounds)
from pharmaceutical and biological materials, a comprehensive comparison of data analysis methods
is urgently required. Therefore, we herein aimed to quantitatively compare the performances of
univariate, bivariate, and multivariate analyses of imaging data, using these methods to generate
Raman chemical images of two adulterants (Sudan-I and Congo Red dyes) and thus facilitating the
visualization of their spatial distribution and quantifying their concentration. Since in this study,
a single data set was practically tested, the findings of this study are legitimate for the reported dataset,
and not necessarily for all Raman imaging data.

2. Materials and Methods

2.1. Sample Preparation

Paprika powder was procured from a local market in Korea, and two adulterants (Sudan-I and
Congo Red dyes) with purities of >95% were purchased from Sigma-Aldrich (St. Louis, MO, USA).
The above dyes were selected as adulterants due to being frequently used as food colorants to enhance
the appearance of paprika or chili powder [17]. Appropriate amounts of adulterants were added to the
paprika powder to obtain four adulterant-spiked samples (0.1, 0.25, 0.5, and 0.75 wt %), e.g., the 0.1 wt %
sample contained 0.1 wt % Sudan-I, 0.1 wt % Congo Red, and 99.8 wt % paprika powder. The selected
adulterant concentration range was based on a previous report [18]. The spiked samples were loaded
into a centrifuge tube and subjected to 5-min vertex mixing. For Raman imaging, each sample was
packed into a custom-designed, aluminum-plated sample holder with interior dimensions of 40 mm ×
40 mm × 3 mm, and the powder surface was leveled with the upper edge of the sample holder using
a spatula.

2.2. Instrumentation and Data Collection

A schematic representation of the utilized line-scan Raman imaging system is shown in Figure 1,
with excitation performed using a custom-designed diode near-infrared laser system (OptiGrate Corp.,
Oviedo, FL, USA) combining the laser beam from 19 emitters to produce a relatively high-intensity laser
line. The laser beam emanating from the laser box was passed through a cylindrical lens (f = 200) and
an engineered diffuser (ED1-L4100; ThorLabs, Hans-Boeckler, Dachau, Germany) mounted next to the
above lens to obtain homogeneous laser intensity at each point of the laser line. The generated laser line
was then projected onto a 785-nm beam splitter placed at 45◦ to reflect the laser beam onto the sample
surface and act as a filter to mitigate Rayleigh scattering generated during Raman data collection.
The dimension of the generated laser line on the sample surface was approximately 1.5 mm × 16 mm
and laser power ~450 mW was measured by a digital power meter (PM100D, ThorLabs, Germany).

The generated Raman signals were passed through the beam splitter to the sensing unit,
which comprised an imaging spectrograph and a CCD camera. An objective lens with a focal length of
22 mm was mounted onto the spectrograph for focus and aperture adjustment. The generated Raman
signals were further filtered to remove Rayleigh-scattered photons using two 785-nm long-pass filters
and subsequently entered the imaging spectrograph via a slit. A 16-bit CCD camera (iKon-M 934,
Andor Technology, South Windsor, CT, USA) was placed in the focus plane of the spectrometer to
collect the dispersed signals and create images. During image collection, the CCD was cooled to –65 ◦C
to reduce the dark current effect. The camera was connected to a computer via USB cables for control
and data transfer. The whole system, with the exception of the computer, was installed in a black
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box to exclude the influence of surrounding light. The laser-line uniformity on sample surface was
measured by scanning a Teflon sheet and was about 14 cm.

The sample holder packed with a given adulterated paprika powder sample was placed on a
conveyor belt for line-by-line scanning. In addition to adulterant-containing samples, samples of pure
paprika powder and pure adulterants were also prepared as references. To improve the signal-to-noise
ratio, the exposure time was set to 1 s and a total of 270 steps, and a step size of 0.15 mm/scan was
selected to cover the spatial shape of the sample. Raman data were collected in the wavelength range
of 740–1000 nm (corresponding to Raman shifts of −763 to 2837 cm−1) and at a CCD spatial binning of
two. The generated Raman images were saved in ENVI format as a 3D hypercube. The dark reference
was obtained with the laser turned off and the camera lens covered by a cap, with the obtained dark
current subtracted from each collected hypercube to obtain corrected data for further analysis.
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Figure 1. Schematic diagram of the line-scan Raman imaging system.

2.3. Data Analysis

2.3.1. Preprocessing

The large size of Raman hypercubes generated for each sample leads to computational complexity
and hinders efficient data processing. Therefore, the data size was reduced in the spatial direction
(by selecting the spatial region of interest) and in the spectral direction (by examining the spectral
features of adulterants and keeping only the informative spectral range). The fluorescence signals
are usually generated during laser–sample interaction in the Raman measurement, particularly for
food materials, which may surpass the informative information. Therefore, the reformatted Raman
hypercube was first unfolded to a 2D dataset and the fluorescence background was removed from
the spectrum of each pixel using an adaptive, iteratively reweighted, penalized least square (airPLS)
method [19]. This method fit the spectrum and subtracts the fitted baseline from the original spectrum
to acquire a fluorescence-free spectrum. Moreover, a median filter with a 3 × 3 moving window was
used to remove high-frequency noise. The corrected 2D dataset was further refolded to a 3D one to
generate univariate and bivariate images.
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2.3.2. Univariate and Bivariate Analyses

The univariate method was employed by selecting a single-band image for each adulterant based
on one of its non-overlapping and intense Raman peaks. In another approach, the bivariate method
was employed, featuring the multiplication of two different band intensities of the same adulterant.
For this purpose, Raman images based on two different bands at which Sudan-I exhibits highly intense
peaks, showing the lowest interference from other adulterants or food constituents, were multiplied
together to generate a band multiplication image. The same methodology was applied to generate a
band multiplication image for Congo Red. The selected band images and the bivariate images for each
adulterant were subjected to image thresholding, i.e., a threshold value was applied to distinguish
between adulterant pixels and food background. The threshold value for the univariate method was
selected by comparing the adulterant and paprika powder peak intensities (peak height) at the selected
waveband for each adulterant. In a similar way, the peak intensity of multiplied bands for both
adulterants and paprika powder were compared to select a final threshold value for images generated
using the bivariate method.

2.3.3. Multivariate Analysis

The above preprocessed data were also processed using the multivariate procedure. Herein, the pixels
of adulterants and food powder were identified using spectral angle mapper (SAM) analysis,
which relies on determining the similarity between reference (endmember) and target spectra [20].
Therefore, the Raman spectra of pure adulterants were used as endmembers, and their similarities to
the spectra of pixels in the Raman images of adulterated paprika samples were calculated as follows:

SAM (a, b) = cos−1
(

A . B
|A||B|

)
= cos−1

(
∑n

1 ab

[∑n
1 a2]

1/2
[∑n

1 b2]
1/2

)
(1)

where a is the preprocessed 2D data (spectrum of each pixel), b is the reference spectrum of adulterant
(Sudan-I or Congo Red), and n is the number of spectral bands used for calculation:

The results from the SAM algorithms are displayed as a rule image, one for each reference class
defined. They give information about the relevance of each pixel to a reference class. The darker the
pixel, the more relevant it is to a particular class [21]. The output rule images had the same spatial
dimensions as the single-band Raman images and were used for the quantitative visualization of
adulterant particles after thresholding. The global threshold value for the SAM rule image calculated
for Sudan-I was selected by determining the angle between the Raman spectra of each pixel in pure
paprika powder and that of Sudan-I, as well as the angle between each pixel in the image of pure
Sudan-I and the mean spectrum of this dye. The threshold value was determined as the median value
of the maximum angle of Sudan-I and the minimum angle of paprika powder. All image collection,
correction, and analysis processes were programmed in MATLAB (MathWorks, Natick, MA, USA).

3. Results and Discussion

3.1. Raman Spectra and Image Processing

Initially, the Raman spectra of both adulterants were visually evaluated to find informative
wavenumber ranges (360–1800 cm−1 in both cases) and thus reduce the hypercube dimension in the
spectral domain region. Figure 2 shows the fluorescence-corrected Raman signature of paprika powder
and both adulterants in the selected spectral range, revealing that the adulterant spectra featured
numerous peaks, with most of them overlapping with signals of other adulterants or paprika powder.
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Figure 2. Preprocessed Raman spectra of paprika powder and adulterants.

Fluorescence correction and de-noising of Raman signals were performed using adaptive
iteratively reweighted penalized least squares (air PLS) and median filter methods, with the band
images for Sudan-I and Congo Red shown in Figure 3. Based on the original images, one can easily
observe that the paprika powder background was very intense, with the occasionally occurring spikes
(cosmic ray effect) suppressing relevant information and making both band images representing two
different adulterants look identical. However, hypercube preprocessing nullified the background effect
and high-frequency noise, enhancing the Raman images, with visual inspection of the corrected images
facilitating the visualization of adulterant particle distribution.
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Figure 3. Raman band images of 0.75% adulterated sample at selected wavebands for adulterants.

3.2. Univariate and Bivariate Analyses

As a common practice, univariate imaging can be performed by selecting single-band image of
the target chemical recorded using its most intense Raman peaks. The most intense Raman peak for
Sudan-I was observed at 1594 cm−1, but exhibited an overlap with a peak of Congo Red (1588 cm−1).
On the other hand, the most intense peak of Congo Red observed at 1152 cm−1 overlapped with that
of paprika powder (1156 cm−1). Therefore, univariate imaging was herein performed by selecting
the band images for Sudan-I and Congo Red at 1227 and 1351 cm−1, respectively, since these bands
were the second most intense and exhibited the least interference with the Raman peaks of other
components. A chemical map of each adulterant was created by plotting these unique wavebands
as a function of spatial position and intensity (Figure 3). The inconsistent background in the original
images was corrected to a more consistent one, allowing pixels representing adulterant particles to be
clearly seen after preprocessing.

Since hypercube (image) correction is usually performed in the spectral domain (unfolded 2D
data), the existence of noise in the spatial domain is obviously band-independent. Therefore, univariate
(single-band) imaging may result in high-intensity noise pixels that can be classified as adulterant
pixels after intensity-based image thresholding. A simple way of mitigating these effects is the
application of the bivariate method, which involves the use of two data points. Importantly, noise is
randomly distributed and is not related to the band position, whereas adulterant pixels in two band
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images of same adulterant have the same spatial position. Therefore, the multiplication of two bands
representing the same adulterant obviously enhances only the pixels pertaining to the adulterant.
Hence, we herein used the multiplication of two bands (i.e., 1227 and 1493 cm−1 for Sudan-I and 1351
and 1451 cm−1 for Congo Red) to enhance and segregate the adulterant particles from the paprika
powder background and thus develop a quantitative model. The selected bands 1227 and 1493 cm−1

for Sudan-I are related to the δ(CH) and ν(CC) vibration modes, respectively [22] and the Raman
bands 1351 and 1451 cm−1 selected for Congo Red represents CR bands and are related to azo-mode
frequencies [23,24]. The result of the bivariate imaging (Figure 4) confirmed the enhancement of
adulterants pixels and proved that the background noise could be significantly reduced, as is obvious
from the comparison of the multiplication image with the single-band image for Congo Red.
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paprika powder.

3.3. Multivariate Analysis

Spectral angle mapper (SAM) is a widely used method for pixel-by-pixel hyperspectral image
screening, requiring the assignment of a reference spectrum (endmember) to calculate the angle
between reference spectra and the spectra of each pixel in the target image. Herein, individual SAM
models were developed for each adulterant to identify adulterant particles in spiked samples,
with the obtained images shown in Figure 5. The intensities of each pixel in the obtained rule
images represent the SAM angles between the endmember and the spectrum extracted from a given
hyperspectral pixel [21], with pixel darkness being proportionate to the similarity between these
spectra. Paprika powder showed less dark pixels (larger angles) than those of the adulterants owing
to the higher dissimilarity of the former and the reference spectrum. Thus, the dark pixels in Figure 5
represent adulterant particles, with the obtained results confirming the high potential of SAM for
identifying and locating the spatial positions of individual adulterant particles based on the Raman
characteristics of these adulterants. Since the rule images showed a distinct difference between
adulterant and food powder pixels, the obtained images could be subjected to thresholding to develop
a quantitative analysis model.
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3.4. Quantitative Analysis

Images obtained using each method were subjected to image thresholding to calculate the number
of individual adulterant pixels at each concentration and thus develop a quantitative model and
compare the performances of each technique. The preprocessed band images (for univariate analysis)
and band multiplication images (for bivariate analysis) were thresholded by converting all pixels
with intensities below the threshold value into the background, with those with intensities above the
threshold value ascribed to adulterant particles. The optimum threshold values were determined
separately for each adulterant by examining the Raman spectra of pixels classified as either adulterant
or paprika powder. Binary images were generated from rule images (Figure 5) by applying a threshold
value calculated as mentioned in the Materials and Methods section. The contents of individual
adulterants were then determined by calculating the percentage of adulterant pixels in binary images.

To visualize the spatial distribution of each adulterant in paprika powder, images obtained by
univariate analysis were combined as shown in Figure 6, with a similar procedure performed for
bivariate and multivariate analyses. The concentration of color-coded pixels was low in images of the
0.1 wt % samples, increasing with increasing adulterant content and thus confirming that the detected
number of component pixels was linearly correlated to adulterant content (R > 0.95 for each adulterant
detected using different analysis methods).
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3.5. Comparision of Analysis Methods

The three different analysis methods were compared based on their ease of implementation and
performance in determining adulterant concentration (Table 1). Table 1 lists the pixel-based detected
concentrations of adulterants in each sample. A linear relationship between the pixel-based detected
percentage of adulterants and actual concentration of adulterants in the mixture was developed for
quantitative analysis. Table 1 shows that the adulterant contents determined using univariate and
bivariate imaging were very similar, with slightly better performance observed for the latter method.
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This behavior was ascribed to the suppression of noise by image multiplication, whereas some false
positive pixels were calculated for Sudan-I (inside the black box in Figure 6) using the univariate
method. The pixels marked in Figure 6 corresponded to high-frequency noise in the spatial domain,
which was viewed as Sudan dye pixels during image thresholding. However, when the bivariate
method was used and images were multiplied, this noise was suppressed, as the adulterant pixel
intensity was enhanced.

Table 1. Results of adulterant detection obtained with three different analysis methods.

Univariate Analysis Bivariate Analysis Multivariate Analysis

Sample Added
value (%)

Detected Sudan
dye (%)

Detected
Congo red (%)

Detected Sudan
dye (%)

Detected
Congo red (%)

Detected Sudan
dye (%)

Detected
Congo red (%)

Mixture 1 0.1 0.183 0.071 0.168 0.069 0.062 0.054
Mixture 2 0.25 0.26 0.217 0.279 0.21 0.225 0.212
Mixture 3 0.5 0.487 0.52 0.485 0.504 0.58 0.502
Mixture 4 0.75 0.889 1.06 0.789 1.04 1.11 1.15

The obtained results revealed that the SAM method underestimated the adulterant content
(particularly in the case of Sudan-I) for low-concentration samples and overestimated it in the case of
highly concentrated samples (e.g., mixture 4), as compared to the results of the univariate and bivariate
methods. This behavior was attributed to the fact that in low-concentration samples, the minor peaks of
adulterants were not clearly distinguished from those of the paprika powder background, while being
fairly intense in the case of concentrated samples. To re-state this, the SAM algorithm calculates
the similarity between the spectra of the reference material and investigated pixels. If the pixel
spectra are strongly influenced by those of the background material (paprika powder), the calculated
angles lie between those of paprika powder and the adulterant of interest. Thus, the above pixels are
considered to be sub-pixels and are missed during image thresholding. In order to correct this sub-pixel
effect, the threshold values were also tested as slightly higher and lower than the calculated median
values. However, for the higher threshold value, some of the background pixels were identified as
adulterants (over-classifying) and at the lower threshold value, some adulterants pixels were missed
(under-classifying).

In an another approach, to check the similarity between the adulterant particles detected using
the three analysis methods, the binary images of same-concentration samples generated using
these methods were linked together for pixel-to-pixel comparison, as shown in Figure 7. At each
concentration level, the binary images generated using the three different methods were combined and
the detected adulterant pixels for each method were color coded—pixels in green represent the results
from the univariate method, blue represents the bivariate method, and red represents the multivariate
(SAM) analysis. Combination pixels that were detected using two methods (any combination of two
methods from the three used analysis methods) were represented in orange, pink, and baby blue and
pixels detected as adulterants by all methods are shown in black. As can be seen, the majority of
pixels in these images were black, implying that all of the three methods assigned the same pixels
as adulterants. However, some pixels corresponding to relatively small spots were determined as
adulterants by the univariate and bivariate methods (brown color) but not by SAM, probably due
to the latter method viewing them as subpixels and thus not classifying them as adulterants for the
reason mentioned above. However, the visual evaluation of the spectra of these pixels confirmed their
assignment as adulterants.

Therefore, the obtained results revealed that although univariate imaging is the simplest and
most convenient method, it is not applicable when the intense peaks of target adulterants overlap
with those of other sample constituents. Moreover, the presence of high-frequency noise, which is
common for agricultural and biological materials, can result in the observation of false positive pixels.
This problem can be resolved by utilizing bivariate imaging, which ultimately enhances adulterant
particle intensities and thus suppresses noise. This approach allows the straightforward and rapid
analysis of Raman imaging data due to using only two data points and can thus be considered
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an effective analysis method for the online application of Raman imaging in the agro-food sector.
On the other hand, SAM imaging, considering the complete dataset, requires an increased amount
of computation time and has not been proven effective for low-concentration samples. It is worth
mentioning that binary SAM images featured a lower number of mixed pixels (shown in black color
in Figure 6) than those obtained by the other two techniques. Moreover, SAM analysis exhibits the
advantage of increased reproducibility due to being the least sensitive to the slightly time-dependent
spectral intensity, but being highly sensitive to the spectral pattern. Summarizing the comparison of
the data analysis methods, it can be concluded that the bivariate method (band multiplication) is most
suitable for the quantitative analysis of two different adulterants (Sudan dye and Congo red dye) in
paprika powder. The pixel-based detected concentration of adulterants is almost consistent with the
added concentration, unlike SAM analysis, which shows false negative pixels for low concentration
samples and over-estimation for high concentration samples. Moreover, bivariate analysis uses a
very small portion of data sets (only two band images), hence reducing the computation time and
facilitating the real-time visualization of Raman chemical images of adulterants, which is not possible
using the SAM analysis method owing to the aforementioned complications in data analysis.
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4. Conclusions

Herein, we evaluated three different methods of Raman imaging data analysis, showing that all of
them were effective for adulterant screening in food powder and eventually developing a quantitative
model. Notably, although the univariate method is the simplest and most easy to implement, is suffers
from an increased risk of generating false positive pixels and does not perform well when the
peaks of the target adulterant overlap with those of another sample constituent. On the other hand,
SAM considers the complete dataset but did not perform very well in this study, possibly for reasons
set out above. Conversely, bivariate analysis relies on the multiplication of two band intensities,
enhancing adulterant signals and suppressing background noise, and can thus be considered a simple
but effective Raman imaging method, with the produced Raman maps providing valuable information
on the spatial distribution of adulterant particles and thus allowing the further development of accurate
quantitative models.

However, in this study, the comparison of the three different data analysis methods was carried
out with a single data set (adulterated paprika powder), therefore the obtained results are practically
valid only for that particular data set. However, the findings of this study show that the univariate
method is sensitive to background noise, which can appear in Raman band images of any kind of
powdered food sample, and the SAM-based method considers the spectral pattern regardless of the
particular adulterant (used in this study). Therefore, we believe that the findings of this study can
be used to select appropriate methods for Raman imaging data analysis of any kind of (adulterated)
powdered food sample.
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